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Abstract

In recent years, to increase the robustness of methodology sections of accounting
research, applying quasi-experimental methods has become a popular approach in
archival-empirical research of top-tier accounting journals. The purpose of this study is
to discuss the usefulness of the two most robust methods, including difference-in-
differences (DD) and propensity score matching (PSM). This paper discusses DD and
PSM design and reviews DD and PSM's use in articles of American Accounting
Associations’ journals in recent years. In addition to a simple explanation of DD and
PSM, this research provides a list of credible empirical accounting studies that have
used these two methods. The research also explores the reasons for using the two
methods in the empirical-archival studies of accounting and shows that in addition to
extracting a causal relationship, the most important reason for using the two methods is
to reduce the potential concerns surrounding the "omitted variables” "and
"heterogeneity of treatment and control groups”. Overall, by highlighting the
importance and application of the DD and the PSM, this research can help the
methodology sections' robustness in the empirical-archive accounting research that
focuses on causal relationships and provide a simple and practical guide, especially for
Ph.D. students in accounting.!
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1. Introduction

Concluding causal relationships is often the primary objective of archival-empirical
accounting research [Gow et al., 2016]. For this reason, in recent years, applying quasi-
experimental methods has become a popular approach in archival-empirical accounting
research (for example, see Dutillieux et al., 2016; Gunn and Michas, 2017; Kraft et al.,
2018). Among the quasi-experimental methods, the two robust methods, including
difference-in-differences (DD) and propensity score matching (PSM), in recent years,
has attracted a lot of attention in accounting research. The purpose of this paper is to
discuss the usefulness of these two methodologies, especially for Ph.D. students who
tend to focus on the causal relationships in their dissertations.

As previously mentioned, DD and PSM methods have become increasingly popular
ways to estimate causal relationships. DD consists of identifying a specific intervention
or treatment (often the passage of the law). One then compares the difference in
outcomes after and before the intervention for groups affected by the intervention to the
same difference for unaffected groups. For example, to identify the incentive effects of
specific disclosure regulation, one might first isolate firms under that regulation. Then
compare changes in a dependent variable such as earnings management, for firms are
under that regulation to the firms are not under that regulation. The great appeal of DD
comes from its simplicity and its potential to circumvent many of the endogeneity
problems that typically arise when making comparisons between heterogeneous
individuals [Meyer, 1995]. DD has been widely used when evaluating a given
intervention entails collecting panel data or repeated cross-sections. DD integrates the
fixed effects estimators' advances with the causal inference analysis when unobserved
events or characteristics confound the interpretations [Angrist and Pischke, 2009].
Whether serial correlation has led to a severe overestimation of t-statistics and
significance levels in the DD literature so far depends on (1) the typical length of the
time series used and (2) the serial correlation of the most commonly used dependent
variables [Conley and Taber, 2011]. Further, DD is relevant for various cases where
spillovers may occur between quasi-treatment and quasi-control areas in a (natural)
experiment.

PSM is a matching technique that attempts to estimate the effect of a policy or other
intervention by accounting for the covariates that predict receiving the treatment. PSM
is for cases of causal inference and sample selection bias in empirical settings in which
few units in the non-treatment comparison group are comparable to the treatment units
or selecting a subset of comparison units similar to the treatment unit is difficult because
units must be compared across a high-dimensional set of pre-treatment characteristics
(Imai et al., 2004). PSM creates sets of participants for treatment and control groups. A
matched set consists of at least one participant in the treatment group and one in the
control group with similar propensity scores. The goal is to approximate a random
experiment, eliminating many of the problems with observational data analysis.

Overall, in addition to a simple explanation of DD and PSM's method, this research
provides a list of credible empirical accounting studies that have used these two
methods. The research also explores the reasons for using the two methods in the
empirical-archival studies of accounting and shows that in addition to extracting a
causal relationship, the most important reason for using the two methods is to reduce the
potential concerns surrounding the omitted variables and heterogeneity of treatment and
control groups.

The paper's remainder is organized as follows: Section 2 discusses the DD
methodology and Section 3 discusses the PSM methodology. Section 4 summarizes the
study.
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2. DD Method

Academic accounting researchers are often interested in interventions such as new
policies like e new accounting standards and thought event studies. Simple event studies
usually suffer from many variables that cannot be captured. Thus, a simple solution for
mitigating this concern is randomization. In capital market settings, randomization to
firms is unfeasible, and researchers are left with the need to use non-experimental
studies to estimate the effects of these interventions. The fundamental challenge in such
non-experimental studies is selection bias, in the sense that the firms experiencing the
policy of interest may be different from those not exposed to it (Dutillieux et al., 2016).
For example, firms that choose to apply a new standard may be quite different (and
serve patients quite different) from those that do not apply. A common non-
experimental design used to estimate the effects of policies at a particular point in time
is a DD. DD compares changes over time in a group unaffected by the policy change to
changes in a group affected by the policy change and attributes the differences to the
policy's effect. DD provides unbiased effect estimates if the trend over time would have
been the same between the treatment (intervention) and comparison groups in the
intervention's absence. Because of information on the comparison group's temporal
trends, DD is sometimes preferred over interrupted time series designs that do not
necessarily have a comparison group.

Regarding the DD background, the first study using explicitly a DD is the (Snow,
1855). Snow (1855) was interested in the question of whether cholera was transmitted
by (bad) air or (bad) water. He used a change in the water supply in one district of
London, i.e., the switch from polluted water taken from the Themes in London's center
to a supply of cleaner water taken upriver. Later on, the DD became relevant for other
fields, like economics. For example, [Obenauer and von der Nienburg, 1915] analyzed
the effect of a minimum wage by introducing the minimum wage for a particular group
of employees, which led to higher wage rates in Portland, the largest city, compared to
the rest of the state. Therefore, they documented the levels of various outcome variables
for the different groups of employees in Portland before and after introducing the
minimum wage and compared the respective changes to those computed for Salem,
located in Oregon and thought to be comparable to Portland. Over time the field of
economics developed literature. DD has been used to address many other important
policy issues, like the effects of minimum wages on employment (e.g., Card and
Krueger, 1994), or the effects of training and other active labor market programs for
unemployed on labor market outcomes (e.g., Blundell et al., 2004).

DD may be a good choice when using research designs based on controlling for
confounding variables or using instrumental variables is deemed unsuitable. At the same
time, pre-treatment information is available. In many applications, “time” is an
important variable to distinguish the groups. Figure 1 illustrates the DD. Besides the
group which already received the treatment (post-treatment treated) {1}, these groups
are the treated prior to their treatment (pre-treatment treated) {2}, the nontreated in the
period before the treatment occurs to the treated (pre-treatment nontreated) {3}, and the
nontreated in the current period (post-treatment nontreated) {4}.
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Particularly, DD is used in settings where exchangeability cannot be assumed
between the treatment and control groups; i.e., in the absence of treatment, the
unobserved differences between treatment and control groups are the same over time.
Hence, DD is a useful technique to use when randomization on the individual level is
not possible. DD requires data from pre-/post-intervention, such as panel data
(individual-level data over time) or repeated cross-sectional data (individual or group
level). The approach removes biases in post-intervention period comparisons between
the treatment and control groups that could result from permanent differences between
those groups and biases from comparisons over time in the treatment group that could
result from trends due to other causes.

Although other plausible methods are based on the availability of observational data
for causal inference, i.e., instrumental variable, DD offers an alternative to reaching the
un-confoundedness by controlling for unobserved characteristics and combining it with
observed or complementary information. Additionally, the DD is a flexible form of
causal inference because it can be combined with other procedures, such as the Kernel
Propensity Score (Heckman, 1998).

Technically, to capture the effects in Figure 1, the regression below should be
generated:

Dependent Variableit = yo + y1 Treatment-ControlGroupi + y2Postit + y3(Treatment-
ControlGroupi: xPostit) +3; ¢ (Controls)

Where Treatment-ControlGroup is set equal to one for the treatment group and zero
for the control group. The coefficient of interest is ys, representing the differential
change in the Dependent Variable between the treatment group and the control group.
Controls are the control variables obtained from theory or prior studies.

An important assumption of the DD methodology is that shocks contemporaneous
with the comment letters affect the treatment and control groups similarly (Johnston and
Petacchi, 2017). To examine this assumption, a common way is to compare important
variables for the treatment group and the matched control group. In the next section, I
discuss more strong ways to examine the assumption.

DD has become a popular technique for concluding causal relationships in
accounting research. Figures 2 and 3 present the relevant recent studies in the American
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Accounting Associations’ journals from 2016-2018. Specifically, Figure 2 overviews
the studies that use DD, and Figure 3 overviews the reasons which explain why the
studies use DD. Briefly, | find 17 studies that use DD from 2016 to 2018. Furthermore,
the reason which the studies most refer is mitigating the concerns over omitted
variables. For example, Kraft et al. (2018) discuss that the staggered timing of the
change in reporting frequency gives us a natural group of control firms to implement a
DD design in which they compare the change in investments of treatment firms around
a reporting frequency increase relative to the contemporary change in investments for
the control firms with unchanged reporting frequency. Therefore, they conclude that DD
mitigates concerns about the effect of unobserved common shocks or cross-sectional
differences across firms. Besides, Dutillieux et al. (2016) argue that the advantage of the
DD design is that each sample firm acts as its own control over the test period,
mitigating the concern for omitted correlated variables.

3. PSM Method

PSM is a statistical matching technique that attempts to estimate a treatment's effect
by accounting for the covariates that predict receiving the treatment. PSM is for cases of
causal inference and sample selection bias in non-experimental settings in which: few
units in the non-treatment comparison group are comparable to the treatment units, or
selecting a subset of comparison units similar to the treatment unit is difficult because
units must be compared across a high-dimensional set of pre-treatment characteristics
(Imai and Van Dyk, 2004).

PSM creates sets of participants for treatment and control groups. A matched set
consists of at least one participant in the treatment group and one in the control group
with similar propensity scores [Lunceford and Davidian, 2004]. The goal is to
approximate a random experiment, eliminating many of the problems with
observational data analysis.

The possibility of bias arises because the apparent difference in outcome between
these two groups of the sample may depend on characteristics that affected whether or
not a sample received a given treatment instead of due to the effect of the treatment per
se. In randomized experiments, the randomization enables unbiased estimation of
treatment effects; for each covariate, randomization implies that treatment-groups will
be balanced on average by the law of large numbers. Unfortunately, for observational
studies, the assignment of treatments to research subjects is typically not random. It is
matching attempts to mimic randomization by creating a sample of units that received
comparable treatment on all observed covariates to a sample of units that did not receive
the treatment (Shaikh et al., 2009).

For example, one may be interested to know the consequences of smoking or the
consequences of going to university. The people 'treated’ are simply those—the smokers
or the university graduates—who, in everyday life, undergo whatever it is the researcher
Is studying that. In both cases, it is unfeasible (and perhaps unethical) to randomly
assign people to smoke or university education, so observational studies are required.
The treatment effect estimated by simply comparing a particular outcome—a rate of
cancer or lifetime earnings—~between those who smoked and did not smoke or attended
university and did not attend university would be biased by any factors that predict
smoking or university attendance, respectively (Shipman et al., 2016). PSM attempts to
control for these differences to make the groups receiving treatment and not-treatment
more comparable.
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Studies using non-experimental data must mitigate endogeneity concerns introduced
by non-random treatment assignment. In this regard, archival studies use multiple
regression models to mitigate endogeneity concerns in observational data. However,
multiple regression requires proper specification of the relation between outcome and
explanatory variables to obtain unbiased estimates. If the relation between outcome and
explanatory variables is misspecified, multiple regression can produce biased estimates.
This potential bias increases as treatment groups become more dissimilar (Garrido,
2014). The PSM alleviates these concerns by decreasing reliance on the specification of
the relationship between variables.

Regarding the general process of PSM, there are main four steps to apply the PSM
efficiently: (1) Run logistic regression, where Dependent variable: Y = 1, if participate
or for example, Y is higher than the median; Y = 0, otherwise; and independent
variables are variables hypothesized to be associated with both treatment and outcome.
(2) Obtain propensity score by extracting the predicted value from the regression in the
previous step. (3) Match each participant to nonparticipants by propensity score. (4)
Verify that covariates are balanced across treatment and matched control groups of a
sample. For example, Eshleman and Guo (2014) use a logit regression for estimating
propensity scores. After obtaining the fitted values from the logit regression, they match
each non-Big 4 clients to the Big 4 client with the closest fitted value in the same year
and same two-digit SIC code industry, requiring a maximum distance of 0.01 between
the two fitted values. Then, they provide a test of covariate balance between matched
pairs.

Similar to DD, but somewhat fewer, PSM has become a popular technique for
concluding causal relationships in accounting research. Figures 4 and 5 present the
relevant recent studies in the American Accounting Associations’ journals from 2016—
2018. Specifically, Figure 4 overviews the studies that use PSM, and Figure 5
overviews the reasons which explain why the studies use PSM. Briefly, | find 12 studies
that use PSM from 2016 to 2018. Furthermore, the studies most refer to mitigating self-
selection bias concerns and increasing treatment and control groups' comparability. For
example, Gunn and Michas (2017) discuss that First, about potential selection bias,
clients who choose to be audited by an auditor with multinational and/or country-
specific expertise may exhibit firm-specific characteristics correlated with both this
choice and our outcome variable. We perform a propensity score matching procedure,
which can help alleviate this concern to the extent that clients and auditors are matching
observable. In addition, Kraft et al. (2018) state that they use propensity score matching
to identify control firms' sets.

4. Conclusions

The DD and PSM designs for empirical analysis of causal effects have a long history
in outside accounting. Nowadays, they are certainly the most heavily used empirical
research designs to estimate the effects of policy changes or interventions in empirical
business. It has the advantage that the basic idea is intuitive and easy to understand for
an audience with limited education. Compared to other methods, they have a further
advantage that there is no need to control all confounding variables. This means that it
can accommodate a certain degree of selectivity based on unobservables correlated with
treatment and outcome variables. Its key identifying assumption is the common trend
assumption that must hold unconditionally or conditionally on some observables (the
treatment does not influence that). If the latter is the case, DD can be combined
fruitfully with matching estimation techniques to flexibly accommodate such covariates.
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In conclusion, both DD and PSM are seen as strong non-experimental study design
options for researchers, specifically Ph.D. students, who tend to find a causal effect.
However, by combining them, we may make even more robust inferences, taking
advantage of both important study design elements.

These methods also have their drawbacks. For example, most of the debate around
the validity of a DD revolves around the possible endogeneity of the laws or
interventions themselves. Sensitive to this concern, researchers have developed a set of
informal techniques to gauge the extent of the endogeneity problem. Regarding DD and
PSM's connection, it is worth stating that a concern with DD is that the intervention
groups may differ in ways related to their trends over time, or their compositions may
change over time. In this regard, PSM is commonly used to handle this confounding in
other non-experimental studies.
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