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Exponentially fitted tension spline
method for singularly perturbed
differential difference equations

M.M. Woldaregay∗ and G.F. Duressa

Abstract
In this article, singularly perturbed differential difference equations having
delay and advance in the reaction terms are considered. The highest-order
derivative term of the equation is multiplied by a perturbation parameter
ε taking arbitrary values in the interval (0, 1]. For the small value of ε, the
solution of the equation exhibits a boundary layer on the left or right side
of the domain depending on the sign of the convective term. The terms
with the shifts are approximated by using the Taylor series approximation.
The resulting singularly perturbed boundary value problem is solved using
an exponentially fitted tension spline method. The stability and uniform
convergence of the scheme are discussed and proved. Numerical exam-
ples are considered for validating the theoretical analysis of the scheme.
The developed scheme gives an accurate result with linear order uniform
convergence.
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1 Introduction

A large number of mathematical models have appeared in different areas of
science and engineering that take into account not just the present state of
a physical system but also its past history. These models are described by

∗Corresponding author
Received 9 January 2021; revised 18 March 2021; accepted 21 April 2021
Mesfin Mekuria Woldaregay
Department of Applied Mathematics, Adama Science and Technology University,
Adama, Ethiopia. e-mail: mesfin.mekuria@astu.edu.et
Gemechis File Duressa
Department of Mathematics, Jimma University, Jimma, Ethiopia. e-mail: gam-
meef@gmail.com

261



262 M.M. Woldaregay and G.F. Duressa

certain classes of functional differential equations often called delay differen-
tial equations or differential difference equations (DDEs). The class of DDEs
with characteristics of delay/advance and singularly perturbed behavior is
known as singularly perturbed differential difference equations (SPDDEs).
The DDEs with delay or advance term play an important role in model-
ing many real life phenomena in bioscience, control theory, economics, and
engineering [5]. Some applications are the mathematical modeling of popu-
lation dynamics and epidemiology [19], physiological kinetics [4], blood cell
production [25], and so on.

In SPDDEs model process, the evaluation not only depends on the current
state of the system but also includes the past history. A number of model
problems in science and engineering take the forms of SPDDEs [32]; we list a
few of them: neuron variability model in computational neuroscience, optimal
control theory problems, and model describing the motion of sunflower.

For the perturbation parameter, when ε tends to zero, the smoothness of
the solution of the singularly perturbed problems deteriorates and it forms
boundary layer; see [6, 27]. In the case where ε is very small, standard numer-
ical methods such as FDM, FEM, and collocation method lead to oscillations
in the computed solutions. To handle the oscillation, a large number of mesh
points are required, which is not practical; see [32].

The solution methods of SPDDEs have received great attention in recent
years because of their wide applications. It is of theoretical and practical
interest to consider numerical methods for such problems [40]. Adilaxmi
et al. [1, 2] proposed the exponentially fitted nonstandard FDM and in-
tegration method using a nonpolynomial interpolating function. In articles
[21, 22, 23, 24], Lange and Miura developed asymptotic methods for solving
a class of SPDDEs. The authors extend the matched asymptotic method
initially developed for solving BVPs to obtain an approximate solution for
SPDDEs. In articles [9, 11, 12, 13], Kadalbajoo and Sharma developed ε-
uniform numerical methods using fitted mesh techniques. Swamy, Phaneen-
dra, and Reddy [35] used the exponentially fitted Galerkin method for treat-
ing the problem. The authors in [36, 37] developed a fourth-order FDM with
an exponential fitting factor. Melesse, Tiruneh, and Deresecite [26] used the
initial value technique to treat the problem. They showed the applicability
of the scheme by considering different examples. Ranjan and Prasad [31]
used the modified fitted FDM for solving the problem. Sirisha, Phaneendra,
and Reddy [34] developed a finite difference scheme using the procedure of
domain decomposition. Kumar and Sharma [20] applied the B-spline collo-
cation method to approximate the solution of the SPDDEs. Mohapatra and
Natesan [28] applied the fitted mesh FDM using the equidistributed grid tech-
nique. In [40], Woldaregay and Duressa developed the exponentially fitted
FDM with Richardson extrapolation techniques.

Different authors in [3, 7, 8, 14, 15, 16, 17, 30] have applied the ten-
sion spline method for treating singularly perturbed reaction diffusion or
convection diffusion problems. To the best of the authors’ knowledge, the



Exponentially fitted tension spline method for singularly perturbed ... 263

exponentially fitted tension spline method has not been developed for treat-
ing SPDDEs. Developing uniformly convergent schemes is an active research
area [33]. This motivates us to develop an accurate and uniformly convergent
scheme using the exponentially fitted tension spline method.

Notations: N denotes the number of mesh interval in the discretization,
C denotes a positive constant independent of ε and N , and the norm ∥·∥
denotes the supremum norm.

2 Continuous problem

Consider a class of SPDDE of the form

−εu′′(x)+a(x)u′(x)+α(x)u(x−δ)+ω(x)u(x)+β(x)u(x+η) = f(x), x ∈ Ω,
(1)

with the interval conditions

u(x) =ϕ(x), x ∈ [−δ, 0],
u(x) =ψ(x), x ∈ [1, 1 + η],

(2)

where Ω = (0, 1), ε ∈ (0, 1] is the singular perturbation parameter, and δ
and η are delay and advance parameters satisfying δ, η < ε. The functions
a(x), α(x), ω(x), β(x), f(x), ϕ(x), and ψ(x) are assumed to be sufficiently
smooth and bounded for the existence of unique solution. The coefficient
functions α(x), ω(x), and β(x) are assumed to satisfy

α(x) + ω(x) + β(x) ≥ α+ ω + β =: θ > 0, for all x ∈ Ω̄,

where the constants α, ω, and β are lower bounds of α(x), ω(x), and β(x),
respectively.

In the case when δ, η = 0, equations (1)–(2) reduce to a singularly per-
turbed boundary value problem, in which for small ε, it exhibits boundary
layer. The layer is maintained for δ, η ̸= 0 but sufficiently small.

2.1 Properties of the continuous solution

In the case when δ, η < ε, using Taylor’s series approximation for the terms
with deviating, the argument is appropriate [38]. Using the Taylor series
approximation, we approximate

u(x− δ) ≈u(x)− δu′(x) + (δ2/2)u′′(x) +O(δ3),

u(x+ η) ≈u(x) + ηu′(x) + (η2/2)u′′(x) +O(η3).
(3)
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Replacing (3) in (1) gives

− cεu
′′(x) + p(x)u′(x) + q(x)u(x) = f(x), x ∈ Ω, (4)

with the boundary conditions

u(0) = ϕ(0), u(1) = ψ(1), (5)

where cε = ε2 − (δ2/2)α− (η2/2)β, p(x) = a(x)− δα(x) + ηβ(x), and q(x) =
α(x) + β(x) + ω(x). For small values of δ and η, (1)–(2) and (4)–(5) are
asymptotically equivalent, since the difference between these two equations is
O(δ3, η3). The differential operator L is denoted for the differential equation
in (4) and defined as

Lu(x) = −cεu′′(x) + p(x)u′(x) + q(x)u(x).

The problem in (4)–(5) exhibits the regular boundary layer of thickness
O(cε), and the position of the boundary layer depends on the conditions: If
p(x) < 0, then the left boundary layer exists, and if p(x) > 0, then the right
boundary layer exists. In the case when p(x), x ∈ Ω, the change sign interior
layer will exist [10].

The problem obtained by setting cε = 0 in (4)–(5) is called the reduced
problem and given as

p(x)u′0(x) + q(x)u0(x) = f(x), for all x ∈ Ω,

u0(0) =ϕ(0), u0(1) ̸= ψ(1).
(6)

For the right boundary layer case, it does not satisfy the right boundary
condition, and for the left boundary layer case, it is given as

p(x)u′0(x) + q(x)u0(x) = f(x), for all x ∈ Ω,

u0(0) ̸=ϕ(0), u0(1) = ψ(1).
(7)

For small values of cε, the solution u(x) of (4)–(5) is very close to the solution
u0(x) of (6) or (7).
Lemma 1 (The maximum principle [40]). For sufficiently smooth function
z on Ω, satisfying z(0) ≥ 0, z(1) ≥ 0, and Lz(x) ≥ 0, for all x ∈ Ω, implies
that z(x) ≥ 0, for all x ∈ Ω̄.
Lemma 2 (Stability estimate). The solution u(x) of the continuous equation
(4)–(5) satisfies the bounded

|u(x)| ≤ θ−1∥f∥+max{|ϕ(0)|, |ψ(1)|}. (8)

Proof. It is proved by the construction of barrier function and using the
maximum principle. Let us define barrier functions ϑ±(x) as ϑ±(x) =
θ−1∥f∥+max{ϕ(0), ψ(1)} ± u(x). On the boundary points, we obtain
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ϑ±(0) = θ−1∥f∥+max{ϕ(0), ψ(1)} ± u(0) ≥ 0,

ϑ±(1) = θ−1∥f∥+max{ϕ(0), ψ(1)} ± u(1) ≥ 0.

On the differential operator, we have

Lϑ±(x) =− cεϑ
′′
±(x) + p(x)ϑ′±(x) + q(x)ϑ±(x)

=− cε(0± u′′(x)) + p(x)
(
0± u′(x)

)
+ q(x)

(
θ−1∥f∥+max{ϕ(0), ψ(1)}

± u(x)
)

=q(x)
(
θ−1∥f∥+max{ϕ(0), ψ(1)}

)
± f(x)

≥0, since q(x) ≥ θ > 0.

By using the hypothesis of the maximum principle, we obtain ϑ±(x) ≥
0, for all x ∈ Ω̄, which implies the required bound.

In the next lemma, we obtain a bound for the derivatives of solution.

Lemma 3. Derivatives of the solutions of the problem in (4)–(5) satisfy the
bound

|u(k)(x)| ≤ C
(
1 + c−k

ε exp
(−p∗x

cε

))
, x ∈ Ω, 0 ≤ k ≤ 4,

for the left boundary layer problem and

|u(k)(x)| ≤ C
(
1 + c−k

ε exp
(−p∗(1− x)

cε

))
, x ∈ Ω, 0 ≤ k ≤ 4,

for the right boundary layer problem.

Proof. See [6].

3 Numerical scheme formulation

In this article, an exponentially fitted tension spline method is proposed for
solving equations (1)–(2). The exponential fitting factor is used to hinder the
influence of the perturbation parameter in the boundary layer region. The
theory of the asymptotic method is used for developing the exponential fitting
factor. We consider and treat the left and right boundary layer problems
separately.



266 M.M. Woldaregay and G.F. Duressa

3.1 Exponentially fitted tension spline method

Let 0 = x0 < x1 < x2 < · · · < xN = 1 be a uniform partition for [0, 1] such
that xi = ih, i = 0, 1, 2, . . . , N . A function S(x, τ) = S(x) is a class of C2(Ω̄),
which interpolates u(x) at the mesh points xi depending on the parameter
τ , reduces to cubic spline in Ω̄ as τ → 0, and is termed as a parametric cubic
spline function [17, 3]. In [xi, xi+1], the spline function S(x) satisfies the
differential equation

S′′(x)− τS(x) = [S′′(xi)− τS(xi)]
xi+1 − x

h
+ [S′′(xi+1)− τS(xi+1)]

x− xi
h

,

(9)
where S(xi) = u(xi) and τ > 0 is termed as a cubic spline in compres-
sion. Solving the linear second-order differential equation in (9) and deter-
mining the arbitrary constants from the interpolation conditions S(xi+1) =
u(xi+1), S(xi) = u(xi), we get

S(x) =
h2

λ2 sinhλ

[
Mi+1 sinh(

λ(x− xi)

h
) +Mi sinh(

λ(xi+1 − x)

h
)
]

− h2

λ2
[
(Mi+1 −

λ2

h2
u(xi+1))(

x− xi
h

) + (Mi −
λ2

h2
u(xi))(

xi+1 − x

h
)
]
,

(10)

where λ = hτ1/2 and Mj = u′′(xj) for j = i± 1, i.

Now, differentiating (10) and letting x→ xi, on the interval [xi, xi+1], we
obtain

S′(x+i ) =
u(xi+1)− u(xi)

h
− h

λ2
[
Mi+1(1−

λ

sinhλ
) +Mi(λ cothλ− 1)

]
,

(11)

and on the interval [xi−1, xi], we obtain

S′(x−i ) =
u(xi)− u(xi−1)

h
+

h

λ2
[
Mi(λ cothλ− 1) +Mi−1(1−

λ

sinhλ
)
]
.

(12)

Equating the left- and right-hand derivatives at xi gives

u(xi)− u(xi−1)

h
+

h

λ2
[
Mi(λ cothλ− 1) +Mi−1(1−

λ

sinhλ
)
]

=
u(xi+1)− u(xi)

h
− h

λ2
[
Mi+1(1−

λ

sinhλ
) +Mi(λ cothλ− 1)

]
,

i = 1, 2, . . . , N − 1.

(13)

Rearranging, we obtain the tridiagonal system
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λ1Mi−1+2λ2Mi+λ1Mi+1 =
u(xi−1)− 2u(xi) + u(xi+1)

h2
, i = 1, 2, . . . , N−1,

(14)
where λ1 = 1

λ2 (
λ

sinhλ − 1) and λ2 = 1
λ2 (1− λ cothλ).

The condition of continuity given in (14) ensures the continuity of the first-
order derivatives of the spline S(x) at interior nodes.
Now, substituting −cεMj = f(xj)− p(xj)u

′(xj)− q(xj)u(xj) for j = i− 1, i
and i+ 1, we obtain

Lhu(xi) ≡− cε
h2

[u(xi−1)− 2u(xi) + u(xi+1)] + λ1[p(xi−1)u
′(xi−1)

+ q(xi−1)u(xi−1)] + 2λ2[p(xi)u
′(xi) + q(xi)u(xi)]

+ λ1[p(xi+1)u
′(xi+1) + q(xi+1)u(xi+1)]

=λ1f(xi−1) + 2λ2f(xi) + λ1f(xi+1) + T1(h), i = 1, 2, . . . , N − 1,

(15)

where T1(h) is the truncation error in the above discretization, one can see
the detail in [3], and it is given by

T1(h) =
h4

3
(−2λ1 + λ2)p(xi)u

′′′(ζi) +
h4

12
(1− 12λ1)p(xi)cεu

(4)(ζi) +O(h6),

(16)
for any choice of λ1 and λ2 whose sum is 1/2, except λ1 = 1/12 and λ2 = 5/12.
For the choice λ1 = 1/12, λ2 = 5/12, we have

T1(h) =
cεh

6

240
u(6)(ζi), ζi ∈ [xi−1, xi+1]. (17)

Next, we use the left-shifted, central, and right-shifted finite difference ap-
proximation as

u′(xi−1) =
−3u(xi−1) + 4u(xi)− u(xi+1)

2h
+O(h),

u′(xi) =
u(xi+1)− u(xi−1)

2h
+O(h2), and

u′(xi+1) =
3u(xi+1)− 4u(xi) + u(xi−1)

2h
+O(h).

(18)

Substituting (18) in (15) leads to

Lui ≡− cε
h2

[ui−1 − 2ui + ui+1] + λ1[p(xi−1)(
−3ui−1 + 4ui − ui+1

2h
) + q(xi−1)ui−1]

+ 2λ2[p(xi)(
ui+1 − ui−1

2h
) + q(xi)ui] + λ1[p(xi+1)(

3ui+1 − 4ui + ui−1

2h
)

+ q(xi+1)ui+1] = λ1f(xi−1) + 2λ2f(xi) + λ1f(xi+1) + T2(h),

i = 1, 2, . . . , N − 1,

(19)
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where ui denotes the approximation of u(xi) in the above discretization and
T2(h) = O(h) + T1(h).

3.1.1 Case I: Left boundary layer problem

In this case, the boundary layer occurs on the left side of the domain. From
the theory of singular perturbations, the zeros-order asymptotic solution of
(4)–(5) is given as [29]

u(x) = u0(x)+
p(0)

p(x)
(ϕ(0)−u0(0)) exp

(
−
∫ x

0

( p(x)
cε(x)

− q(x)
p(x)

)
dx

)
+O(cε). (20)

Using the Taylor series about x = 0 for p(x) and q(x) and simplifying give

u(x) = u0(x) + (ϕ(0)− u0(0)) exp(−p(0)x) +O(cε), (21)

where u0 is the solution of the reduced problem. The domain [0, 1] is dis-
cretized into N equal number of subintervals, each of length h. Let 0 = x0 <
x1 < x2 < · · · < xN = 1 be the points such that xi = ih, i = 0, 1, 2, . . . , N .

Considering h small enough, the discretized form of (21) becomes

u(ih) ≃ ui = u0(ih) + (ϕ(0)− u0(0)) exp(−p(0)(iρ)), (22)

where ρ = h/cε and h = 1/N . Similarly, we write

ui+1 =u0((i+ 1)h) + (ϕ(0)− u0(0)) exp(−p(0)((i+ 1)ρ)),

ui−1 =u0((i− 1)h) + (ϕ(0)− u0(0)) exp(−p(0)((i− 1)ρ)).
(23)

In order to handle the influence of the perturbation parameter, the exponen-
tially fitting factor σ1 is multiplied on the term containing cε as

Lh
Lui ≡− cεσ1

h2
[ui−1 − 2ui + ui+1] + λ1[p(xi−1)(

−3ui−1 + 4ui − ui+1

2h
)

+ q(xi−1)ui−1] + 2λ2[p(xi)(
ui+1 − ui−1

2h
) + q(xi)ui]

+ λ1[p(xi+1)(
3ui+1 − 4ui + ui−1

2h
) + q(xi+1)ui+1]

=λ1f(xi−1) + 2λ2f(xi) + λ1f(xi+1) + T3(h), i = 1, 2, . . . , N − 1.

(24)

Multiplying both sides of (24) by h, denoting cε/h = ρ, and taking the limit
as h→ 0, we obtain
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− lim
h→0

σ1
ρ
[ui−1 − 2ui + ui+1] + λ1 lim

h→0
[p((i− 1)h)(−3ui−1 + 4ui − ui+1)]

+ 2λ2 lim
h→0

[p(ih)(ui+1 − ui−1)] + λ1 lim
h→0

[p((i+ 1)h)(3ui+1 − 4ui + ui−1)] = 0.

(25)

The expression in (25) simplifies to

lim
h→0

cεσ1
ρ

[ui−1 − 2ui + ui+1] = lim
h→0

(λ1 + λ2)[p(0)(ui+1 − ui−1)]. (26)

Using the results in (22) and (23), we obtain

lim
h→0

[ui+1 − 2ui + ui−1] =(ϕ(0)− u0(0)) exp(−p(0)iρ)

× [exp(−p(0)ρ)− 2 + exp(p(0)ρ)],

lim
h→0

[ui+1 − ui−1] =(ϕ(0)− u0(0)) exp(−p(0)iρ)

× [exp(−p(0)ρ)− exp(p(0)ρ)].

(27)

Using the result in (27) into (26), we obtain the exponential fitting factor as

σ1 = p(0)ρ(λ1 + λ2) coth(p(0)
ρ

2
). (28)

Hence, the required finite difference scheme becomes

Lh
Lui ≡− cεσ1

h2
[ui−1 − 2ui + ui+1] + λ1[p(xi−1)(

−3ui−1 + 4ui − ui+1

2h
)

+ q(xi−1)ui−1] + 2λ2[p(xi)(
ui+1 − ui−1

2h
) + q(xi)ui]

+ λ1[p(xi+1)(
3ui+1 − 4ui + ui−1

2h
) + q(xi+1)ui+1]

=λ1f(xi−1) + 2λ2f(xi) + λ1f(xi+1) + T3(h), i = 1, 2, . . . , N − 1,

(29)

with the boundary conditions u0 = ϕ(0) and uN = ψ(1). The bound of
truncation error T3(h) is derived in Theorem 1.

3.1.2 Case II: Right boundary layer problem

In this case, the boundary layer is on the right side of the domain. From
the theory of singular perturbations, the zeros-order asymptotic solution of
(4)–(5) is given as [29]

u(x) = u0(x)+
p(1)

p(x)
(ψ(1)−u0(1)) exp

(
−
∫ 1

x

(p(x)
cε

− q(x)

p(x)

)
dx

)
+O(cε). (30)
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Using the Taylor series about x = 1 for p(x) and q(x) and simplifying, we
obtain

u(x) = u0(x) + (ψ(1)− u0(1)) exp
(
− p(1)(1− x)

)
+O(cε), (31)

where u0 is the solution of the reduced problem. The domain [0, 1] is dis-
cretized into N equal number of subintervals, each of length h. Let 0 = x0 <
x1 < x2 < · · · < xN = 1 be the points such that xi = ih, i = 0, 1, 2, . . . , N .

Considering h is small enough, the discretized form of (21) becomes

u(ih) ≃ ui = u0(ih) + (ψ(1)− u0(1)) exp(−p(1)(1/cε − iρ)), (32)

where ρ = h/cε and h = 1/N . Similarly, we write

ui+1 =u0((i+ 1)h) + (ψ(1)− u0(1)) exp(−p(1)(1/cε − (i+ 1)ρ)),

ui−1 =u0((i− 1)h) + (ψ(1)− u0(1)) exp(−p(1)(1/cε − (i− 1)ρ)).
(33)

Using the similar procedure as the left boundary layer case, we obtain the
exponential fitting factor as

σ2 = p(1)ρ(λ1 + λ2) coth(
p(1)ρ

2
). (34)

Hence, the required finite difference scheme becomes

Lh
Rui ≡− cεσ2

h2
[ui−1 − 2ui + ui+1] + λ1[p(xi−1)(

−3ui−1 + 4ui − ui+1

2h
)

+ q(xi−1)ui−1] + 2λ2[p(xi)(
ui+1 − ui−1

2h
) + q(xi)ui]

+ λ1[p(xi+1)(
3ui+1 − 4ui + ui−1

2h
) + q(xi+1)ui+1]

=λ1f(xi−1) + 2λ2f(xi) + λ1f(xi+1) + T3(h), i = 1, 2, . . . , N − 1,

(35)

with the boundary conditions u0 = ϕ(0) and uN = ψ(1).

3.2 Stability and uniform convergence

In this section, we discuss the uniform stability and convergence for the right
boundary layer problems. Similarly, one can do it for the left boundary layer
case. First, we prove the discrete comparison principle for the scheme in (35)
for the existence of the unique discrete solution.

We observe that the nonzero entries of the coefficient matrix of Lh
Rui are

given by
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ai,i−1 =− cεσ2
h2

− λ1
(3p(xi−1)

2h
− p(xi+1)

2h
+ q(xi−1)

)
− λ2

p(xi)

h
,

ai,i =
2cεσ2
h2

− λ1(
2p(xi−1)

h
− 2p(xi+1)

h
) + q(xi),

ai,i+1 =− cεσ2
h2

− λ1
(p(xi−1)

2h
+

3p(xi+1)

2h
+ q(xi+1)

)
+ λ2

p(xi)

h
.

(36)

For each i = 1, 2, . . . , N − 1 and for arbitrary values of h and cε, we have
ai,i−1 < 0, ai,i+1 < 0, and ai,i > 0.

Lemma 4 (Discrete comparison principle). Assume that, for a mesh func-
tion ui, there exists a comparison function vi such that Lhui ≤ Lhvi, i =
1, 2, . . . , N − 1 and if u0 ≤ v0 and uN ≤ vN , then ui ≤ vi, i = 0, 1, 2, . . . , N .

Proof. The matrix associated with operator Lh
R is of size (N + 1)× (N + 1)

and where for i = 1 and i = N − 1, the terms involving u0 and uN have been
moved to the right-hand side. It is easy to see that the matrix of coefficients
is diagonally dominant and has nonpositive off-diagonal entries. Hence, the
matrix is an irreducible M matrix. See the details of proof in [18].

Lemma 5 (Discrete uniform stability estimate). The solution of the discrete
scheme in (29) satisfies the bound

|ui| ≤ θ−1∥Lh
Rui∥+max{|u0|, |uN |}. (37)

Proof. Let r = θ−1∥Lh
Rui∥ + max{u0, uN}, and define the barrier function

ϑ±i by ϑ±i = r ± ui. On the boundary points, we obtain

ϑ±0 = r ± u0 = θ−1∥Lh
Rui∥+max{u0, uN} ± ϕ(0) ≥ 0,

ϑ±N = r ± uN = θ−1∥Lh
Rui∥+max{u0, uN} ± ψ(1) ≥ 0.

On the discretized spatial domain xi, 0 < i < N , we obtain

Lh
Rθ

±
i ≡− cεσ1

h2
[(r ± ui−1)− 2(r ± ui) + (r ± ui+1)]

+ λ1[p(xi−1)(
−3(r ± ui−1) + 4(r ± ui)− (r ± ui+1)

2h
)

+ q(xi−1)(r ± ui−1)] + 2λ2[p(xi)(
(r ± ui+1)− (r ± ui−1)

2h
)

+ q(xi)(r ± ui)] + λ1[p(xi+1)(
(r ± ui+1)− 4(r ± ui) + 3(r ± ui−1)

2h
)

+ q(xi+1)(r ± ui+1)]

=[λ1q(xi−1) + 2λ2q(xi) + λ1q(xi+1)]
(
θ−1∥Lh

Rui∥+max{u0, uN}
)

± [λ1f(xi−1) + 2λ2f(xi) + λ1f(xi+1)] ≥ 0, since qi ≥ θ > 0.

From Lemma 4, we obtain ϑ±i ≥ 0, for all xi ∈ Ω̄N . Hence, the required
bound is obtained.
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Now for z > 0, C1 and C2 are constants, and we have

C1
z2

z + 1
≤ z coth(z)− 1 ≤ C2

z2

z + 1
, and cε

(h/cε)
2

h/cε + 1
=

h2

h+ cε
, (38)

giving that

∣∣cε[p(1)ρ(λ1 + λ2) coth(
p(1)ρ

2
)− 1

]
D+D−u(xi)

∣∣ ≤ Ch2

h+ cε

∥∥u′′(xi)∥∥, (39)

since λ1 + λ2 ≤ 1/2. We obtain the bound

∣∣cε[u′′(xi)− σD+D−u(xi)]
∣∣ =∣∣cε[p(1)ρ(λ1 + λ2) coth(

p(1)ρ

2
)− 1

]
D+D−u(xi)

+ cε
(
u′′(xi)−D+D−u(xi)

)∣∣
≤ Ch2

h+ cε

∥∥u′′(xi)∥∥+ Ccεh
2
∥∥u(4)(xi)∥∥.

(40)

Now, let us denote the right-shifted, central, and left-shifted finite differ-
ences, respectively, as

DRu(xi) =
ui−1 − 4ui + 3ui+1

2h
, D0u(xi) =

ui+1 − ui−1

2h
, and

DLu(xi) =
−3ui−1 + 4ui − ui+1

2h
.

Using Taylor’s series approximation, we obtain the bound

|u′(xi−1)−DLu(xi−1)|≤Ch
∥∥u′′(ζ)ww,

|u′(xi)−D0u(xi)|≤Ch2
wwu′′′(ζ)ww, and

|u′(xi+1)−DRu(xi−1)|≤Ch
∥∥u′′(ζ)∥∥, (41)

where ∥u′′(ζ)∥ = maxx0≤xi≤xN
|u′′(xi)| and ∥u′′′(ζ)∥ = maxx0≤xi≤xN

|u′′′(xi)|.

The next theorem gives the truncation error bound for the proposed
scheme.

Theorem 1. Let u(xi) and ui be the solution of (4)–(5) and (29), respec-
tively. Then, the following error estimate holds:

∣∣Lu(xi)− Lh
Rui

∣∣ ≤ Ch
(
1 + c−3

ε exp
(
− p∗(1− xi)

cε

))
. (42)

Proof. Consider the truncation error bound in the above discretization
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Rui

∣∣ ≤∣∣Lu(xi)− Lhu(xi)
∣∣+ ∣∣Lhu(xi)− Lh

Rui
∣∣

≤
∥∥T1(h)∥∥+

∣∣cεu′′(xi)− cεσD
+D−u(xi)

∣∣
+ |u′i−1 −DLu(xi)|+|u′i −D0u(xi)|
+ |u′i+1 −DRu(xi)|.

(43)

Using the bounds in (40), (41), and (43) and using

T1(h) ≤ Ch4(−2λ1 + λ2)
∥∥u′′′(ζi)∥∥+ Ccεh

4(1− 12λ1)
∥∥u(4)(ζi)∥∥,

we obtain∣∣Lu(xi)− Lh
Rui

∣∣ ≤ Ch2

h+ cε
∥u′′(xi)∥+ cεCh

2∥u(4)(xi)∥+ λ1Ch∥u′′(ζ)∥

+ λ2Ch
2∥u′′′(ζ)∥+ Ch4(−2λ1 + λ2)

∥∥u′′′(ζi)∥∥
+ Ccεh

4(1− 12λ1)
∥∥u(4)(ζi)∥∥.

Using the bounds for the derivatives of the solution in Lemma 3 gives

∣∣Lu(xi)− Lh
Rui

∣∣ ≤ Ch2

h+ cε

(
1 + c−2

ε e

(
−p∗(1−xi)

cε

))
+ Ch2

[
cε
(
1 + c−4

ε e

(
−p∗(1−xi)

cε

))
+ Chλ1

(
1 + c−2

ε e

(
−p∗(1−xi)

cε

))
+ Ch2λ2

(
1 + c−3

ε e

(
−p∗(1−xi)

cε

))
+ Ch4(−2λ1 + λ2)

(
1 + c−3

ε e

(
−p∗(1−xi)

cε

))
+ Ccεh

4(1− 12λ1)
(
1 + c−4

ε e

(
−p∗(1−xi)

cε

))
≤ Ch2

h+ cε

(
1 + c−2

ε e

(
−p∗(1−xi)

cε

))
+ Ch2

(
cε + c−3

ε e

(
−p∗(1−xi)

cε

))
+ Chλ1

(
1 + c−2

ε e

(
−p∗(1−xi)

cε

))
+ Ch2λ2

(
1 + c−3

ε e

(
−p∗(1−xi)

cε

))
+ Ch4(−2λ1 + λ2)

(
1 + c−3

ε e

(
−p∗(1−xi)

cε

))
+ Ch4(1− 12λ1)

(
cε + c−3

ε e

(
−p∗(1−xi)

cε

))
≤Ch

(
1 + c−3

ε e

(
−p∗(1−xi)

cε

))
, since c−3

ε ≥ c−2
ε .

Lemma 6. For a fixed number of mesh numbers N and for cε → 0, it holds

lim
cε→0

max
1≤i≤N−1

exp
(−α(xi)

cε

)
cmε

= 0, lim
cε→0

max
1≤i≤N−1

exp
(−α(1−xi)

cε

)
cmε

= 0, (44)

for m = 1, 2, 3, . . . , where xi = ih, h = 1/N, for all i = 1, 2, . . . , N − 1.

Proof. See [39].
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Theorem 2. Let u(xi) and ui be the solution of (4)–(5) and (29), respec-
tively. Then it satisfies the error bound

sup
0<cε≪1

∥u(xi)− ui∥ ≤ Ch. (45)

Proof. Using the result in Lemma 6 into Theorem 1 and using the result in
Lemma 5, we obtain the required bound.

4 Numerical results and discussion

In this section, we consider examples to illustrate the theoretical analysis of
the proposed scheme.

Example 1. Consider the problem from [28]

−εu′′(x) + (1 + e(x
2))u′(x) + xexu(x− δ) + x2u(x) + (1− e−x)u(x+ η) = −1

with interval conditions u(x) = 1, −δ ≤ x ≤ 0, and u(x) = −1, 1 ≤ x ≤ 1+η.

Example 2. Consider the problem from [28]

−εu′′(x) + u′(x)− 2u(x− δ) + 5u(x)− u(x+ η) = 0

with interval conditions u(x) = 1, −δ ≤ x ≤ 0 and u(x) = −1, 1 ≤ x ≤ 1+η.
The exact solution is given as

u(x) =
(1 + em2)em1x − (1 + em1)em2x

em2 − em1
,

where

m1 =
−(−1− 2δ + η) +

√
(−1− 2δ + η)2 − 4(ε+ δ2 + η2/2)

2(ε+ δ2 + η2/2)
,

m2 =
−(−1− 2δ + η)−

√
(−1− 2δ + η)2 − 4(ε+ δ2 + η2/2)

2(ε+ δ2 + η2/2)
.

Example 3. Consider the problem from [28]

−εu′′(x)− u′(x) + 2u(x− δ) + 5u(x)− u(x+ η) = 0

with interval conditions u(x) = 1, −δ ≤ x ≤ 0 and u(x) = 0, 1 ≤ x ≤ 1 + η.
The exact solution is given as

u(x) =
em1x+m2 − em1+m2x

em2 − em1
,

where



Exponentially fitted tension spline method for singularly perturbed ... 275

m1 =
−(1 + 2δ + η) +

√
(1 + 2δ + η)2 − 4(ε− δ2 + η2/2)

2(ε− δ2 + η2/2)
,

m2 =
−(1 + 2δ + η)−

√
(1 + 2δ + η)2 − 4(ε− δ2 + η2/2)

2(ε− δ2 + η2/2)
.

Example 4. Consider the problem

−εu′′(x)−(1+exp(−x2))u′(x)−xu(x−δ)−x2u(x)−(1.5−exp(−x))u(x+η) = 1

with interval conditions u(x) = 1, −δ ≤ x ≤ 0 and u(x) = 1, 1 ≤ x ≤ 1 + η.

Since, the exact solution of the variable coefficient problems is not known,
we applied the double mesh technique to calculate the maximum absolute
error.

Let UN
i denote the computed solution of the problem on N number of

mesh points and let U2N
i denote the computed solution on a double number

of mesh points 2N by including the mid-points xi+1/2 = xi+1+xi

2 into the
mesh points. The maximum absolute error is given by

EN
ε,δ,η = max

i
|UN

i − u(xi)|, or EN
ε,δ,η = max

i
|UN

i − U2N
i |,

and the ε-uniform error is calculated using EN = maxε,δ,η
∣∣EN

ε,δ,η

∣∣. The rate of
convergence of the scheme is calculated using rNε,δ,η = log2

(
EN

ε,δ,η/E
2N
ε,δ,η

)
, and

the ε-uniform rate of convergence is calculated using rN = log2
(
EN/E2N

)
.

Table 1: Example 1, maximum absolute error of the scheme for λ1 = 1/12, λ2 = 5/12.
ε ↓ N = 25 26 27 28 29 210

20 9.4299e-04 5.6749e-04 3.0865e-04 1.6056e-04 8.1847e-05 4.1316e-05
2−2 1.4597e-03 6.2724e-04 2.9779e-04 1.4502e-04 7.1636e-05 3.5613e-05
2−4 1.5547e-03 8.9197e-04 4.0302e-04 1.5441e-04 7.2554e-05 3.5885e-05
2−6 2.6082e-03 1.0350e-03 4.1282e-04 2.3469e-04 1.0215e-04 3.9059e-05
2−8 3.0394e-03 1.5279e-03 6.7558e-04 2.6400e-04 1.0473e-04 5.9369e-05
2−10 3.0383e-03 1.5588e-03 7.8897e-04 3.8892e-04 1.7038e-04 6.6326e-05
2−12 3.0377e-03 1.5585e-03 7.8910e-04 3.9701e-04 1.9905e-04 9.7666e-05
2−14 3.0376e-03 1.5584e-03 7.8907e-04 3.9699e-04 1.9911e-04 9.9709e-05
2−16 3.0376e-03 1.5584e-03 7.8906e-04 3.9699e-04 1.9911e-04 9.9708e-05
2−18 3.0376e-03 1.5584e-03 7.8906e-04 3.9699e-04 1.9911e-04 9.9708e-05
2−20 3.0376e-03 1.5584e-03 7.8906e-04 3.9699e-04 1.9911e-04 9.9708e-05

EN 3.0376e-03 1.5584e-03 7.8906e-04 3.9699e-04 1.9911e-04 9.9708e-05
rN 0.9629 0.9819 0.9910 0.9955 0.9978 -

Four examples with their solution exhibiting a boundary layer are con-
sidered. Examples 1 and 2 have the boundary layer on the right side of the
domain and Examples 3 and 4 have it on the left side of the domain. For
the detail, one can observe in Figure 1, the layer formation of the solutions
for different values of ε. In Figure 2, the influence of the delay parameter
on the solution profile is given by considering different values of the delay
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(a) (b)

(c) (d)

Figure 1: Boundary layer formation for different values of ε and δ = 0.6ε, η = 0.5ε, (a)
Example 1, (b) Example 2, (c) Example 3 and (d) Example 4.

(a) (b)

Figure 2: Solution profile for different values of delay parameter for ε = 2−2, (a)
Example 2, (b) Example 4.

parameter for ε = 2−2. The maximum absolute error of the proposed scheme
for λ1 = 1/12 and λ2 = 5/12 is given in Tables 1–4, for different values of the
perturbation parameter ε. One observes that as ε → 0 in each column, the
maximum absolute error becomes stable and uniform. This indicates that
the proposed scheme is uniformly convergent. In the last two rows of these
tables, the uniform error and uniform rate of the convergence of the scheme
are given. In Table 5, the rate of convergence of the scheme is given for dif-
ferent values of ε ranging from 2−12 to 2−20. It is observed that the scheme
gives a linear order uniform convergence. In Tables 6–8, the comparison of
the proposed scheme with the result in [28] is given. As we observe, the uni-
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Table 2: Example 2, maximum absolute error of the scheme for λ1 = 1/12, λ2 = 5/12.
ε ↓ N = 25 26 27 28 29 210

20 7.4098e-04 3.7006e-04 1.8494e-04 9.2446e-05 4.6218e-05 2.3108e-05
2−2 2.1452e-03 1.0603e-03 5.2699e-04 2.6277e-04 1.3121e-04 6.5561e-05
2−4 3.3473e-03 1.5615e-03 7.5382e-04 3.7142e-04 1.8438e-04 9.1872e-05
2−6 4.4315e-03 2.1468e-03 9.3461e-04 4.3381e-04 2.0955e-04 1.0317e-04
2−8 6.2230e-03 2.7096e-03 1.1361e-03 5.5377e-04 2.4090e-04 1.1169e-04
2−10 6.2230e-03 3.2715e-03 1.6132e-03 6.9087e-04 2.8575e-04 1.3957e-04
2−12 6.3987e-03 3.2747e-03 1.6565e-03 8.3275e-04 4.0708e-04 1.7359e-04
2−14 6.4018e-03 3.2751e-03 1.6567e-03 8.3326e-04 4.1787e-04 2.0915e-04
2−16 6.4025e-03 3.2752e-03 1.6568e-03 8.3329e-04 4.1788e-04 2.0915e-04
2−18 6.4025e-03 3.2752e-03 1.6568e-03 8.3329e-04 4.1788e-04 2.0915e-04
2−20 6.4025e-03 3.2752e-03 1.6568e-03 8.3329e-04 4.1788e-04 2.0915e-04

EN 6.4025e-03 3.2752e-03 1.6568e-03 8.3329e-04 4.1788e-04 2.0915e-04
rN 0.9671 0.9832 0.9915 0.9957 0.9986 -

Table 3: Example 3, maximum absolute error of the scheme for λ1 = 1/12, λ2 = 5/12.
ε ↓ N = 25 26 27 28 29 210

20 9.7173e-04 4.7967e-04 2.3842e-04 1.1886e-04 5.9346e-05 2.9652e-05
2−2 2.2582e-03 1.0918e-03 5.3781e-04 2.6712e-04 1.3311e-04 6.6445e-05
2−4 4.1684e-03 1.9446e-03 9.3525e-04 4.6062e-04 2.2884e-04 1.1409e-04
2−6 9.0197e-03 3.4155e-03 1.3580e-03 3.1052e-04 2.0955e-04 1.5427e-04
2−8 1.3302e-02 6.2951e-03 2.4966e-03 9.1533e-04 3.7245e-04 1.7575e-04
2−10 1.3600e-02 7.2675e-03 3.6950e-03 1.6616e-03 6.4185e-04 2.3339e-04
2−12 1.3615e-02 7.2783e-03 3.7679e-03 1.9170e-03 9.4973e-04 4.2126e-04
2−14 1.3618e-02 7.2804e-03 3.7690e-03 1.9182e-03 9.6771e-04 4.8587e-04
2−16 1.3619e-02 7.2809e-03 3.7690e-03 1.9183e-03 9.6778e-04 4.8607e-04
2−18 1.3619e-02 7.2809e-03 3.7690e-03 1.9183e-03 9.6778e-04 4.8607e-04
2−20 1.3619e-02 7.2809e-03 3.7690e-03 1.9183e-03 9.6778e-04 4.8607e-04

EN 1.3619e-02 7.2809e-03 3.7690e-03 1.9183e-03 9.6778e-04 4.8607e-04
rN 0.9034 0.9499 0.9744 0.9871 0.9935 -

form error and uniform rate of convergence of the proposed scheme is better
than that of in [28].

5 Conclusion

This article dealt with the numerical treatment of SPDDEs having shifts on
the reaction terms. The solution of the considered problem exhibited the
boundary layer on the left or right side of the domain as ε → 0. The terms
involving the shift were approximated using the Taylor series approximation.
The exponentially fitted tension spline method was used for treating the
resulting singularly perturbed boundary value problem. The first derivative
terms were approximated using left-shifted, central, and right-shifted finite
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Table 4: Example 4, maximum absolute error of the scheme for λ1 = 1/12, λ2 = 5/12.
ε ↓ N = 25 26 27 28 29 210

20 1.9784e-04 9.7513e-05 4.8442e-05 2.4139e-05 1.2049e-05 6.0194e-06
2−2 3.7410e-04 2.0860e-04 1.0982e-04 5.6313e-05 2.8509e-05 1.4342e-05
2−4 1.4674e-04 1.6633e-04 1.2390e-04 7.2396e-05 3.8825e-05 2.0070e-05
2−6 1.4706e-03 3.3509e-04 4.4397e-05 4.6273e-05 3.5377e-05 2.0784e-05
2−8 2.0794e-03 1.0391e-03 3.9571e-04 8.8140e-05 1.1611e-05 1.2172e-05
2−10 2.0806e-03 1.0780e-03 5.4814e-04 2.6668e-04 1.0074e-04 2.2328e-05
2−12 2.0806e-03 1.0780e-03 5.4844e-04 2.7658e-04 1.3881e-04 6.7101e-05
2−14 2.0806e-03 1.0780e-03 5.4844e-04 2.7658e-04 1.3888e-04 6.9589e-05
2−16 2.0806e-03 1.0780e-03 5.4844e-04 2.7658e-04 1.3888e-04 6.9589e-05
2−18 2.0806e-03 1.0780e-03 5.4844e-04 2.7658e-04 1.3888e-04 6.9589e-05
2−20 2.0806e-03 1.0780e-03 5.4844e-04 2.7658e-04 1.3888e-04 6.9589e-05

EN 2.0806e-03 1.0780e-03 5.4844e-04 2.7658e-04 1.3888e-04 6.9589e-05
rN 0.9486 0.9750 0.9876 0.9939 0.9969 -

Table 5: Example 1, (rNε,δ,η) of the scheme for λ1 = 1/12, λ2 = 5/12.
ε ↓ N = 25 26 27 28 29

Example 1
2−12 0.9628 0.9819 0.9910 0.9960 1.0272
2−14 0.9629 0.9819 0.9910 0.9955 0.9978
2−16 0.9629 0.9819 0.9910 0.9955 0.9978
2−18 0.9629 0.9819 0.9910 0.9955 0.9978
2−20 0.9629 0.9819 0.9910 0.9955 0.9978

Example 4
2−12 0.9486 0.9750 0.9876 0.9946 1.0487
2−14 0.9486 0.9750 0.9876 0.9939 0.9969
2−16 0.9486 0.9750 0.9876 0.9939 0.9969
2−18 0.9486 0.9750 0.9876 0.9939 0.9969
2−20 0.9486 0.9750 0.9876 0.9939 0.9969

Table 6: Comparison of uniform error and uniform rate of convergence of Example 1.
ε ↓ N = 25 26 27 28 29 210

Propose Scheme
EN 3.0376e-03 1.5584e-03 7.8906e-04 3.9699e-04 1.9911e-04 9.9708e-05
rN 0.9629 0.9819 0.9910 0.9955 0.9978 -

Result in [28]
EN 8.9743e-02 4.6893e-02 2.4148e-02 1.5602e-02 7.5110e-03 3.5319e-03
rN 0.9364 0.9575 0.6302 1.0547 1.0886 -

difference approximation. The stability of the scheme was investigated using
the comparison principle and solution bound. The uniform convergence of
the scheme was proved, and it gave the first-order uniform convergent. The
performance of the scheme was compared with some published articles and
it gave an accurate result.
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Table 7: Comparison of uniform error and uniform rate of convergence of Example 2.
ε ↓ N = 25 26 27 28 29 210

Propose Scheme
EN 6.4025e-03 3.2752e-03 1.6568e-03 8.3329e-04 4.1788e-04 2.0915e-04
rN 0.9671 0.9832 0.9915 0.9957 0.9986 -

Result in [28]
EN 1.0273e-01 6.1537e-02 3.8643e-02 2.2077e-02 1.2395e-02 7.0772e-03
rN 0.7393 0.6712 0.8074 0.8328 0.8085 -

Table 8: Comparison of uniform error and uniform rate of convergence of Example 3.
ε ↓ N = 25 26 27 28 29 210

Propose Scheme
EN 1.3619e-02 7.2809e-03 3.7690e-03 1.9183e-03 9.6778e-04 4.8607e-04
rN 0.9034 0.9499 0.9744 0.9871 0.9935 -

Result in [28]
EN 9.6126e-02 5.7165e-02 3.3247e-02 1.8984e-02 1.0685e-02 5.9444e-03
rN 0.7498 0.7819 0.8084 0.8293 0.8459 -
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