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A high-order algorithm for solving
nonlinear algebraic equations

A. Ghorbani* and M. Gachpazan

Abstract

A fourth-order and rapid numerical algorithm, utilizing a procedure as
Runge-Kutta methods, is derived for solving nonlinear equations. The
method proposed in this article has the advantage that it, requiring no
calculation of higher derivatives, is faster than the other methods with the
same order of convergence. The numerical results obtained using the devel-
oped approach are compared to those obtained using some existing iterative
methods, and they demonstrate the efficiency of the present approach.
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1 Introduction

The development of numerical techniques for solving nonlinear (algebraic
or transcendental) equations (NEs) is a subject of considerable interest. A
vast amount of research work has been invested in the study of the NEs.
Solution of these equations can be obtained using classical numerical methods
as Newton-Raphson method (NRM) or the Householder iteration method
(HIM); see [6]. There are many articles that deal with NEs, for example,
[1, 2, 3, 4, 5]. A more extensive list of references as well as a survey on
the progress made on this class of problems may be found in [8]. However,
in order to establish a more accurate algorithm, one has to calculate higher
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order derivatives, for example, like the HIM, which can be considered a serious
drawback.

Here, we establish a fourth-order fast algorithm for finding an accurate
solution of the NEs with the advantage that there is no calculation of higher
derivatives. Moreover, the merit in this method can be observed due to high
exactness, lesser number of iterations, and lesser value of errors as compared
to the other existing methods. The examples analyzed here reveal that the
developed algorithm is effective to solve the NEs.

2 Basic idea of the new algorithm

Consider the nonlinear algebraic equation

f(x) = 0. (1)

We assume that « is a simple zero of (1), that f is a C? function on an
interval containing «, and that A is an initial guess sufficiently close to a.
Also we suppose that |f’(a)| > 0. Using Taylor’s series around A for (1), we
have

1

FOV+ (@ = NP + 5@ = VPP O) + o= NS+ =0, (2)

We can rewrite (2) in the following form:

x =c+ N(x), (3)
where )

AP @

and 00
Niz) = 5l =N (5)

The NRM is then given by
— f(xn)

Tn+l = Tn f,(xn)7 (6)

where xg is the initial guess. The iteration (6) will converge to « if the
starting point zq is close enough to a. This process has the second-order
convergence.

The HIM is given by (see [6])

fxn)  f2(@n)f"(2n)

LTI T ) T 2B ()
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The iteration (7) with the third-order convergence will converge to « if
the starting point x¢ is close enough to «.

As observed in the above-mentioned methods, for obtaining a more ac-
curate solution of o, we have to take n, order iteration, as large as possible,
or go forward with the calculation of higher derivatives. In order to remove
these demerits, here we look for a scheme without computing higher order
iterations/derivatives that contain high accuracy. To illustrate the idea be-
hind the developing algorithm, we construct an iterative procedure in the
following form:

Tn+l = Tn + Akl + Bk27 (8)
where )
Tn
kl - fl(xn)’ (9)
_ f(z, + Cky)
b= ) (10

In (8)—(10), the coefficients A, B, and C' are constants to be determined
later. We note that the NRM (6) can be obtained from (8) for the values
A=—-1land B=C=0.

Now, we want to determine the constants of A, B, and C so that the
formula (8) is similar to the formula (7) of accuracy. From (8), therefore,
using Taylor’s expansion, we have

f(zn) 2 f2 (@) £ (@)
= A+B+ B BC*——————=. 11
Comparing (7) and (11) and equating the coefficients with identical terms,
we get

(12)

A+ B+ BC =1,
BC? = —1.

The solutions of (12) allow us to suggest different iterative methods (of
at least third-order) for solving the NEs of (1). Two solutions for the system
(12) are A=0, B = —%, C = 1_7\/5, and A= B = C = —1. Thus, sub-
stituting the later solution into (8)—(10), we will have the following iterative
algorithm:

Tpt1 = Ty — [k + ko],

by — f(xn)
() (13)
k2 — f(xn — kl)
f'(@)
Now, if, according to the definition f’(z) = limy_0 w, we esti-

mate the value of first derivative by placing h ~ — ]{,((”;2)) as
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() ~ f(an) (Fan) = £ (an - f/(&i))))’ (14)

then we will have

Tnt1 = Tp — [k1 + k2],
. RED)
F(@a) (Flen) = £ (w0 = $225)) (15)
ey = ki f(zn — kl).
F(en)

Now the second algorithm could be gained by substituting the former
solution into (8)—(10) as

345

Tn+l1 = Tn — 2 k2a

_ flan)
= fan)’ (16)
2 f(zn) .

Remark 1. As we know well, these kinds of algorithms need a good initial
guess to work. This shortcoming can be readily removed by finding subinter-
vals on z that contain sign changes of f(x) (observe the appendix section).

Remark 2. From (15) and (16), we can comprehend that in each iteration
of the algorithm (15), we need to perform four function evaluations, and for
the algorithm (16), there are three function evaluations. However, the fast
convergence of these methods often compensates for these defects.

3 Analysis of convergence

Before proving the convergence of the algorithms (15) and (16), here the
following definition is given.

Definition 1. Let e,, = z,, — a be the truncation error in the nth iterate. If
there exist a number 8 > 1 and a constant ¢ # 0 such that

lim 1o+l (17)

n—00 |en|[3 ’

then 3 is called the order of convergence of the method.

Now, we consider the convergence of the algorithms (15) and (16).
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Theorem 1. Consider the nonlinear algebraic equation f(x) = 0. Suppose
that f is sufficiently differentiable. Then the convergence of the algorithm
(16) is at least of order 3.

Proof. Let a be a simple zero of f(z). Since f(x) is sufficiently differentiable,
by expanding f(z), f'(z), f"(z), and f"'(z) around «, we get
f(@n) = f(a) [en + dae2 + dsed + dyep + dsel, + -+ |,
() = () [1 + 2dge, + 3dse? + 4dge + bdser + 6dged + - - } ,
f(xn) = f/(@) [2ds + 6dze, + 12dse2 + 20dsed + 30dges + 42d7ed + -],
xn) = () [6d3 + 24d4e, + 60dse? + 120dge3 + 210d7et + 336dged + - - ] ,

(18)
where d,, = = f;?ééo)‘), n=23,...,and e, = x, — a. We can rewrite (16) as
follows: )

Tn
n = €n B n 5 19
ent1 = €n + f(x +Cf’(xn)> (19)

or using Taylor’s series as

1+ O+ S (£ ) () + & (£ ) f”’(m)] 7

ent1 =en+B

2 \f'(zn) 6 \f'(zn)
(20)
where B = —3+2‘/5 and C' = 1_2‘/5. By a simple operation, from (18) and

(20), we acquire

i o] i (V5 - LA OE BTN - g

which shows that the algorithm (16) is at least a third-order convergent
method and this ends the proof. O

Theorem 2. Under the assumptions of Theorem 1, the convergence of the
algorithm (15) is at least of order 4.

Proof. Consider the above expansions of f(z), f/(z), f”(z), and f"'(z). Pro-
ceeding as before, we obtain

3" () + f2(a) fM(e)

. |en+1|
1
== 243 () !

n—oo e, |*

=di+dy=

(22)

which shows that the algorithm (15) is at least a fourth-order convergent
method and thus the theorem is proved. O
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4 Numerical implementations

The test problems given in this section demonstrate the effectiveness of the
developed algorithms to solve the NEs. Meanwhile, the results obtained using
the algorithms proposed in this work, (15) and (16) are compared to those
obtained using the HIM and a fourth-order method presented in [7]. All
calculations have been carried out by using the symbolic calculus software
Maple 17 to 2500 significant decimal digits.

Example 1. Solve the following NE:

x — cos(z) =0, o = 2. (23)

Example 2. Solve the following NE:

r—2—e =0, o = 2. (24)

Example 3. Solve the following NE:

sin(z) —2? +1=0, x9=-2. (25)

Example 4. Solve the following NE:

22— (1—-x)°=0, xo = 1. (26)

The numerical results of Examples 1-4 can be observed in Table 1. In
Table 1, we list the value of absolute error f(z,) (labeled as |f(z,)|) when
n=1,2,3,4,5 for the above examples.

From the numerical results of these cases analyzed here, it is easy to
conclude that the proposed algorithms are effective and accurate for solving
NEs. Moreover, unlike HIM, the developed approaches require just first-order
derivative per step.

5 Conclusions

The presented algorithms in this article give rapid convergent approxima-
tions. They have the advantage of giving an accurate solution with fewer
iterations than the other existing methods.
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Table 1: The numerical results obtained from solving the above investigated examples
using the algorithms (15) and (16), HIM, and the method of [7] for few iterations.

Algorithm [fl)]  f(xa)]  [fles)l |flz)l  [f(2s)]

Example 1
M 765 776 7812 80 21 85
Algorithm (16) 1.1+ 5.0_5 5.6_15 7.7 _45 2.0_134

Method of [7] 9.9_4 ]..2_14 2-4—58 4.1_233 3.3_932
AlgOl’lthIIl (15) 1.2_4 5.1_19 1.6_76 1-4—306 9.4_1227

Example 2
HIM 9.2_4 4-1—8 8.1_17 3.1_34 4-5—69
Algorlthm (16) 1-3—6 1.9_21 5-8—66 1.7_199 4.2_600
Method of [7] 7-9—8 9.3_33 1.9_132 2.9_531 1.6_2126
Algorithm (15) 4.1 g 3.2_34 1.1_138 1.5_556 5.5_2098
Example 3
HIM 3.8_1 3.2_9 3.0_4 2.9_g 2.7_16
Algorithm (16) 1.6_1 5.6_4 3.3_11 7.0_33 6.7_98
Method of [7] 6.9_2 2.2_6 2.8_24 7-3—96 3~5—382
Algorithm (15)  3.6_2 4.8_g 1.7_31  2.6-125 1.3_500

Example 4
HIM 2.2, 2.1, 30_. 6.1_5  2.6_15
Algorithm (16) 5.1_2 6.0_5 1.3_13 1.1_39 8.7_118
Method of [7] 1.6_2 4-4—8 2.4_30 2.0_119 1.0_475
Algorlthm (15) 2.9_4 2.3_15 9-9—60 3.3_237 4.1_947

Appendix

Maple code of the algorithm (15) for finding a simple zero of f(z) := fun with
the initial guess xo := x0 = (a,b) up to dgt digits, where ftol determines
the tolerance.

fRoots := proc(fun,x0,ftol,dgt)
local m, n, p, r, i, j, k1, k2, £, Df, df, idx, num, fnrm, it;
if dgt<=abs(loglO(ftol)) then
error " Number of digits must be greater than log of ftol"
end if;
idx := ["$ (x0[1]+ii/2,ii = 0 .. 2*(x0[2]-x0[11))]1;
f := unapply(fun,x);
Df := diff(f(x),x);
= unapply(Df,x);
num := 2x(x0[2]1-x0[1]);
m := 0;
for i to num-1 do
if signum(f(idx[i])) <> signum(f(idx[i+1])) then
m := m+l;
plm] := [idx[i], idx[i+11];
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end if
end do;
if not type(p,table) then error " f(x) contains no sign changes " end if;
for j from 1 to m do
r[0] := 1/2%(p[j1[1]1+p[j1[2]);
fnrm : =1: it := O:
for n from O while (fnrm > ftol) do
k1 := evalf(f(r[n])~2/(df (r[(n])* (£ (xr[n])-f(xr[n]-f(r[n]l)/df(xr[n])))),dgt);
k2 := evalf (ki1*f(r[n]l-k1)/£f(r[n]),dgt);
r[n+1] := evalf(r[nl-k1-k2,dgt);
form := abs(evalf ((£(r[n+1]1)),dgt));
it = it+1;
end do;
printf(" x[0] = %g \n Itration = %d \n [£(x)| = %e
x = %a \n\n",r[0],it,fnrm,r[it]);
end do;
end proc:

For example, one can use the above code to solve the NE 1n(x+1)+x-1
(with root x = 0.557145598997611416858672000001) by the following:

fRoots (In(x+1)+x-1,[0,10],10°(-10),30);
x[0] = 0.75
Itration = 2
[£(x)| = 6.839800e-26

x = .557145598997611416858671958351
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