تعداد نشریات | 49 |
تعداد شمارهها | 1,776 |
تعداد مقالات | 18,924 |
تعداد مشاهده مقاله | 7,741,456 |
تعداد دریافت فایل اصل مقاله | 5,003,640 |
قابلیت طیفسنجی مرئی-مادون قرمزنزدیکVIS-NIR) ) در پیشبینی درصد ذرات خاک با استفاده از شبکه عصبی مصنوعی و رگرسیون حداقل مربعات جزئی | ||
آب و خاک | ||
مقاله 8، دوره 34، شماره 3 - شماره پیاپی 71، شهریور 1399، صفحه 623-635 اصل مقاله (1.57 M) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/.v34i2.80806 | ||
نویسندگان | ||
الهام مهرابی گوهری1؛ حمید رضا متین فر ![]() ![]() | ||
1دانشگاه پیام نور | ||
2دانشگاه لرستان | ||
3اردکان | ||
4دانشگاه شهید باهنر کرمان | ||
چکیده | ||
طیفسنجی مرئی و مادون قرمز نزدیک (VIS-NIR) به طور گستردهای برای تخمین خصوصیات فیزیکی خاک و اخیرا برآورد بافت خاک استفاده میشود. مطالعه حاضر با هدف پیشبینی احتمالی بافت خاک با استفاده از اندازهگیریهای طیفی و مدلهای شبکه عصبی مصنوعی و رگرسیون حداقل مربعات جزئی انجام گرفته است. بر اساس تکنیک هایپرکیوب، محل 115 پروفیل شناسایی و سپس نمونهبرداری از افقهای خاک انجام گرفت، درصد شن و رس و سیلت نمونههای خاک اندازهگیری شد. رگرسیون حداقل مربعات جزئی (PLSR) و شبکه عصبی مصنوعی (ANN) برای مدلسازی درصد رس، شن و سیلت خاک مقایسه شدند. نتایج این بررسی نشان داد که شبکه عصبی مصنوعی نسبت به رگرسیون حداقل مربعات جزئی کارایی بهتری داشت، برای هر دو مدل از محدوده خاصی از طول موج (بین 400 -2450 میکرون با اعمال پیشپردازشها و حذفیات یکسان) استفاده گردید. هنگامی که مدل رگرسیون مربعات جزئی اجرا شد، دقت بسیار پایینی داشت (R2 ~0.1-0.3)، در مقابل، روش شبکه عصبی-مصنوعی مقدار R2 به ترتیب برای رس، شن و سیلت 70/0, 76/0و 73/0 بود و میانگین ریشه مربعات خطا به ترتیب 14/9، 54/5 و 01/7 گرم بر کیلوگرم براساس دادههای آزمون (20 درصد) به دست آمد که نشان دهنده دقت بالاتر و خطای کمتر مدل شبکه عصبی-مصنوعی میباشد. از آنجایی که رابطه بین درصد ذرات خاک و بازتاب طیفی خاک خطی نیست، به نظر میرسد روش شبکه عصبی-مصنوعی برای بررسی و تجزیه و تحلیل رابطه بین اجزای بافت خاک و دادههای طیفی مناسب باشد. | ||
کلیدواژهها | ||
رگرسون حداقل مربعات جزئی؛ پیش بینی؛ مدل سازی؛ طیف سنجی مرئی مادون قرمز؛ شبکه عصبی مصنوعی | ||
مراجع | ||
1- Bellinaso H., Alexandre J., Dematte J.A.M., and Romeiro S.A. 2010. Soil spectral library and its use in soil classification. R. Bras. Ci. Solo 34: 861-870.
2- Ben-Dor E., Goldlshleger N., Benyamini Y., Blumberg D.G., and Agassi M. 2003. “The spectral reflectance properties of soil structural crusts in the 1.2- to 2.5-μm spectral region,” Soil Science Society of America Journal 67(1): 289–299.
3- Ben-Dor E., Taylor R.G., Hill J., Dematte J.A.M., Whiting M.L., Chabrillat S., and Sommer S. Imaging Spectrometry for Soil Applications, Advances in Agronomy, Vol.97, No. 2008, Elsevier Inc.
4- Clark R.N. 1999. Spectroscopy of rocks and minerals, and principles of spectroscopy. In: Rencz, A.N. (Ed.), Remote Sensing for Earth Sciences. Manual of Remote Sensing. John Wiley and Sons, Inc., Toronto, pp. 3–58.
5- Greve M.H., Kheir R.B., Greve M.B., and Bocher P.K. 2012. Quantifying the Ability of Environmental Parameters to Predict Soil Texture Fractions Using Regression-Tree Model with GIS and LIDAR Data: The Case Study of Denmark, Ecological Indicators 18: 1—10.
6- Gholizadeh A.A., Soom M.A.M., Saberioon M.M., and Boruvka L. 2013. Visible and near infrared reflectance spectroscopy to determine chemical properties of paddy soils. J. Food Agric. Environ 11: 859-866.
7- Gomez C., Lebissonnais Y., Annabi M., Bahri H., and Raclot D. 2013. Laboratory Vis—NIR Spectroscopy as an Alternative Method for Estimating the Soil Aggregate Stability Indexes of Mediterranean Soils, Geoderma 209-210: 86-97.
8- Hartemink A.E., and Minasny B. 2014. Towards Digital Soil Morphometrics, Geoderma 230231: 305-317.
9- Hunt G.R. 1977. Spectral signatures of particulate minerals in visible and near-infrared. Trans. Am. Geophys. Union 58: 553.
10- Janik L.J., Forrester S.T., and Rawson A. 2009.The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis. Chemometr. Intell. Lab., 97: 179-188.
11- Khayamim F., Khademi H., Stenberg B., and Wetterlind J. 2015. Capability of vis-NIR Spectroscopy to Predict Selected Chemical Soil Properties in Isfahan Province. JWSS - Isfahan University of Technology 19(72) :81-92.
12- Kodaira M., and Shibusawa S. 2013. Using a mobile real-time soil visible-near infrared sensor for high resolution soil property mapping. Geoderma 199: 64-79.
13- Kuang B., Mahmood H.S., Quraishi M.Z., Hoogmoed W.B., Mouazen A.M., and Van Henten E.J. 2012. Sensing Soil Properties in the Laboratory, In Situ, and On-Line: A Review: Advances in Agronomy, Elsevie Inc, Vol. 114.
14- Li D., Durand M., and Margulis S.A. 2011. Potential for Hydrologic Characterization of Deep Mountain Snowpack via Passive 2012. in the Tropics, Earth-Science Reviews 106: 52-62.
15- Mouazen A.M., Kuang B., DE Baerdemaeker and Ramon H. 2010. Comparison between principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma 158: 23-3
16- Ramadan Z., Hopke P.K., Johnson M.J., and Scow K.M. 2005. Application of PLS and Back-Propagation Neural Networks for the estimation of soil properties. Chemometr. Intell. Lab., 75: 23-30.
17- Savitzky A., and Golay M.J. 1964. Smoothing and differentiation of data by simplified least squares.
18- Schaap M.G., Leij F.J., and van Genuchten M.Th. 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Journal Soil Sci. Soc. Am 62: 847–855.
19- Shepherd K.D., and Walsh M.G. 2002. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci. Soc. Am. J. 66: 988–998.
20- Soriano-Disla J.M., Janik L.J., Viscarra-Rossel R.A., Macdonald L.M., and Mclaughlin M.J. 2014. The Performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl. Spectrosc. Rev., 49: 139-186.
21- Stenberg B., Viscarra-Rossel R.A., Mouazen A.M., and Wetterlind J. 2010. Visible and near infrared spectroscopy in soil science. Adv. Agron., 107: 163-215.
22- Summers D., Lewis M., Ostendorf B., and Chittleborough D. 2011. Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecol. Indic., 11: 123-131.
23- Vasquez G.M., Grunwald S., and Sickman J.O. 2008. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma 146: 14-25.
24- Viscarra Rossel R., Cattle S.R., Ortega A., and Y. 2009. Fouad. In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy, Geoderma 150: 253–266.
25- Weather data of Zarand, Kerman province, 2015.
26- Zhao S.J., Zhang J., XU Y.M., and Xiong Z.H. 2006. Non-linear projections to latent structures method and its applications. Indian Eng. Chem. Res., 45: 3843-3852.
27- Zhao Z., Chow T.L., Rees H.W., Yang Q., Xing Z., and Meng F. 2009. Predict soil texture distributions using an artificial neural network model. Com. Elec. Agr, 65: 36-48.
28- Zhu Y., David C.W., and Zhang W. 2011. Characterizing Soils Using a Portable X-ray Fluorescence Spectrometer-1. Soil Texture, Geoderma 167-168: 167-177.29.
29- Zhu Y.M., Lu X.X., and Zhou Y. 2007. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphology 84: 111–125. | ||
آمار تعداد مشاهده مقاله: 465 تعداد دریافت فایل اصل مقاله: 289 |