- Ahamed M., Posgai R., Gorey T.J., Nielsen M., Hussain S.M., and Rowe J.J. 2010. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicology and Applied Pharmacology 242: 263-269.
- Anderson J., and Domsch K. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry 10: 215-221.
- Anjum N.A., Gill S.S., Duarte A.C., Pereira E., and Ahmad I. 2013. Silver nanoparticles in soil–plant systems. Journal of Nanoparticle Research 15: 1896.
- Antisari L.V., Carbone S., Gatti A., Ferrando S., Nacucchi M., De Pascalis F., Gambardella C., Badalucco L., and Laudicina V.A. 2016. Effect of cobalt and silver nanoparticles and ions on Lumbricus rubellus health and on microbial community of earthworm faeces and soil. Applied Soil Ecology 108: 62-71.
- Arora S., Jain J., Rajwade J., and Paknikar K. 2009. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicology and Applied Pharmacology 236: 310-318.
- Braydich-Stolle L., Hussain S., Schlager J.J., and Hofmann M.C. 2005. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences 88: 412-419.
- Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., and Shipley G.L. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55: 611-622.
- Butterman W., and Hilliard H. 2004. Mineral commodity profiles. Selenium. Rapport US Department of the Interior US Geological Survey 1-20.
- Buzea C., Pacheco I.I., and Robbie K. 2007. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2: MR17-MR71.
- Cao C., Huang J., Cai W.-S., Yan C.-N., Liu J.-L. and Jiang Y.-D. 2017. Effects of silver nanoparticles on soil enzyme activity of different wetland plant soil systems. Soil and Sediment Contamination: An International Journal 26: 558-567.
- Carlson C., Hussain S.M., Schrand A.M., K. Braydich-Stolle L., Hess K.L., Jones R.L., and Schlager J.J. 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. The Journal of physical chemistry B, 112: 13608-13619.
- Charley R.C., and Bull A.T. 1979. Bioaccumulation of silver by a multispecies community of bacteria. Archives of Microbiology, 123: 239-244.
- Chandra, K., Salman, A. S., Mohd, A., Sweety, R. and Ali, K. N. 2015. Protection against FCA induced oxidative stress induced DNA damage as a model of arthritis and In vitro anti-arthritic potential of costus speciosus rhizome extract. International Journal of Pharmacognosy and Phytochemical Research 7: 383-9.
- Cho K.-H., Park J.-E., Osaka T., and Park S.-G. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta 51: 956-960.
- Choi O., Deng K.K., Kim N.-J., Ross Jr L., Surampalli R.Y., and Hu Z. 2008. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Research 42: 3066-3074.
- Cornfield A. 1977. Effects of addition of 12 metals on carbon dioxide release during incubation of an acid sandy soil. Geoderma19: 199-203.
- Doolette C.L., McLaughlin M.J., Kirby J.K., Batstone D.J., Harris H.H., Ge H., and Cornelis G. 2013. Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities. Chemistry Central Journal 7: 46.
- Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G., and Galdiero M. 2015. Silver nanoparticles as potential antibacterial agents. Molecules 20: 8856-8874.
- Furno F., Morley K.S., Wong B., Sharp B.L., Arnold P.L., Howdle S.M., Bayston R., Brown P.D., Winship P.D., and Reid H.J. 2004. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection Journal of Antimicrobial Chemotherapy 54: 1019-1024.
- Giller K.E., Witter E., and Mcgrath S.P. 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry 30: 1389-1414.
- Hänsch M., and Emmerling C. 2010. Effects of silver nanoparticles on the microbiota and enzyme activity in soil. Journal of Plant Nutrition and Soil Science 173: 554-558.
- Holden P.A., Klaessig F., Turco R.F., Priester J.H., Rico C.M., Avila-Arias H., Mortimer M., Pacpaco K., and Gardea-Torresdey J.L. 2014. Evaluation of exposure concentrations used in assessing manufactured nanomaterial environmental hazards: are they relevant? Environmental Science & Technology 48: 10541-10551.
- Hosseini S.S., Lakzian A., Halajnia A., and Hammami H. 2018. The Effect of olive husk extract compared to the EDTA on Pb availability and some chemical and biological properties in a Pb-contaminated soil. International Journal of Phytoremediation 20: 643-649.
- Jung R., Kim Y., Kim H.-S., and Jin H.-J. 2009. Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles. Journal of Biomaterials Science, Polymer Edition 20: 311-32.
- Levard C., Hotze E.M., Lowry G.V., and Brown Jr G.E. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environmental Science & Technology 46: 6900-6914.
- Lok C.-N., Ho C.-M., Chen R., He Q.-Y., Yu W.-Y., Sun H., Tam P.K.-H., Chiu J.-F., and Che C.-M. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research 5: 916-924.
- Lubick N. 2008. Nanosilver toxicity: ions, nanoparticles or both?: ACS Publications.
- Marambio-Jones C., and Hoek E.M. 2010. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research 12: 1531-1551.
- McShan D., Ray P.C., and Yu H. 2014. Molecular toxicity mechanism of nanosilver. Journal of Food and Drug Analysis, 22, 116-127. https://doi.org/10.1016/j.jfda.2014.01.010
- Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramírez J.T., and Yacaman M.J. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346.
- Moreno B., Nogales R., Macci C., Masciandaro G., and Benitez E. 2011. Microbial eco-physiological profiles to estimate the biological restoration of a trichloroethylene-contaminated soil. Ecological Indicators 11: 1563-1571.
- Murata T., Kanao-Koshikawa M., and Takamatsu T. 2005. Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities. Water, Air, and Soil Pollution 164: 103-118.
- Neto M., Ohannessian A., Delolme C., and Bedell J.-P. 2007. Towards an Optimized Protocol for Measuring Global Dehydrogenase Activity in Storm-Water Sediments (10 pp). Journal of Soils and Sediments 7: 101-110.
- Nielsen M.N., Winding A., and Binnerup S. 2002. Microorganisms as indicators of soil health.
- Oliveira A., and Pampulha M.E. 2006. Effects of long-term heavy metal contamination on soil microbial characteristics. Journal of Bioscience and Bioengineering 102: 157-161.
- Panáček A., Kvítek L., Smékalová M., Večeřová R., Kolář M., Röderová M., Dyčka F., Šebela M., Prucek R., and Tomanec O. 2018. Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotechnology 13: 65-71.
- Paulson K.N., and Kurtz L. 1969. Locus of Urease Activity in Soil 1. Soil Science Society of America Journal 33: 897-901.
- Paz‐Ferreiro J., and Fu S. 2016. Biological indices for soil quality evaluation: perspectives and limitations. Land Degradation & Development 27: 14-25.
- Peyrot C., Wilkinson K.J., Desrosiers M., and Sauvé S. 2014. Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environmental Toxicology and Chemistry 33: 115-125.
- Rahmatpour S., Shirvani M., Mosaddeghi M.R., Nourbakhsh F., and Bazarganipour M. 2017. Dose–response effects of silver nanoparticles and silver nitrate on microbial and enzyme activities in calcareous soils. Geoderma 285: 313-322.
- Rahmatpour S., Mosaddeghi M.R., Shirvani M., and Šimůnek J. 2018. Transport of silver nanoparticles in intact columns of calcareous soils: The role of flow conditions and soil texture. Geoderma 322: 89-100.
- Reidy , Haase A., Luch A., Dawson K., and Lynch I. 2013. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6: 2295-2350.
- Rico M., Majumdar S., Duarte-Gardea M., Peralta-Videa J.R., and Gardea-Torresdey J.L. 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry 59: 3485-3498.
- Roh J.-y., Sim S.J., Yi J., Park K., Chung K.H., Ryu D.-y., and Choi J. 2009. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environmental Science & Technology 43: 3933-3940.
- Samarajeewa A., Velicogna J., Princz J., Subasinghe R., Scroggins R., and Beaudette L. 2017. Effect of silver nano-particles on soil microbial growth, activity and community diversity in a sandy loam soil. Environmental Pollution 220: 504-513.
- Schlich , and Hund-Rinke K. 2015. Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environmental Pollution 196: 321-330.
- Shin Y.-J., Kwak J.I., and An Y.-J. 2012. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88: 524-529.
- Siripattanakul-Ratpukdi S., and Fürhacker M. 2014. issues of silver nanoparticles in engineered environmental treatment systems. Water, Air, & Soil Pollution 225: 1939.
- Tabatabai M. 1977. Effects of trace elements on urease activity in soils. Soil Biology and Biochemistry 9: 9-13.
- Tabatabai M., and Bremner J. 1972. Assay of urease activity in soils. Soil Biology and Biochemistry 4: 479-487.
- Tabatabai M.A. 1982. Soil enzymes. Methods of Soil Analysis, Part 2. American Society of Agronomy and Soil Science Society of America, Madison, In: Page A.L., Miller R.H., Keeney D.R. (eds.).
- Thalmann A. 1966. The determination of the dehydrogenase activity in soil by means of TTC (triphenyltetrazolium). Soil Biology 6: 46-49.
- van der Ploeg M.J., Handy R.D., Waalewijn‐Kool P.L., van den Berg J.H., Herrera Rivera Z.E., Bovenschen J., Molleman B., Baveco J.M., Tromp P., and Peters R.J. 2014. Effects of silver nanoparticles (NM‐300K) on Lumbricus rubellus earthworms and particle characterization in relevant test matrices including soil. Environmental Toxicology and Chemistry 33: 743-752.
- Velicogna R., Ritchie E.E., Scroggins R.P., and Princz J.I. 2016. A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils. Nanotoxicology 10: 1144-1151.
- Wigginton N.S., Titta A., Piccapietra F., Dobias J., Nesatyy V.J., Suter M.J., and Bernier-Latmani R. 2010. Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environmental Science & Technology 44: 2163-2186.
- Wijnhoven S.W., Peijnenburg W.J., Herberts C.A., Hagens W.I., Oomen A.G., Heugens E.H., Roszek B., Bisschops J., Gosens I., and Van De Meent D. 2009. Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3: 109-138.
- Xu Q., Hu J., Xie K., Yang H., Du K., and Shi G. 2010. Accumulation and acute toxicity of silver in Potamogeton crispus Journal of Hazardous Materials 173: 186-193.
- Yang Y., Quensen J., Mathieu J., Wang , Wang J., Li M., Tiedje J.M., and Alvarez P.J. 2014. Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. Water Research 48: 317-325.
- Zhang Z., Qu Y., Li S., Feng K., Wang S., Cai W., Liang Y., Li H., Xu M., and Yin H. 2017. Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Scientific Reports 7: 1-11.
- Zhou J., Bruns M.A., and Tiedje J.M. 1996. DNA recovery from soils of diverse composition. Applied Environment Microbiology 62: 316-322.
|