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Hopf bifurcation analysis in a delayed
model of tumor therapy with oncolytic
viruses

N. Akbari and R. Asheghi*

Abstract

The stability and Hopf bifurcation of a nonlinear mathematical model are
described by the delay differential equation proposed by Wodarz for inter-
action between uninfected tumor cells and infected tumor cells with the
virus. By choosing 7 as a bifurcation parameter, we show that the Hopf
bifurcation can occur for a critical value 7. Using the normal form theory
and the center manifold theory, formulas are given to determine the sta-
bility and the direction of bifurcation and other properties of bifurcating
periodic solutions. Then, by changing the infection rate to two nonlinear
infection rates, we investigate the stability and existence of a limit cycle for
the appropriate value of 7, numerically. Lastly, we present some numerical
simulations to justify our theoretical results.
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1 Introduction

Cancer is a significant cause of death in the world. Thus, it is essential to dis-
cover some practical ways to prevail over it. Many studies have been made
on cancer treatments, tumor cells behavior, clinical care, and so on. The
primary purpose of cancer treatment is to reduce the destructive effects of
cell behaviors [7]. The routine therapeutic substances for cancer are surgery,
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radiation, and chemotherapies. The first two treatments are excellent choices
for tumor cells when they have metastatic behavior [16]. The conventional
therapies are not only efficient but also highly toxic, so most efforts focus
on establishing tumor cells targeted treatments. For this reason, the biolog-
ical encountering is the most up to date practice [11]. An Oncolytic virus
is a type of virus that infects a cell and then explodes it. In this process,
the cell dies, and new virus particles are produced. The main problem with
Oncolytic virus therapy is that the virus stays in the blood for a short time
due to the secretion of the immune system [6, 15]. Oncolytic viruses that
specifically target tumor cells are promising anti-cancer therapeutic agents.
Due to our lack of understanding of the Oncolytic virus’s dynamic spread
in cancer cells, it is challenging to continuously control or eradicate cancer
cells. The interaction between an Oncolytic virus and tumor cells, a type
of virus-cell interaction, can be described by the mathematical models. The
interplay between populations of uninfected tumor cells and infected tumor
cells with the virus is complex and nonlinear. In this context, some mathe-
matical models for the virus therapies of cancer cells can be seen as a tool for
perceiving cancer-virus dynamics and finding better strategies for treatment;
see [3, 4, 9].

In the proposed mathematical models, some parameters play a crucial role
in the model’s qualitative analysis. For example, an average and optimal rate
of virus-infected cell death may optimize the treatment success, or the lower
the number of uninfected cancer cells in the stable state can better predict
the treatment process; see [11, 12]. Here, we recall a set of mathematical
models that describe the virus’s spread through the tumor cells in different
ways [1]. First, we consider a general model as follows:

d

i = oF(@.y) - ByG(a.y). M
d

dii = ByG(z,y) — ay.

This model consists of two populations: the population of uninfected tumor
cells z and the infected tumor cells population by the virus y. The function
F(z,y) denotes the growth rate of noninfected cells, and the function G(z, y)
represents which the uninfected cells become infected with the virus. The
coefficient 8 represents the infectivity of the virus. Virus-infected cells die
with a rate of ay. Assuming that the growth of tumor cells approaches the
carrying capacity and after a while, slows down and that the cell growth rate
reaches zero, F(z,y) = rz(1 — (x +y)) can be expressed by the logistic func-
tion. The G(z,y) function plays a crucial role in determining the system’s
stability and helps us to make long-term predictions about treatment out-
comes. Also, G(z,y) can be divided into two different classes. In the class I,
if the number of noninfected cells is greater than the number of infected cells
and the tumor cells are not solid, then the virus replicates and increases the
number of infected cells. Biologically, the growth of the virus is exponential
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and is called “fast virus spread.” In class II, when the number of infected
cells increases, the virus’s growth rate decreases. The situation occurs in
solid tumors because, as the number of infected cells increases, internal cells
are surrounded by outer cells. Therefore, they cannot spread the virus. This
type of infection is known as the “slow virus spread” [14].

We choose the following rates of infection given by [14]:

Gi(z,y) =z,
(4o

Ga(z,y) = Ttyte)

Gs(z,y) = m

Here G1 and G2 belong to class of “fast virus spread” and G3 belongs to class
of “slow virus spread”. By replacing F(z,y) = rz(1 — %) and G = G in
(1), we get

dx T+

o = e =)~ fay, (2)
dy

i Bry — ay.

In 2016, the following model was developed by Wodarz, similar to (2) in
which tumor cells death rate was considered (see [13]) as

dx x4y

e ro(l — ) — 0z — By, (3)
dy
E - ﬁl“y — ay,

so that 0 is defined the death rate for the uninfected tumor cells. Since (3)
is an extension of (2), we introduce a delay time 7 for entering virus in (3),
such that it changes into

%:Tx(l—x+y)—5$—ﬂxya (4)
dy _
i Bx(t — 1)yt — 1) — ay.

Because of the simplicity of the delay calculations in system (4), first, we
perform the calculations the delay equation of (4) analytically, and we find
the appropriate parameter of 7 to produce the limit cycle in (4). Now, by
changing the linear infection rate of (4) to Gy and G5 and entering 7, we
obtain, respectively,
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B B B x_ﬁ(1+a)xy
E_m(l ) =9 (x+y+e) ®)

dy _ B +e)z(t —1)y(t —7)

dx T+y
w

dt  (z(t—71)+y(t—7)+¢)

)

and
do _ Sty BTy
i ra(l ) — oz (xy% +€)7 (6)
dy _ Belt-mt-n)

dt  (z(t— 1)yt —7)8 +¢)

By placing the parameter 7 obtained from (4) and changing ¢, we simulate
the existence of a limit cycle in (5) and (6), numerically. The parameters
r, w, €, (B, and a are all positive and independent of the time. The state
variables z(t) and y(t) are nonnegative. The parameter r is the reproduction
rate of tumor cells, w is the maximum carrying capacity of tumor cells, and
the coefficient 8 denotes the virus’s replication rate. Moreover, a is a death
rate for the population y that are killed by the virus and ¢ is a positive
parameter that is expressed only to fit the data to the model better.
In [10], the mathematical model

d
d%f =rz(l— xl—;y) — bzy,
dy

i bx(t — T)y(t —1)e™"" — ay,
for tumor virotherapy with the viral life-cycle is considered. In this model,
the delay parameter displays the period of the viral life-cycle. The two pa-
rameters, b and a, are dominant factors in virotherapy. When b < a, the
tumor cells reach their maximum size and the equilibrium solution (1,0), for
T > 0, is stable. So, the therapy fails, but for b > a, the model’s dynamic is
much complicated, where the viral life-cycle comes to play an important role.
As b > a, the viruses cannot exterminate the tumor cells without the viral
life-cycle period. When the delay parameter value is small, the tumor cells
and the viruses coexist, and their equilibrium solution is locally asymptotical
stable. If the value of the delay parameter is longer than the period of viral
life-cycle, the coexisting solution will be unstable, then the population of the
tumor cells and the viruses will not rest on a fixed level. The model has
a stable period solution for the value of the delay parameter in the middle
range.

In appearance, by supposing § = 0, the model of (4) is similar to [10]
for n = 0, but they are different in some ways. Firstly, in (4), there is the
mortality rate of uninfected cells, which results in different reproduction rates
with [10]. In this article, we investigate the stability of equilibrium points
of (3) for different values of the reproduction rate by using the Lyapunov
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function. Then, with the Dulak theorem, we prove the absence of a limit
cycle in (4) for 7 = 0. Another difference between this work and [10] is
the use of the center manifold theory in the study of the stability, direction,
and period of periodic solutions of bifurcation at (4) for critical values of T,
analytically.

In [2], another mathematical model

d

d—f:rm‘(l—x+y
dy
dt

)_dx_ﬁxyv

T+
= By + sy(1 — Ty) —ay(t — ),

for tumor virotherapy is proposed. Wodarz in his article has stated that the
infection rate and death rate of virus-infected cells play a key role in model
dynamics. In that article, there is the time delay in death of infected cells
and it entered in the linear sentence. Also, the Hopf bifurcation for linear
infection rate is investigated. Our article’s innovation is that the time delay in
the arrival of the virus to tumor cells, and it entered in the nonlinear sentence.
Also we have used three models with different Wodarz infection rates, two
of them belong to the class of nonsolid tumors, and the other belongs to
solid tumors. Using the obtained value 7 suitable for the existence of a limit
cycle in the initial model and its placement in the next two models, we have
numerically shown that this dynamic depicts the general biological conditions
of solid and nonsolid tumor cells and the effect of viral therapy on them.

In this article, we study the stability and Hopf bifurcation of system (4);
then we compare it with (5) and (6). At first, in Theorem 1, we investigate
the stability of the equilibrium points for system (4) for 7 = 0. Then in
Lemma 2 and Theorem 3, we consider the existence of periodic solutions and
the Hopf bifurcation for system (4) by inserting 7 into the second equation (3)
as a delayed time for importing Oncolytic viruses to the body and countering
it with cancer cells. In Section 4, we describe the stability, direction, and
period of the bifurcating periodic solutions at critical values of 7, by using
the center manifold theory introduced in [5]. In Section 5, we substitute the
appropriate value of 7 obtained from (4) into (5) and (6). Then we simulate
(5) and (6) for different values of e. Finally, we discuss about them.

2 Stability of equilibrium points

In this section, we obtain equilibrium points of system (4) for 7 = 0 and study
the conditions for the existence of positive equilibrium points. It is obvious

that system (4) has equilibrium points Ey = (0,0), Ey = (M,O), and

_(a Bw(r—=d6)—ra
E2_(B’ Bt hw) )

The Jacobian matrix of system (4) is denoted by
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_((r=08) =22 — (L 4+ By —(Z + P
J(m,y)—( By 5 )

Theorem 1. Suppose Ry = §; then for 7 = 0, we have the following prop-
erties:

(a) If Rg < 1, then Ej is a unique equilibrium point that is a stable node.

(b) If 1 — R%) < £ and Ry > 1, then there exist two equilibrium points Ey

Bw

and E; such that Fj is a saddle point and F; is a stable focus.

(c) If 1 - R%) > & and Ry > 1, then there exist three equilibrium points

Bw

Ey, Eq1, and Es such that Fy and E; are saddle points and Fs is a stable
focus.
(d) If1— — B , then F; = F5 and we have two equilibrium points such

that Eo isa baddle point and Fj is locally asymptotically stable.

Proof.
(a) The Jacobian matrix of system (4) at the origin is
r—46 0
J(0,0) = < 0 _a>, (7)

which has the eigenvalues \; = r—§ < 0 and \; = —a < 0, when Ry = % < 1.
This shows that Fy is a stable node.

(b) When Ry > 1, for 7 = 0, there exists the equilibrium point E; and the
Jacobian matrix of system (4) at Ej is

-r —(r — Bw
+5 6><1+T>), .

J(Ep) = ( 0 Bw(r=8)—ra

T

It has the characteristic polynomial
A2+ ma )+ mo =0,
where
my :a—ﬁw—l—ﬁwg—i—(r—é),
me = (r—0)(a — Pw + ﬁwg).

For a > ﬂw—ﬁwg orl— %0 < 45, we have that my >0 (k=1,2) and this
implies that F4 is a stable focus.

(¢) For Ry > 1and a < fw— ﬁwg, there exist two positive equilibrium points
E; and Es such that the Jacobian matrix of system (4) at Es is
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e
J(E2) = <Bw(r—%)—ra g ) .

r+Bw 0

Since tr(J(E2)) = 5 < 0 and det(J(Ez)) = W > 0, then Ej is
a stable focus.

(d) By substituting 1 — %0 = 45 in (8), we obtain A\; = —(r — ) < 0 and
A2 = 0. Hence, E; is a nonhyperbolic fixed point with a zero eigenvalue.
To show its stability, we use a suitable Lyapunove function. In the set A =
{(z(t),y(t))|x(t) > 0,y(t) > 0}, we define a Lyapunov function

B w(r—190) w(r—>9) rT Bw+r
Vie.y) = - r 1nw(r—5)+ Bw v

such that V(E1) = 0 and V(z,y) > 0 for all (z,y) € A\ {E1}. We now
show 4 dt <0 for all (z,y) € A. By differentiating V' (z,y) along the solutions
(z(t),y(t)) of (4), we have

AV _oVde oVdy (| wr=0)\, r+fe
dt Oz dt Oy dt Bw

= (1— 7‘”(2; 6)) ((r—5)z— ga:Q T+ﬁw ) (T+ﬁw) (Bry — ay)

:2(r—5)—112—“)(r+5)+(r+5 )(< —9)_ a)

w puw)?

rr

2
= (G o)« () (B
o wyr o2 r+ Bw Bw(r —8) —ra
B r(wx (r 6))+( ,Bw)( r )y.
As1— = 45, then 7’6“’“;5)_” =0and 4 = - (Zz— (r— 5))2 <0.
If we set sz‘t/ =0, then z = M, and by substituting in system (4), we get
y = 0. Therefore, F; is asymptotically stable. ]

Theorem 2. System (3) in the set A = {(z(¢),y(t))] z(t) > 0,y(¢t) > 0}
does not have any periodic solutions.

Proof. We define Fy = (r — §)z — Za® — (“t29)2y and F, = Bay — ay. By

considering the Dulac function L(z,y) = 1y we have
LF;
O(LFy) n OLF) 1 <o
ox Ay wy

Thus, by the Bendixson’s criterion, system (3) has no closed orbits lying
entirely in A. O

We have now shown that system (3) has no periodic solutions. We con-
sider system (4) and show that the Hopf bifurcation exists under special
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conditions for 7 > 0. First, we suppose that E* = (z*,y*) is a positive
equilibrium point for the system (4). The characteristic equation of any
equilibrium point E* = (z*,y*) of system (4) for 7 > 0, is given by

D\, 7) = det(M — Q1 — Qoe™ ) =0,

where
Qz(ww—wgu+myﬂgfn) %=(Q£J~
Then
D(\,7) = det (A mre fﬁ?i_“;(; TR _(gxff_ﬁl a>
= A+ A A+ Ap — (A + B1)Boe ™,
where
Ay=a—(r—o)+ 25 4 ri* + By”,
As =al(r —98) + 2re” + rz* + By*),
By =(r—90)+ 2T$*,
w

By = Bz +a.

Lemma 1. Let 2(8) = ¢1(0) > 0 and let y(8) = ¢2(0) > 0, for 0 € [—7,0],
where ¢ = (¢1, ¢2) € C([—7,0]; R?). Then the solution (x(t),y(t)) of system
(4), defined on the interval A = [0, 7] for some 0 < T < o0, is positive and
uniformly bounded on A.

Proof. The first equation of system (4) is a Bernouli equation, which can be
written as

T 2

i(t) = a(t) {(r =) = (= + By(n) | = ——a2().

Tts solution with the initial data x(0) = z is

t -1
2(t) = zoedo Lr=0—(G+B)y( }dy {mo/ Tef(f{(r—(S)—(Z}+B)y(v)}d7ds+1} .
0 w

Thus, x(t) > 0 when x(0) = 29 > 0. We know y(6) > 0 for § € [—7,0]; then
y(t —7) > 0 for ¢t € [0,7]. Thus, by the second equation of system (4), we
have y(t) > y(0)e=% > 0, for t € [0,7]. In a similar way, we obtain y(¢) > 0
for t € [1,27]. By repeating this process, we conclude that y(t) is nonnegative
for all t > 0. To prove the boundedness property of the solutions, we will
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first show that z(¢) is bounded. By the first equation of system (4), we have

z(t) < (r—0)x(t) — e (1),
and hence 5
2(t) < ‘”y_ ) .
"+ (w(;; ) 7,) e—(r—o)t
Putting 3y = %;6) — 7, we have
() < w(r —9)

"+ Boe——

and therefore limsup,_, ,, z(t) < M. Now by supposing (t) = z(t) +
y(t+7) and v =7 — ¢ > 0, we have limsup, ., z(t) < ' =: 3; and

= ya(t) = Z2*(t) = Za(t)y(t) — Ba(t)y(t) + Bx(t)y(t) — ay(t +7)
= ya(t) — ~a?(t) — “a()y(t) - ay(t + ) — az(t) + az(t)

Hence, Q(t) + aQ(t) < B1(y + a), which gives Q(t) < BI(ZJ”I) — ('61(1+“) +
Q(0))e~. This implies that limsup,_, . Q(t) < w, forr > 6. Asa
consequence, the functions z(¢) and y(¢) are uniformly bounded. O

3 Hopf bifurcation

We claim that for some 7 > 0, a Hopf bifurcation occurs. The interior
equilibrium point Es exists when Sw(r — ) —ra > 0. We move this point to
the point (1, 1) by setting

T = %X,
_ Pw(r—20)—ra
Bt pw) v

t="1T.
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Applying the transformation (9) to (4), we get

dX
— = X(vy—mX) —nXY, 1
X Xy mx) -~ nxv. (10)
dY
ﬁ——aY-f—a,X(T—T)Y(T—T),
where Bl — 6)
ra w(r — —Tra
’y—’l"_(g, m—?ﬁ, n—ﬁ—w (11)

Therefore, (X,Y) = (1,1) is an equilibrium point for system (10). Writing
t instead of T' and considering u;(t) = X(T) — 1 and us(t) = Y(T) — 1 in
system (10), we find that

w(t) = (un(t) + 1)y = m(ur(t) +1) = n(uz(t) + 1)), (12)
dp(t) = —alu(t) + 1) + auy (t — 7) + 1) (up(t — 7) + 1).

From (11), we know v —m —n = 0, and by simplifying the right side of (12),
the linear part of system (12) around u = 0 is given by

U1 (t) = —muy (t) — nus(t), (13)
Ug(t) = —aua(t) + aus (t — 7) + aug(t — 7).

We know that the characteristic equation for system (13) is given by

D\, 7) = det(M — Qy — Qae™ ) =0,

—m —n 00
Ql:(O—a>’ QQ:(aa)'

By the above assumptions, we can write

where

DT =X +pid4p2— N+ q1)gee™ ™, (14)
in which
p1=m+a, p2 = ma, qQ=m-—-n, g2 = Q.

For 7 > 0, we show that under some conditions on parameters, a Hopf
bifurcation happens. We suppose that i€ for some £ > 0 is a root of (14) so
that
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D(i€,7) = (i€)* + (i€)p1 + p2 — (i€ + q1)qze” 7
= —& +i€p1 + p2 — (i€ + q1)q2(cos(¢7) — isin(E7))
= —&% +i€py + pa — iqa cos(ET)
— q1G2 cos(ET) — Eqo Sin(ET) + iq1qo Sin(ET)
=0. (15)

Separating the imaginary and real parts of (15) gives that

p2 — & = quqz cos(£7) + Ega sin(E7), (16)

§p1 = §q2 cos(€7) — qugz sin(£7). (17)
Eliminating sin(é7) and cos(é7) from (16) and (17) implies that
4 A2+ B =0, (18)

where
2 2

A=pi—=2p2—q3,  B=p;—did.
By assuming Z = &2, equation (18) changes into
Z*+ AZ +B =0, (19)

which has the solutions

—(p} —2p2 — ¢3) £ V(} — 2p2 — 63)® — 4(p3 — ¢}q3)
. .

Zig =

We suppose that h(Z) = Z? + AZ + B has two positive roots Zy, k = 0,1
such that
0< 2y < Zy,

b=V, &=vz.

Then we have the following result.

Lemma 2. Suppose that h'(Zy) # 0 and Zy = &. Then g—:(r,ij)) # 0 and

its sign is given by the sign of h'(Z). In particular, we have

and

h/(Zo) < 0, h/(Zl) > O,
such that

dr() _ dr(r”)
dr ’ dr

Proof. Multiplying (16) by ¢; and (17) by £, we have

>0, j§=012,.... (20)
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p2q1 — Eq1 = q1q2 cos(E7) + Equge sin(€7),
P& = Eqacos(ET) — Equgosin(€T),

and hence
cos(er) = P29~ £q :—p1€2 _ P2q1 — §QQQ1 + &
4q2 + &°q2 a2(qf + &)
Consequently,
@ _ 1 P2y — Eq1 +piE” , .
T, = & [arccos( o + ) )} +2jm, for j€EZ.

Therefore, +i& for k = 0,1 are two pairs of imaginary eigenvalues for 7 =
),
Let A(7) = r(7) 4+ i&(7) be a root of (14). Then for 7 = 7']5]), we have
)\(T,gj)) = T(T]gj)) + if(T,Ej)) such that r(T,Ej)) =0, f(T,Ej)) =&, > 0.
We substitute A(7) into (14), and we get

N2 (1) + piIA() + p2 = (A(T) + a1)gze X7 = 0.

Differentiating this equality with respect to 7 leads to the identity

(2A(T) +p1) dz(:) —(1=7(A(r)+ ql))qze—m)r%(:)
+ AT AT + q1)gze M = 0.
This gives
(d)\(T)>_1 _ 1 B 2A(T) + p1 T
dr MDA +a1)  AOAT) + q1)gee 2O X(7)
A7) 2AN2(7) + p1A(T) r

CROAM Fa) RO +a)ae 0T A7)

Now, by using (14), we obtain that

<d/\(7)>_1 _ = B A1) — p2 T
dr AX(TYNT) +q1)  X2()N2(7) +piA(T) +p2) A7)’

and therefore,
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()

()

- (e [A()(;(q)w)] e [v(r)(vzzi)_ f;f?m +p2>}
e [55)

Since, )\(Tlgj)) = r(T,gj)) + iﬁ(T,gj)) = i€, hence

Re ( —q1 ) _ Re [ q1 (=i + q1) }
N (1)) +q1) ) lr=r? &2 (i&k + qu) (—i&k + q1)
i
G(& +ai)
P2 — N(7) P2+ &
fe <A2(7)(>\2(7) + p1A(7) +p2)> - fie {—éﬁ(—ii + i&kp1 +p2)]
(3 — &)

- G+ p2)? +piER)
e (525) L = | =0
By the above relations, we get
(dRe)\(T) > -t
dr
Let 5,% = Zj. Then

(dRM) o ik
dr r=r?  Ze(Zk+ai)  Ze((=Zk +p2)* + Zkp?)

_ad p3 — &
= 4 qi) (=& +p2)? + Elpd)

Since Zj, is a root of (19), we have

(=Z +p2)* = Zypt = Z¢ + (0} — 2p2) Zi + 03 = 652k + dids = a5(Z1 + 41),
Zi 4 (0} — 2p2 — 45) %k = —p3 + 4165

Consequently,

()

ZF —ps+aids 277+ (pl —2p2 — 43) 7

= Zha3(Ze+qi) 2143 (Zk + 4i)
_ 2Zu+pi 22— a3 _ W (Zy)
% (Zk + qf) IV

where
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Ty =5 (Zk + q7) > 0,
B (Zy) = 2Z) + p2 — 2ps — ¢3.

Therefore,
-1 -1 ,
sign [dr(ﬂ} = sign [W] = sign [h (Zk)} = sign[h'(Zy)] .
dr r=r® dr () L'y

T=Ty,
L

Theorem 3. Let (19) have at least a positive root. Then system (4) has a
Hopf bifurcation at 7 = 7:53 ) and has one periodic solution surrounding E*,

where ) p P
() _ 1 (P2 — 2"+ pr )} :
Ty = ——— |cos + 2jm.
VZ* [ ( a2(4f + Z7)
Proof. This result easily follows from Lemma 2. O

We recall the results stated in [8] on the roots of (14) for 7 > 0.

Lemma 3. ([8]) Consider the following assumptions:

(A1) p1 —g2>0;

(A2) p2— qig2 > 0;

(A3) pi ~2p2 g5 >0 and  pi—qig3 >0 or  (pf—2p—3)° <
4(pz — 4143);

(A4) pf ~2py — g3 <0 or pi—qig3 <0 and  (pf—2p2— )" =
Alpy — a1 43);

(A5) pf = 2p2 — a5 <0, pi—digs >0 or (] —2p2-@) >
4(p3 — 41 43)-

Then the following properties hold:

(1) If (A1) — (A3) are satisfied, then the real parts of all roots of (14) are

negative for 7 > 0.

(ii) If (A1), (A2), and (A4) are satisfied, then (14) at 7 = T,ij), has a pair of
imaginary roots +iy, such that the real parts of all roots except Fi&
are negative.

(iii) If (A1), (A2), and (A5) are satisfied, then (14) at 7 = T,Ej), has a pair of
imaginary roots i, such that the real parts of all roots except +i&

are negative.

Theorem 4. If there are no positive roots for h(Z) = Z? + AZ + B and
Ro > 1, then Fs is locally asymptotically stable for any 7 > 0.

Proof. Lemma 3 states that the real parts all of roots of (14) are negative,
and this shows that Fs is locally asymptotically stable for any 7 > 0. O
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4 Stability of the Hopf bifurcation

In the previous section, we derived some conditions on Hopf bifurcation at the
equilibrium point E* = (1, 1), when 7 = T,ij), (j=0,1,2...). In this section,

we obtain stability, direction, and period of periodic solution bifurcating from
certain values of 7. We use the center manifold and normal form theory
recognized in [5]. Let system (4) have a pair of imaginary roots when 7 = 7*
and let the system have a Hopf bifurcation from E*. We set

up(t) = X(rt)—1, ug(t) =Y (7t)—1, T=7"+v, veR.
Then, from (10), we get

un (t) = (77 + v)(ur (t) + 1) (=mun (t) — nua(t)), (21)
s (t) = a(7* + v)(—ua(t) + ur(t — Dug(t — 1) + ug (t — 1) + ua(t — 1)).

Equation (21) can be written in the form
w(t) = Ly (ur) + f (v, ur), u(t) = (u1(t), uz(t)) € R®.

Let C' = C([-1,0]; R?) be the Banach space of continuous functions on [—1, 0]
with values in R2. Then for ¢ = (¢1, ¢2) € C, we define

L,:C — R? f:RxC— R?

through

—a

)
o) =+ [ (A7) =n (OO ) (i)
)

i —m¢7(0) — neg1(0)¢2(0)
= (7 *”( adn (~1)éa(~1) ) @)

By the Rise representation theorem, there exists a bounded variation func-
tion n(@,v) for 6 € [—1,0], such that

L= (r"+v) (_om - (i;gg;

0
L,(6) = / n(0.)0(0).
with

m —n

0(0,0) = (7" +v) (‘0 ) 5(0) = (" +v) (2 2) 5(0+1),

where § is Dirac delta function. For ¢ € C*([—1,0]; R?), we define
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do(0)
Aw)o = {f s 9
and
R ={ s 00 (2)
By the above notations, system (21) can be written as
= A(w)ur + R(v)ue, (25)

in which u(0) = u(t + 6) for 6 € [-1,0]. For v € C1([0,1]; (R?)*), define

~WE) s e (0,1,

12, dnft,03(=), 5 =0, (26)

(A™))(s) = {

and denote the bilinear inner product by

0 0
<¢@%M®>=¢mww»3[1gmw@—emmmmaﬁ. (27)

We suppose that n(8) = n(#,0) and that A* is the adjoint operator of the
linear map A(0). From Section 3, we have that +i£*7* are the eigenvalues of
A(0) and that also the eigenvalues of A*. Assume that ¢(6) is an eigenvector
of A(0) for i¢*7* and that ¢*(s) is an eigenvector of A* for —i&*7*. Then by
the definition of eigenvalue and using (23), we have

A(0)q(8) =i€*m7q(0) = q'(0) =i t%q(0) for 0 €[-1,0),

and hence
q(0) = q(0)e* 70, ~1<0<0,
g(=1) = q(0)e ™",
Aoq(0) + Bog(—1) = i¢"77q(0).
Thus,

(e o) (58) = ()

It is easily seen that a nontrivial solution of (28) is as follows:

—m — i£*

q2(0) = 71(0), 1(0) =1#0,

so that

n

q(g) = (CJ1(0), QQ(O)) QIO _ <17 M) Qi€
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Similarly, we obtain ¢*(s) = E (¢:(0), ¢5(0))" €7 as an eigenvector of A*
corresponding to the eigenvalue —i£*7*. Indeed, by using (26), we have

A*q*(s) = —i€*17q"(s) = —q*1(s) = —if*1tq(s) for  s€(0,1],
and therefore
q*(s) = q*(O)eig*T*S, 0<s<1,

g*(1) = q"(0)e" ™,
Apq”(0) + Byg™ (1) = —ig"07¢"(0).

—m +i* ae’€’ T g (0)\ _ (0
( -n —a+ i +aei5*7*) <(J%(O)) B <0> (29)

Equation (29) shows that

Hence

W& —a+ae€’T

n

q1(0) = 42(0), 32(0) =17 0.

Thus, we find that

i€ — a4 ae’’ e
- .1 615 TS

¢*(s) = E(q;(0),q3(0) € 7 = B (

For normalizing ¢ and ¢*, we assume that < ¢*(s),q(8) >= 1 and by using
(27), we get

< q"(s),a(0) >=E(q"1(0),1)(1, ¢2(0))"

0 0
_/_1 5705(51(0)71)6_i5*7*(5_9)dn(0)(1,q2(o))d§
_E —Zf* —a—|—ae—if*7* 1 ) —m—zf*
R {< | )(n>

n
0 0 - 5 —iE*
_/ / (-Zf —atae ™ 71) ¢~IET (60 g (9)
—1J¢=0 n

x (1, —mo& >ei€*f*9dg}
n

7{ —2i¢* —a+ae” T —m

=F

n

0 Y= —i&* T
i€ —a+ae p— 1
— 1) 0e ™ an(o e
/_1( n 7)6 U()(—mgzg)}
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=

7{ —2i¢* —a+ae” T —m T*a(m—n)—kiag*e_i&*T*}
n n
=1

3

which gives

E= { —2i¢* —a+ae” T —m —1*(a(m —n) +iaf*)e T }_1
n :

We now describe the solutions of (21) on the center manifold Cy at v = 0.
Let u(t) be the solution of (21) at v = 0. Then

u(t) = uo(t) + ¥(uo(t)),
for ug(t) € Ep and Ey = span{q(8),q*(0)}. Thus

uo(t) = 2(t)q(0) + 2(t)q" (0) = 2(t)q(0) + 2(¢)q(0),

and hence u;(0) on the center manifold can be written as

u(0) = z(t)q(0) + 2(t)q(0) + ¥ (=(t), 2(1))
= 2Re{z(t)q(0)} + W (t,0), (30)
where
W(t,0) = ui(0) — 2Re{2(t)q(6)}.
It is clear that if u;(6) is real, then W is also real. Now, we set
22 z2 23
W(t,0) =W(z z0) = W20§ + W12z + Woz; + W30€ +-y (31)

in which z, Z are the coordinates of u; with respect to ¢,¢*. The reduced
equations up to order three for (z,z) will be computed in the following.
Equation (25) used with v = 6 = 0 yields

u(t) = A(0)u(t) + R(0)u(t),
which is, by (30), equivalent to
2(8)q(0) + Z(t)G(0) + W (t,0) = A(0)u(t) + R(0)u(t). (32)

Since the inner product of the left-hand side of (32) with ¢*(0) is equal to
2(t), then



Hopf bifurcation analysis in a delayed model of tumor therapy ... 177

A0)u(t) + R(O)u(t) >
=< ¢*(0), A(O)u(t) > + < ¢*(0), R(0)u(t) >
=< A*(0)g* (0), u(t) > + < ¢*(0), R(0)u(t) >

=< —i&*7¢"(0),u(t) > + < ¢*(0), R(0)u(t

(t) =< ¢7(0),
)

where
22 z2 2z

9(2(1),2(t) = 920 + 91122 + g g g5 (33)

To simplify the computations, we let

—-m —i&*

N it* —a+ae’€’ T
M? a; (O) =

& (0) - n n

Then (30) reads as

uy(0) = 2(t)q(0) + z(t)q(0) + W(t,0)
= (1, M) 0 (t) + (1, M) e 7 0%(t)
22 z?
+W205+W1125+W025+'“ . (34)

It follows from (34) that

so that W(t,0) = (WM (9), W2 (9)) € R?. By replacing ¢(0) = () into
(22) for v = 0 and the above relations, we have
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= « [ —mu(t) — nui (t)uz(t)
=" (0)r ( au11(t71)u21(t712) )

—m(z+z+ W1 (0)2 —n(z+z+WHOO)(Mz+ Mz + W (0))
=E(N,1)r* (

a(ze_iE*T* + 2T 4 W(l)(—l))(Mze_’f*T* + Mzed™ ™" 4+ W@ (-1))

=—ENT"{m(z+z2+ WD (02 +nz+z+ WD) (Mz+ Mz +W>(0))}

+Er{alze & 4 2T L WD (—1) (Mze 8T 4+ Mz + W (—1)}
o 22 52

=— ENT*{2(m+nM) 5 + (2m + nRe{M}) zZ + 2 (m + nM) >

+2 (2mwf}) (0) + 2mW (0) + naw D (0) + n MWL (0) + W (0)

+ nWé?(O)) Z} +E’T*{2 (aM67215 T ) S (aRe{M})zz+2 (aMem{ T )

2 2
+ 2<ae_i5*T*Wl(f)(—1) + aet€ T W%)(—l) + aMe_’f*T*Wl(ll)(—l)

22z

Ao T (D 1)) 22
+ e T W) (<) 2 (35)
We now replace (33) in the left-hand side of (35), and we get
920 = —2ENT*(m +nM) + 2E7*(aMe™ 2 7),
g11 = ENT*(2m +nM +nM) + ET*(aM + aM),
go2 = —2ENT*(m + nM) 4+ 2E7*(aMe*€ ™),
g2 = —2ENT{(2m + nM)W(0) + (2m + nM)Wgy (0) + nW? (0)
+ W) (0)} + 2B {ae ™ T Wi (—1) + ae’€ T WY (1)
+aMe T W (<1) + al ST WL (—1)). (36)
As W11(0) and Wy (6) are unknown, we should calculate them. To this end,
we consider .
W =1 — ¢z — gz, (37)
with
U = A(0)us + R(0)uy = (A(0) + R(0))(gz + gz + W),
z2=1"1"2+ q°(0) fo,
Z= i7"z + ¢ (0) fo.

Then (37) becomes

)
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W =A0)(W + gz + q2) — (i€ 7"z + ¢ (0) fo)g — (—i&" 772 + ¢7(0) fo)q
+ R(0)uy
=A(0)W + A(0)gz + A(0)qz — (i€* 7" 2)q + (i§*772)q
— q*(0) foq — ¢*(0) foq + R(0)u,
=A0)W + (i§*17q)z — (i§"77q)z — (i§"772)q + (i§"7°2)q
— q*(0) foq — ¢*(0) foq + R(0)u,
=A0)W — 3*(0) foq + 3*(0) foq + R(0)u,
—AO)W — 2Re{g"(0) foa} + R(0)us. (38)

Next, from (24) and (38), we find that

G [ AW 2Relq (0)fug} 0 e [-1,0)
~ AW = 2Re{q*(0) foq} + f(0,us) ~ 6=0,
=AW + H(z,z,0), (39)
where
Z2 22
H(Z,Z,G)ZHQ()(Q)? +H11(9)Z§+H02(0)?+ . (40)

By replacing (31) and (40) into (39), we obtain that

Wao(0)z2 + Wi1(0)2z2 + W11 (0)2Z + Woe(0) 22 + - - -
2
= A(W20(9)% Wi (0)27 + Wes(0)

[

)+H20(9)Z;

Z

2
22

+ H11(9)22+ Hog(a)? + -

Also,

Waoo(0)z(i&* %2 + g(z, 2)) + W11 (0)Z(i€" "2 + g(z, Z))
+ W11 (0)2(—i&* 772+ g(2,2)) + Woo(0)Z(—i&* 1772 + g(2, 2))
22
= (AWQQ(G) + Hgo(o))g + (AWM(G) + H11(0)>2’5

no

+ (AWoa () + H02(9))% .
Thus,
22 22
(2177 Wao (0)) 5 + (=207 Wao (6)) 5+

— (AWan(6) + Hao(6) % + (AWir(6) + Ha(0)sz 4+ (1)
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Comparing the similar terms in both sides of equality (41) leads to
AWQO(G) + Hgo(g) = 2if*T*W20(0) — (A - 2Zf*T*)W20(9) = —Hgo(@),
(42)
(4

AWH(Q) + H11(9) =0 — AWH(H) = —Hll(g).

From (39) for # € [—1,0), we have that

= —"(0)foq(6) — 7°(0) foq(0)

= —g(2,2)a(0) — g(z, 2)a(0). (44)

Then by comparing the coefficients of (33) and (40), we get
Hao(0) = —g209(0) — go2q(0), (45)
(46)

Hy1(0) = —9119(0) — g114(0).
By substituting (45) into (42), we obtain
AWQO(G) = 2i§*T*W20(0) — HQO(O)
= 2i§" 7" Wao(0) + g209(0) + Go2q(0). (47)
By the definition of A(v) for § € [—1,0), we have AWy (#) = Wao(6), and by
replacing it into (47), we get
Wao(0) = 207" Wag(0) + g20q(0) + Go2q(0)
= 20" 7" Wao(0) + 9209(0)€™ ™ + Go2q(0)e 77,

where ¢(0) = ¢(0)e’ ™ ?. Hence,

0
WQO(Q) _ 6215 "0 {/ <920q(0)615 "0 _’_g02q(0)6_15*7—*9) 6—215 T 9d9+cl}
0

= 90 4(0)e’ 70 4 T2 G(0)eTE T 4 et (48)

- 7 q 3ExrH
Similarly, it follows from (43), (46) and the definition of A(v) that

AWH (9) = —H11 (9

)
W11(9) = 9119(0) + g114(0) = 911(1(0)61{*7*9 + gllQ(O)e_ig*T*e'

Then
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0
Wi (6) = {/ (9119(0)e ™7 + grag(0)e 7 ) o + cz}
0

_ign g o | W11 _ o _ierrrg
= — 0 ——q(0 Cs. 49
g0 B gy (49)

We now need to find appropriate C; and Cy for (48) and (49). From the
definition of A(v) for @ = 0 and (42) we have that

0
/ dn(G)Wgo(ﬁ) = 2i£*T*W20(0) - HQ()(O), (50)
—1

where 7(0,0) = n(#). From the definition of H(z, z,0) at (39) and (44) for

0 = 0, we have

H(0) = —7"(0)foq(0) — ¢7(0) foq(0) + f(0, ue)

2(m +nM) )

= —g209(0) — Go2q(0) + 7~ (_2aM€—2i5*T* (51)

Now, we substitute (48) and (51) into (50), and we get

o [(—m —n\ ( ig20 iGo2 _
(00 (240 + 32 a0+ )

(00 920 —igrrr | 1g02 o ierr —2ig* 7
T (—a —a) (g*T*q(O)e + 735*7* d(0)e + Che

= 207 (2 25a(0) + 522 0(0) + C) + 9200(0) + e (0)

+T*( 2(m +nM) )

—2aMe= %€ T

It reduces to
« ¢ £g20 —-m -n 1go2 -m -n _
T {5*7'* (ae‘lf*T* —a+ae €T > 9(0) + 3ExT <aei5*7* —a+ae®’ ™ ) q(0)
-m -n
+ <ae—2i§*r* I ) C1}

= —ggoq(O) — gOQ(j(O) + 2i€*T*Cl 47 (

2(m +nM)
—2aMe=2E"T"

Then we use the characteristic (Al — Q1 — Q2e~*7)q(0) = 0 and obtain
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™ { 920 (ig*g(0)) + ~ 22 (~ig*(0)) + ( e —a+a_e712if*f*>01}

5*7-* 3&'*7-* a
_ = = -k K * 2(m =+ TLM)
— —920(](0) — 902(](0) —+ 225 T Cl + 7 (—ZaMe_Qif*T* )
Therefore,
—-m -n L oiex 2(m +nM)
<a6—2i5*r* —a+ qe—2ET > C1 =42 IC + <_2aMe—2i§*T* ) ;

which is equivalent to

—m — 2i&* —n C{l) [ 2(m+4nM)
ae™?T —a+ae” T —2i¢* )\ 0@ | T\ —2aMe T )¢
It follows that
—2(ame=2€" 7" — (a4 2i€)(m +nM))
ae=2€ (26 +m —n) — 2i(a + 26 + m) —am’

o _ 2a(m +nM — 2Mi§ — mM)
U7 a(2i€ +m —n) — (2i€(a + 26 +m) + am)e2i&

o =

Similarly, from (43) and the definition of A(v), we have

0
/_ (O (0) = ~Hu (0), (52)

and also from (39), we have

2m—|—nRe{M}> . (53)

Hu(0) = ~g119(0) ~ gua(@) + 7 (27 Ll
Now we substitute (49) and (53) into (52), and we get

P () a0 + a0+ )

(0 0, gn —igrrr | B e
(8, 0) e P

= ¢119(0) + G11G(0) + 7* <2m_:££§\2¥}) '

Thus, we have

(o) o= (mion )
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which gives

oo cV\ —Re{M}
2T\ ) T G (m—n)Re{M} —2m) )
By the above computations, we obtain coefficients of (36) and we can now
determine the following quantities:

. 2
i
c1(0) = <91192o —2[g11]* — |go2|> + 92

28*1* 3 27’
o = — RE@(0)
Re(Xy’
B = 2Re(c1(0)),
7y - _Im(en() + pIm(PE) (54)

é’*

These values describe the bifurcating periodic solutions for the critical value
7 = 7*. The direction of the Hopf bifurcation is determined by puo, that
is, when ps is positive (negative), we have a supercritical (subcritical) Hopf
bifurcation. For 7 > 7* (7 < 7*), there exist bifurcating periodic solutions,
and (o determines the stability of the bifurcating periodic solutions: if B <
0 (B2 > 0), then bifurcating periodic solutions in the center manifold are
stable (unstable). Period of the bifurcating periodic solutions is determined
by Ty, the period increases (decrease) when T > 0 (7> < 0). Thus (20) and
(54) imply that the results of the direction the Hopf bifurcations satisfy.

5 Numerical Simulation

In this section, we study numerical results of system (4) at different values
of 7. By choosing r =21, w =21, 6 =1, f =3, a =15 in system (4), we
have
dx T+y
dy
dt

) —x — 3zy,
=3z(t— 1)yt —7) — 15y.
For 7 = 0, E2 = (5,3.75) is an interior unique equilibrium point. These

values show that (19) has a positive root z = 129.6297769, and then Theorem
3 shows that 7% = 0.2648100601. From the formulas in Section 4, we get
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= —0.1467688360 + 1.245730037 1,

E = —0.3353048563 — 2.701455914 1,

goo = 0.07001726116 + 0.0679380362 1,

g11 = 0.02285330684 — 0.18412259701,

go2 = 0.03920150800 — 0.9478826122,
M) = 0.4358591088 + 0.5440217450 4,

Cc® = 06386367604 — 0.1582198462 i,

M = —0.3333333334 — 0.7241971227 4,
N

Wi (0) = —0.2638607674 + 0.6954569963 1,
Wi2 (0) = —0.3302243769 — 0.5360810164 1,
Wi (—1) = 0.1400340404 — 0.2463831080 4,
Wi2 (—1) = 1.192302058 — 0.4408369488 i,
)

iV = —0.3333333334,
¥ = —0.4444444444,

W (0) = —1.004521703 + 0.0,
W (0) = —0.1699352452 + 0.0,
W (—1) = —0.9494599988 + 0.0,

W (—1) = 0.0740685228 + 0.0,
go1 = —0.5523573046 + 1.0418494 4.

By replacing the above values in (54), we obtain ¢;(0) = —0.2658449039 +
0.4681490320 ¢, which implies po = 49.95991907 > 0, B2 = —0.5316898078 <
0 and 75 = 0.04309591200 > 0. The fact 75 > 0 shows that the period of
the bifurcating periodic solution increases, and finally, the periodic solution
disappears. Now, by substituting the values of r =21, w =21, § =1, 8 =
3, a =15 and 7 = 0.2648100601 in system (5) and (6), we can simulate their
dynamics by changing e, numerically.

In Figure 1, we see that for 7 = 0.05 < 7* and ¢ = 100, E = (20,0) in
(6) and E = (5,3.75) in (4) and (5) are stable focus. Figure 2 shows that
for 7 = 0.2648100601 and e = 0.001, (5) and (6) in E = (20,0) have stable
focus, but (4) has a periodic solution in E = (5,3.75). In Figure 3, with a
slight increase in the amount of &, no change in the dynamics of (5) and (6) is
observed. In Figure 4, with increasing ¢ = 10, the stable focus of E = (20,0)
in (6) remains unchanged. In contrast, the stable focus of (5) changes from
E = (20,0) to E = (12,3.75), which is a sign of the effectiveness of viral
therapy and reduction of tumor cells levels. In Figure 5, for € = 100, around
E = (5,3.75), a family of stable periodic solutions appears in (5) with period
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less than periodic solutions around E = (5,3.75) in (4), which indicates the
coexistence between uninfected and infected cells, but E = (20,0) is a stable
focus in (6). In Figures 6 and 7, we see that with increasing ¢ = 1000 and
€ = 1000000, a family of stable periodic solutions with the same period will
appear around E = (5,3.75), which shows at high values of ¢, (4) and (5)
have the same dynamic. While in (6), no change in equilibrium point and
its dynamic is observed and indicate the ineffectiveness of viral therapy in
reducing the number of infected tumor cells. In Figure 8, for ¢ = 1000
and 7 = 1, in (4) and (5), the periodic solution disappears. We have used
Mathematica and Maple software for numerical simulating.

e
10 20 30 40 50

Figure 1: For ¢ = 100 and 7* = 0.05, F = (20,0) in (6), and E = (5,3.75) in (4) and
(5) are stable focus.
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Figure 2: For € = 0.001 and 7* = 0.2648100601 E = (20,0) in (5), and (6) is a stable
focus and in (4) E = (5, 3.75) enclosed by a periodic solution.
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Figure 3: For e = 1 and 7* = 0.2648100601 E = (20,0) in (5) and (6) is a stable focus
and E = (5,3.75) in (4) enclosed by a periodic solution.
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Figure 4: For ¢ = 10 and 7" = 0.2648100601 E = (20,0) in (6) is a stable focus,
E = (5,3.75) in (4) enclosed by a periodic solution and E = (12,3.75) in (5) is a stable
focus.
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Figure 5: For ¢ = 100 and 7* = 0.2648100601 E = (20,0) in (6) is a stable focus,
E = (5,3.75) in (4) and in (5) enclosed by a periodic solution with different period of
the bifurcating.
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Figure 6: For ¢ = 1000 and 7% = 0.2648100601 E = (20,0) in (6) is a stable focus,
E = (5,3.75) in (4) and in (5) enclosed by a periodic solution with almost the same
period.
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Figure 7: For e = 1000000 and 7* = 0.2648100601 E = (20,0) in (6) is a stable focus,

E = (5,3.75) in (4) and (5) enclosed by the same periodic solution.
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Figure 8: For ¢ = 1000 and 7 = 1 E = (20, 0) in (6) is a stable focus, and in (4) and (5)
the periodic solution disappears.

6 Discussion

Three nonlinear mathematical models were expressed with delayed differen-
tial equations. Two rates of infection, “rapid spread of the virus,” and one
rate of infection, “slow spread of the virus,” are proposed. Due to the sim-
plicity of calculating the mathematical model with a linear infection rate, the
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equilibrium points stability was studied without time delay. By introducing
a time delay 7 to the second equation in (4), we obtained a periodic solu-
tion and (4) undergoes a Hopf bifurcation. The existence of periodic solutions
showed a coexistence between uninfected tumor cells and infected tumor cells,
leading to a dynamical balance between in growth of uninfected cancer cells
and infected ones. Now by placing the appropriate value 7 obtained from
(4) and different values of ¢ in (5) and (6), we simulated the existence of a
periodic solution, numerically. In the simulation obtained from these three
models, we found that in (4) and (5) with “rapid virus spread” rate, a peri-
odic solution can be observed. From a biological point of view, it was stated
that viral therapy in models with a “rapid virus spread” rate can create a
coexistence interaction between uninfected and infected tumor cells. While
simulation (6) showed that no limit cycles are observed for these values, viral
treatment may not reduce tumor cells. By increasing the time delay, in (4)
and (5), the period of the created periodic solutions increased until oscilla-
tions between two populations vanish. Hence, the growth of tumor cancer
cells became stable.
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