1- Aghdam M.S., and Bodbodak S. 2014. Postharvest heat treatment for mitigation of chilling injury in fruits and vegetables. Food and Bioprocess Technology 7(1): 37-53.
2- Alexieva V., Sergiev I., Mapelli S., and Karanov E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment 24(12): 1337-1344.
3- Ali M.B., Hahn E.J., and Paek K.Y. 2005. Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiology and Biochemistry 43(3): 213-223.
4- Allen D.J., and Ort D.R. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science 6(1): 36-42.
5- Ao P.X., Li Z.G., Fan D.M., and Gong M. 2013. Involvement of antioxidant defense system in chill hardening-induced chilling tolerance in Jatropha curcas seedlings. Acta Physiologiae Plantarum 35(1): 153-160.
6- Baldi P., Pedron L., Hietala A.M., and La Porta N. 2011. Cold tolerance in cypress (Cupressus sempervirens L.): a physiological and molecular study. Tree Genetics & Genomes 7(1): 79-90.
7- Baninasab B. 2009. Amelioration of chilling stress by paclobutrazol in watermelon seedlings. Scientia Horticulture 121: 144-148.
8- Bates L.S., Waldren R.P., and Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39(1): 205-207.
9- Chao Y.Y., Hsu Y.T., and Kao C.H. 2009. Involvement of glutathione in heat shock–and hydrogen peroxide–induced cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant and Soil 318: 37-44.
10- FAO. 2015. FAO website. http://faostat.fao.org.
11- Ghanbari F., and Sayyari M. 2018. Controlled drought stress affects the chilling-hardening capacity of tomato seedlings as indicated by changes in phenol metabolisms, antioxidant enzymes activity, osmolytes concentration and abscisic acid accumulation. Scientia Horticulturae 229: 167-174.
12- Ghanbari F., and Kordi S. 2019. Hardening pretreatment by drought and low temperature enhanced chilling stress tolerance of cucumber seedlings. Acta Scientiarum Polonorum-Hortorum Cultus 18: 29-37.
13- Gong M., Chen B.O., Li Z.G., and Guo L.H. 2001. Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. Journal of Plant Physiology 158(9): 1125-1130.
14- Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., and Ahmad A. 2012. Role of proline under changing environments: a review. Plant Signaling & Behavior 7(11): 1456-1466.
15- Hossain M.A., Burritt D.J., and Fujita M. 2016. Cross-stress tolerance in plants: molecular mechanisms and possible involvement of reactive oxygen species and methylglyoxal detoxification systems. Abiotic Stress Response in Plants 323-375.
16- Hossain M.A., Mostofa M.G., and Fujita M. 2013. Heat-shock positively modulates oxidative protection of salt and drought-stressed mustard (Brassica campestris L.) seedlings. Journal of Plant Science and Molecular Breeding 2(1): 1-14.
17- Jang J.H., and Moon K.D. 2011. Inhibition of polyphenol oxidase and peroxidase activities on fresh-cut apple by simultaneous treatment of ultrasound and ascorbic acid. Food Chemistry 124(2): 444-449.
18- Janská A., Maršík P., Zelenková S., and Ovesná J. 2010. Cold stress and acclimation–what is important for metabolic adjustment. Plant Biology 12(3): 395-405.
19- Kaewsuksaeng S., Tatmala N., Srilaong V., and Pongprasert N. 2015. Postharvest heat treatment delays chlorophyll degradation and maintains quality in Thai lime (Citrus aurantifolia Swingle cv. Paan) fruit. Postharvest Biology and Technology 100: 1-7.
20- Kang H.M., and Saltveit M.E. 2001. Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedling radicles. Physiologia Plantarum 113(4): 548-556.
21- Kar M., and Mishra D. 1976. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology 57(2): 315-319.
22- Kuznetsov V.V., Rakitin V.Y., and Zholkevich V.N. 1999. Effects of preliminary heat‐shock treatment on accumulation of osmolytes and drought resistance in cotton plants during water deficiency. Physiologia Plantarum 107(4): 399-406.
23- Lei Y.B., Song S.Q., and Fu J.R. 2005. Possible involvement of anti‐oxidant enzymes in the cross‐tolerance of the germination/growth of wheat seeds to salinity and heat stress. Journal of Integrative Plant Biology 47(10): 1211-1219.
24- Li H.Y., Li C.G., and Gong M. 2011. Short-term cold-shock at 1 C induced chilling tolerance in maize seedlings. International Conference of Biology Environment and Chemistry 1: 346-349.
25- Maali-Amiri R., Goldenkova-Pavlova I.V., Yur’eva N.O., Pchelkin V.P., Tsydendambaev V.D., Vereshchagin A.G., and Nosov A.M. 2007. Lipid fatty acid composition of potato plants transformed with the Δ12-desaturase gene from cyanobacterium. Russian Journal of Plant Physiology 54(5): 600-606.
26- Martin-Diana A.B., Rico D., Barry-Ryan C., Mulcahy J., Frias J., and Henehan G.T. 2005. Effect of heat shock on browning-related enzymes in minimally processed iceberg lettuce and crude extracts. Bioscience, Biotechnology, and Biochemistry 69(9): 1677-1685.
27- Mei Y.Q., and Song S.Q. 2010. Response to temperature stress of reactive oxygen species scavenging enzymes in the cross-tolerance of barley seed germination. Journal of Zhejiang University-Science B 11(12): 965-972.
28- Plewa M.J., Smith S.R., and Wagner E.D. 1991. Diethyldithio carbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 247(1): 57-64.
29- Saltveit M.E. 2002. Heat shocks increase the chilling tolerance of rice (Oryza sativa) seedling radicles. Journal of Agricultural and Food Chemistry 50(11): 3232-3235.
30- Stewart R.R., and Bewley J.D. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology 65(2): 245-248.
31- Strain H.H., and Svec W.A. 1966. Extraction, separation, estimation and isolation of the chlorophylls. The Chlorophylls 1: 22-66.
32- Thipyapong P., Melkonia J., Wolfe D.W., and Steffens J.C. 2004. Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Science 167(4): 693-703.
33- Whitaker B.D. 1992. A reassessment of heat stress as a means of reducing chilling injury in tomato fruit. Physiological Basis of Postharvest Technologies 343: 281-282.