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Abstract

As an important duality result in linear optimization, the Goldman–Tucker
theorem establishes strict complementarity between a pair of primal and
dual linear programs. Our study extends this result into the framework of
linear fractional optimization. Associated with a linear fractional program,
a dual program can be defined as the dual of the equivalent linear program
obtained from applying the Charnes–Cooper transformation to the given
program. Based on this definition, we propose new criteria for primal and
dual optimality by showing that the primal and dual optimal sets can be
equivalently modeled as the optimal sets of a pair of primal and dual lin-
ear programs. Then, we define the concept of strict complementarity and
establish the existence of at least one, called strict complementary, pair
of primal and dual optimal solutions such that in every pair of comple-
mentary variables, exactly one variable is positive and the other is zero.
We geometrically interpret the strict complementarity in terms of the rel-
ative interiors of two sets that represent the primal and dual optimal sets
in higher dimensions. Finally, using this interpretation, we develop two
approaches for finding a strict complementary solution in linear fractional
optimization. We illustrate our results with two numerical examples.
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1 Introduction

A mathematical optimization problem is specified as a (primal) linear frac-
tional program (LFP) when a linear fractional function (i.e., ratio of two
affine functions) is optimized subject to a set of linear constraints on the given
variables.1 The linear fractional optimization frequently appears in a wide
variety of real-world applications, including information theory, numerical
analysis, game theory, cutting stock problems, shipping schedules, macroeco-
nomic planning model, and so on. More details can be found in [1, 11, 24, 25]
and references therein. It is also applied in the measurement of efficiency by
data envelopment analysis; see, for example, [10, 15, 22, 26, 27, 28, 29, 30, 31]
among others. Therefore, considerable research interest has been devoted to
this branch of optimization.

The literature on the duality of linear fractional optimization associate
various duals to the primal LFP. Chadha [7] suggested a dual in the form of a
linear program (LP) and proved some duality statements directly. However,
the constant scalars in the numerator and denominator of the primal objective
function are assumed to be absent in their work. Chadha and Chadha [8]
extended Chadha’s results to the general case, where the constant scalars
are taken into account. An interesting note regarding their impressive work
is that their results can be deduced in an alternative way from the duality
of linear optimization. In fact, an indirect approach for constructing a dual
program is to transform the primal LFP into an equivalent problem that its
dual can be constructed in the classical way; see [25]. By using this approach,
it can be verified (as in Section 2) that the dual program proposed in [8] is
nothing else than the dual of the equivalent LP resulting from applying the
well-known transformation of Charnes and Cooper [9] to the primal LFP.

Though demonstrating the common complementary slackness condition
between the primal LFP and its dual, Chadha and Chadha [8] did not inves-
tigate the strict complementarity between them. Furthermore, to the best
of our knowledge, no other research exists on such investigation. Motivated
by these, we extend an important duality result proved by Goldman and
Tucker [12] from linear optimization to linear fractional optimization. The
so-called Goldman–Tucker theorem establishes the strict complementarity
between a pair of primal and dual LPs. It states that at least one, so-called
strict complementary, pair of primal and dual optimal solutions exists such
that the sum of each pair of complementary variables is positive. That is, in
every pair of complementary variables, exactly one variable is positive and
the other is zero; see, for example, [20] for more details on the theory and
applications of strict complementarity in linear optimization.

1 If the given objective function is optimized with no restrictions on the values of its
variables, then the optimization problem is called unconstrained. Useful information on
approaches developed for solving unconstrained optimization problems can be found in
[3, 16, 21], among others.
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As a complementary to the work of Chadha and Chadha [8], this paper
shows that the primal and dual optimal sets can be equivalently modeled as
the optimal sets of a pair of primal and dual LPs. Using this fact, we propose
new criteria for primal and dual optimality in terms of the belongingness of
these LPs’ objective vectors to the binding polyhedral cones at primal and
dual feasible solutions. Then we define the strict complementary slackness
condition for an LFP and demonstrate the existence of a strict complemen-
tary solution. We also show that any strict complementary solution induces
unique optimal partitions for the sets of indices of nonnegative decision vari-
ables.

To deal with the problem of finding a strict complementary solution, we
equivalently represent the primal and dual optimal sets by two nonnegative
polyhedral sets in higher dimensions, which are described only by equality
defining constraints.2 Then we geometrically interpret the strict complemen-
tarity by proving that any pair of relative interior points of these polyhedral
sets is a strict complementary solution, and vice versa. Based on this inter-
pretation, we turn the problem under consideration to the equivalent problem
of identifying a maximal element of a nonnegative polyhedral set. Exploiting
the recent work of Mehdiloozad et al. [20], who have addressed the latter
problem, we develop two linear optimization approaches for finding a strict
complementary solution.

The remainder of this paper is organized as follows. Section 2 provides
the necessary background needed for the rest of the paper. Section 3 pro-
poses new criteria for primal and dual optimality and illustrates them with
a numerical example. Section 4 establishes the strict complementarity for
LFPs. Section 5 proposes an LP for finding a maximal element of a non-
negative polyhedral set and, thereby, develops two approaches for finding a
strict complementary solution. Section 6 illustrates these approaches by a
numerical example. Section 7 contains concluding remarks and suggestions
for future research. Appendix A provides the GAMS (General Algebraic
Modeling System) code of our proposed approaches.

2 Background

2.1 Notation

Let Rd denote the d-dimensional Euclidean space, and let Rd
+ denote its non-

negative orthant. We denote sets by uppercase calligraphic letters, vectors by
boldface lowercase letters, and matrices by boldface uppercase letters. We

2 A polyhedral set is said to be nonnegative if it is a subset of the nonnegative orthant
of Euclidean space. By the “defining constraints” of such a polyhedral set, we refer to
the constraints imposed other than the nonnegativity conditions.
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denote the cardinality of a set S by Card (S). By convention, all vectors
are column vectors. The superscript ⊤ denotes the transpose of a vector or
matrix.

Vectors 0 and 1 are vectors all components of that are equal to 0 and 1,
respectively. The dimensions of these vectors are clear from the context in
which they are used. For simplicity, the notation (a;b) ∈ Rd+d′ is used to
show the column vector obtained by adding vector b ∈ Rd′ below the vector
a ∈ Rd. For vectors a,b ∈ Rd, the inequality a ≥ b (resp., a > b) means
that ai ≥ bi (resp., ai > bi) for all i = 1, . . . , d.

Matrix 0 is the matrix all components of that are equal to 0, and matrix
I is the identity matrix. The dimensions of these matrices are clear from the
context in which they are used. We denote the ith (i = 1, . . . , d) row and the
jth (j = 1, . . . , d′) column of a d× d′ matrix A by ai and aj , respectively. In
particular, we use the notation ej to denote the jth column of the identity
matrix of size d× d, that is, ej =

(
0, . . . , 1

jth
, . . . , 0

)⊤ ∈ Rd for j = 1, . . . , d.

Recall from [23] that the relative interior of a subset X of Rd, denoted by
ri (X ), is defined as the interior we get when X is regarded as a subset of its
affine hull, denoted by aff (X ). Formally,

ri (X ) =
{
xo ∈ X : Nε (x

o) ∩ aff (X ) ⊆ X for some ε > 0
}
,

where Nε (x
o) =

{
x ∈ Rd : ∥x− xo∥ < ε

}
.

Recall also from [20] that any convex (and, in particular, polyhedral) sub-
set of Rd

+ is called a nonnegative convex (polyhedral) set. Additionally, any
element of a nonnegative convex set is said to be maximal, if the number of
its positive components is maximum. We denote the support of a nonnega-
tive vector a ∈ Rd

+ by supp (a), that is, supp (a) =
{
i ∈ {1, . . . , d} : ai > 0

}
.

We also denote by me (X ) the set of all maximal elements of X , that is,
me (X ) = argmax

x∈X
Card (supp (x)).

2.2 Linear fractional program

A function of variables is said to be linear fractional if both its numerator
and denominator are affine functions of the given variables. A mathematical
optimization problem that optimizes a linear fractional objective function
subject to a set of linear constraints is called as a linear fractional program
(LFP). Formally, the general form3 of the primal LFP is defined as

3 The standard form of the primal LFP results from (1) by replacing the inequality sign
“≤” in (1b) by the equality sign; see [1, Section 1.3].
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max f (x) =
c⊤x+ α

d⊤x+ β
(1a)

subject to

Ax ≤ b, (1b)
x ≥ 0, (1c)

where x ∈ Rn is the vector of decision variables, c ∈ Rn and d ∈ Rn are,
respectively, numerator and denominator vectors of objective function, α ∈ R
and β ∈ R are objective scalars, A is an m×n constraint matrix, and b ∈ Rm

is the right-hand side vector.
Let S denote the feasible set of program (1), which is clearly a polyhedral

set in Rn. To ensure that the function f is well-defined on S, it is assumed
that its denominator maintains a constant sign on S. Without loss of gener-
ality, we assume that d⊤x+β > 0 for all x ∈ S. Then the objective function
f is both quasi-convex and quasi-concave over S and, therefore, every local
maximum is a global maximum (see, e.g., [3]). To guarantee the occurrence
of finite optimality for program (1), we also assume that S is regular (i.e.,
nonempty and bounded).

An effective approach for solving program (1) is to transform it into an
equivalent LP by the well-known Charnes–Cooper transformation [9]. In fact,
if we define t = 1

d⊤x+β
and x̄ = tx, then multiplying both sides of (1b) by t

converts program (1) to the following LP:

max c⊤x̄+ αt (2a)
subject to

Ax̄− bt ≤ 0, (2b)
d⊤x̄+ βt = 1, (2c)
x̄ ≥ 0, t ≥ 0. (2d)

Let S̄ be the feasible set of program (2). Because t > 0 for all (x̄; t) ∈ S̄,4
the following implication between the feasible solutions of programs (1) and
(2) is established:

(x̄; t) ∈ S̄ ⇒ 1

t
x̄ ∈ S, t > 0. (3)

Especially, if (x̄∗; t∗) is an optimal solution to program (2), then 1
t∗ x̄

∗ is an
optimal solution to program (1) (see, e.g., [1, p. 57]).

4 Indeed, if t = 0 for some (x̄; t) ∈ S̄, then it follows from (2b)–(2c) that Ax̄ ≤ 0 and
x̄ ̸= 0. This means that the vector x̄ is a recession direction of the feasible set S, thereby
contradicting the regularity assumption. Therefore, t > 0 for all (x̄; t) ∈ S̄.
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2.3 Dual of linear fractional program

To state the dual to LFP (1), let the vector y ∈ Rm be dual to (2b) and the
scalar z be dual to (2c). Then, by the duality of linear optimization, the dual
to LP (2) is stated as follows:5

min g (y; z) = z (4a)
subject to

A⊤y + dz ≥ c, (4b)
−b⊤y + βz = α, (4c)
y ≥ 0, z sign free. (4d)

Observe that program (4) is nothing else than the LP introduced in [8]
as the dual of program (1). We denote by D the feasible set of this program.

Throughout this paper, LP (4) is defined to be the dual of LFP (1).
The next three theorems demonstrate the duality relationships between pro-
grams (1) and (4).

Theorem 1 (Weak duality). [8] For any x ∈ S and any (y; z) ∈ D, we have
f (x) ≤ g (y; z).

Theorem 2 (Optimality criterion). [8] If the feasible solutions x ∈ S and
(y; z) ∈ D satisfy f (x) = g (y; z), then they are optimal solutions to pro-
grams (1) and (4), respectively.

Theorem 3 (Strong duality). [8] If x∗ is an optimal solution to program (1),
then there exists some optimal solution (y∗; z∗) to program (4) such that
f (x∗) = g (y∗; z∗).

The following result gives a necessary and sufficient optimality condition,
called complementary slackness condition (CSC), in terms of the complemen-
tarity of the primal and dual feasible solutions.

Theorem 4. [8] Feasible solutions x∗ ∈ S and (y∗; z∗) ∈ D are optimal if
and only if they fulfill the following conditions:

v∗⊤x∗ = u∗⊤y∗ = 0, (5)

where u∗ = b−Ax∗ and v∗ = A⊤y∗ + dz∗ − c.

From Theorem 4, the pairs
(
xj , vj

)
, j = 1, . . . , n, and

(
ui, yi

)
, i =

1, . . . ,m, are called complementary variables.

5 Note that the inequality constraint −b⊤y+βz ≥ α has been replaced with its equality
form in program (4), because the optimal value of its corresponding dual variable in
program (2), t, is always positive.
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3 Our criteria for primal and dual optimality

In this section, we propose new criteria for the optimality of LFP (1) and its
dual (4), and present their geometrical interpretations.

Denote by f∗ the optimal objective value of program (1), and let d∗ = f∗d
and β∗ = f∗β. Then the set of all optimal solutions of program (1) can be
defined by conditions (1b)–(1c) and the additional equality requiring that the
objective function of program (1) to be equal to f∗. Equivalently, this set is
stated as follows:

X ∗ =
{
x ∈ Rn : (c− d∗)⊤x = −α+ β∗, Ax ≤ b, x ≥ 0

}
.

Similarly, an equivalent statement of the optimal set of program (4) is{
(y; z∗) ∈ Rm+1 : b⊤y = −α+ β∗, A⊤y ≥ c− d∗, y ≥ 0

}
,

where z∗ denotes the optimal objective value of program (4) and is equal to
f∗. Observe that the last components of all optimal solutions of program (4)
are equal to z∗. Therefore, without losing anything, we can remove the last
dimension of the optimal set of program (4) by projecting it onto the space
of y-variables. This results the following set:

Y∗ =
{
y ∈ Rm : b⊤y = −α+ β∗, A⊤y ≥ c− d∗, y ≥ 0

}
,

which will be loosely referred to as the optimal set of program (4).
It is clear that the nonempty optimal sets X ∗ and Y∗ are polyhedral

subsets of Rn
+ and Rm

+ , respectively. The next result shows that these sets
are interestingly the optimal sets of the LP

max (c− d∗)⊤x

subject to

(1b) − (1c),
(6)

and its dual

min b⊤y (7a)
subject to

A⊤y ≥ c− d∗, (7b)
y ≥ 0. (7c)

Theorem 5. Let F∗
P and F∗

D be the optimal sets of programs (6) and (7),
respectively. Then, F∗

P = X ∗ and F∗
D = Y∗.

Proof. Let x̂ ∈ X ∗ and ŷ ∈ Y∗. Then x̂ and ŷ are, respectively, feasible
solutions to LPs (6) and (7) such that (c− d∗)

⊤
x̂ = b⊤ŷ. By the optimality
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criterion theorem of linear optimization, it follows that x̂ ∈ F∗
P and ŷ ∈ F∗

D.
Therefore, X ∗ ⊆ F∗

P and Y∗ ⊆ F∗
D.

Conversely, let x̂ ∈ F∗
P and ŷ ∈ F∗

D. By the strong duality theorem of
linear optimization, we have (c− d∗)

⊤
x̂ = b⊤ŷ. Because X ∗ ̸= ∅ and X ∗ ⊆

F∗
P , the weak duality theorem of linear optimization implies that −α+ β∗ ≤

b⊤ŷ. Similarly, it follows from Y∗ ̸= ∅ and Y∗ ⊆ F∗
D that (c− d∗)

⊤
x̂ ≤

−α+ β∗. Consequently, we have (c− d∗)
⊤
x̂ = b⊤ŷ = −α+ β∗. Therefore,

x̂ ∈ X ∗ and ŷ ∈ Y∗, which, respectively, imply F∗
P ⊆ X ∗ and F∗

D ⊆ Y∗.

Associated with any feasible solution of an LP, the binding cone is defined
as the convex cone generated by the gradients of all constraints that are
binding (active) at that solution. Recall from linear optimization that a
feasible solution to an LP is optimal if and only if its corresponding binding
cone includes the gradient of the objective function. Based on this fact, we
apply Theorem 5 to provide necessary and sufficient geometrical conditions
for feasible solutions of LFP (1) and its dual (4) to be optimal.

Let x∗ be a feasible solution to LFP (1), and let G∗
P denote the union of

the gradients of all binding constraints at x∗, that is,

G∗
P =

{(
ai
)⊤ ∈ Rn : aix∗ = bi

}
∪
{
−ej ∈ Rn : x∗

j = 0
}
.

Furthermore, denote by B∗
P the binding polyhedral cone generated by G∗

P ,
that is, B∗

P = cone
(
G∗
P

)
, where the operator “cone” denotes the conical hull.

Because the feasible regions of programs (1) and (6) are equal, x∗ is a feasible
solution of LP (6). Therefore, the next corollary follows immediately from
Theorem 5.

Corollary 1. Let x∗ ∈ S. Then, x∗ ∈ X ∗ if and only if c− d∗ ∈ B∗
P .

Similarly, let (y∗; z∗) be a feasible solution to program (4). Additionally,
assume that B∗

D = cone
(
G∗
D

)
, where

G∗
D =

{
aj ∈ Rm : a⊤j y

∗ = cj − d∗j
}
∪ {ei ∈ Rm : y∗i = 0} .

Then we obtain the following corollary as a consequence of Theorem 5.

Corollary 2. Let (y∗; z∗) ∈ D. Then, y∗ ∈ Y∗ if and only if b ∈ B∗
D.

We now present a numerical example verifying Corollaries 1 and 2.

Example 1. Consider the following LFP:
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𝐹 𝑓 𝑥1, 𝑥2 =
6

5

𝑃

𝐴

𝐶
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𝑓 𝑥1, 𝑥2 =
5

4

𝑓 𝑥1, 𝑥2 =
9

7

𝑓 𝑥1, 𝑥2 =
4

3

Figure 1: Multiple optimal solutions of program (8)

max f (x1, x2) =
6x1 + 3x2 + 6

5x1 + 2x2 + 5
(8a)

subject to

2x1 + x2 ≤ 6, (8b)
−2x1 + x2 ≤ 2, (8c)
x1, x2 ≥ 0. (8d)

A graphical approach for finding optimal solution(s) of two-dimensional
LFPs is to rotate the level-line around its focus point in positive direction
(i.e., counterclockwise).6 Figure 1 illustrates an application of this approach
to program (8). The feasible region of program (8) in two dimensions x1

and x2 is the bounded polyhedral set OABC (shaded in gray), and the focus
point is F = (−1, 0). Therefore, the optimal objective value of program (8)
is f∗ = 4

3 . Additionally, the set of all optimal solutions to program (8) is
the segment AB, which is stated below as all convex combinations of the two
extreme points A and B of the feasible region:

X ∗ =
{

xλ ∈ R2 :
(
xλ
1 , x

λ
2

)
= λ (0, 2) + (1− λ) (1, 4) , λ ∈ [0, 1]

}
.

Table 1 presents the geometrical investigation of the proposed condition
of primal optimality in Corollary 1 at four extreme points O, A, B, and
C, and one nonextreme point P of the feasible region of program (8). As
expected, the condition holds at the optimal points A, B, and P , but not at
the nonoptimal points O and C.

The dual to program (8) is the following LP:

6 More details on graphical solution of LFPs involving only two variables can be found
in [1, Chapter 3].
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Table 1: The proposed criterion of primal optimality for program (8)
x f(x) c− f (x)d G∗

P Belongingness of c− f (x)d to B∗
P

O

(
0
0

)
6
5

(
0
3
5

) (
−1
0

)
,

(
0
−1

)
−2 −1 1 2

−1

1

B∗
P

c− f (x)d

A

(
0
2

)
4
3

(−2
3
1
3

) (
−2
1

)
,

(
−1
0

)
−2 −1 1 2

−1

1

B∗
P

c− f (x)d

P

(
1
2
3

)
4
3

(−2
3
1
3

) (
−2
1

)
−2 −1 1 2

−1

1

B∗
P

c− f (x)d

B

(
1
4

)
4
3

(−2
3
1
3

) (
2
1

)
,

(
−2
1

)
−2 −1 1 2

−1

1
B∗
P

c− f (x)d

C

(
3
0

)
6
5

(
0
3
5

) (
0
−1

)
,

(
2
1

)
−2 −1 1 2

−1

1

B∗
P

c− f (x)d
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min z (9a)
subject to

2y1 − 2y2 + 5z ≥ 6, (9b)
y1 + y2 + 2z ≥ 3, (9c)

−6y1 − 2y2 + 5z = 6, (9d)
y1, y2 ≥ 0, z sign free. (9e)

By Theorem 3, the optimal objective value of the dual program (9) is
equal to that of the primal LFP (8), so z∗ = 4

3 . By Theorem 4, y∗1 = 0 for
any optimal solution

(
y∗1 , y

∗
2

)
of (9) because the point A is an optimal solution

to program (8) for which the inequality constraint (8b) is strict. Additionally,
both constraints (9b) and (9c) must be binding at optimality because point
B with both positive components is an optimal solution to program (8).
Taking these into account, it follows from the constraints of program (9)
that y∗2 = 1

3 for any optimal solution. Therefore,
(
y∗1 , y

∗
2 , z

∗) =
(
0, 1

3 ,
3
4

)
is

the unique optimal solution of LP (9). The stated facts are observable from
Figure 2, which draws the feasible region of program (9) in three dimensions
y1, y2, and z as the section LMNK of the two-dimensional hyperplane H ={
(y; z) ∈ R3 : − 6y1 − 2y2 + 5z = 6

}
.

Figure 2: Unique optimal solution of program (9)

Observe that projecting the unique optimal solution of program (4) onto
the space of y-variables follows that Y∗ =

{(
0, 1

3

)⊤}. As an illustration to
Theorem 5, Figure 3 shows the singleton set Y∗ to be the optimal extreme
point of the following LP:
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min 6y1 + 2y2 (10a)
subject to

2y1 − 2y2 ≥ −2

3
, (10b)

y1 + y2 ≥ 1

3
, (10c)

y1, y2 ≥ 0. (10d)

Figure 3: Representing Y∗ as the unique optimal solution of program (10)

Table 2 geometrically investigates the proposed condition of dual opti-
mality in Corollary 2 at the two extreme points M and N of the feasible
region of program (9). While the condition is met by the optimal point N ,
it is not true at the nonoptimal point M . This verifies that the projection of
the optimal point N onto the space of y-variables is in Y∗.

Remark 1. Corollary 1 suggests a geometrical approach for finding optimal
solution(s) of program (1). It states that the optimality of any feasible point
in S is equivalent to satisfying the condition given in Corollary 1. Therefore,
taking into account the fact that the finite optimum must occur at some
extreme points of S, optimal solution(s) of program (1) can be found by
examining the proposed condition only at extreme points of S. (A similar
approach for finding optimal solution(s) of program (4) can be devised based
on Corollary 2.) It is important to note that this graphical approach does
not require the enumeration of all extreme points of the feasible region.
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Table 2: The proposed criterion of primal optimality for program (8)
y z G∗

D Belongingness of b to B∗
D

M

(
3
17
0

)
24
17

(
1
1

)
,

(
0
1

)
,

(
−6
−2

)
−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−2

−1

1

2

B∗
D

b

N

(
0
1
3

)
4
3

(
1
1

)
,

(
0
1

)
,

(
−6
−2

)
,

(
2
−2

)
−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−2

−1

1

2

B∗
D

b

4 Strict complementarity

4.1 Strict complementary solution

By Theorem 4, the CSC requires only that the product of each pair of com-
plementary variables is zero at optimality. Therefore, not only one of the
complementary variables must be zero at optimality, but also both are al-
lowed to take simultaneously zero optimal values. It means that the CSC
does not imply the positivity of pairwise sum of the complementary vari-
ables. If such positivity holds for a pair of optimal solutions for the primal
LFP and its dual, then in every pair of complementary variables, exactly
one variable is positive and the other is zero. Calling this property as strict
complementarity, we present the following definition.

Definition 1. Feasible solutions x∗s ∈ S and (y∗s; z∗s) ∈ D satisfy the strict
complementary slackness condition (SCSC), if they fulfill the following con-
ditions in addition to the conditions given in (5):

x∗s + v∗s > 0, u∗s + y∗s > 0. (11)

It is clear that feasible solutions to programs (1) and (4) that satisfy the
SCSC are optimal. We refer to such a pair of solutions as a strict comple-
mentary solution and denote it by (x∗s,y∗s). By the next result, we prove
the existence of such a strict complementary solution.

Theorem 6. The following statements are true:
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(i) Any strict complementary solution to LPs (6) and (7) is a strict com-
plementary solution to programs (1) and (4).

(ii) There exists at least one strict complementary solution to LFP (1) and
its dual (4).

Proof. Part (i) Let (x∗s,y∗s) be a strict complementary solution to LPs (6)
and (7). Then, by the definition of strict complementary in linear optimiza-
tion, x∗s and y∗s are, respectively, optimal solutions to these LPs, such that

v∗s⊤x∗s = u∗s⊤y∗s = 0, x∗s + v∗s > 0, u∗s + y∗s > 0, (12)

where u∗s and v∗s are, respectively, the slack vectors added to the inequality
constraints in X ∗ and Y∗.

By Theorem 5, x∗s and (y∗s; z∗s) are optimal solutions to programs (1)
and (4), respectively. Furthermore, it follows from (12) that these solutions
meet the SCSC in the sense of Definition 1. Therefore, (x∗s,y∗s) is a strict
complementary solution to programs (1) and (4).

Part (ii) Because a finite optimum occurs for LPs (6) and (7), the Goldman–
Tucker theorem implies the existence of a strict complementary solution to
these LPs, which is a strict complementary solution to programs (1) and (4)
by part (i) of the theorem.

4.2 Optimal partitions

Let (x∗s,y∗s) be a strict complementary solution to programs (1) and (4).
Then, the supports of vectors x∗s and v∗s are disjoint and their union is
equal to the index set {1, . . . , n}. Similarly, the supports of vectors y∗s and
u∗s form a partition for the index set {1, . . . ,m}. Formally, we can write

supp (x∗s) ∩ supp (v∗s) = ∅, supp (x∗s) ∪ supp (v∗s) = {1, . . . , n} ;
supp (u∗s) ∩ supp (y∗s) = ∅, supp (u∗s) ∪ supp (y∗s) = {1, . . . ,m} .

(13)

We call the above partitions as the optimal partitions induced for pro-
grams (1) and (4). By the next result, we show that these partitions, being
independent from the given strict complementary solution, are unique.

Theorem 7. The optimal partitions induced for programs (1) and (4) as in
(13) are the same across all strict complementary solutions and are, therefore,
unique.

Proof. By contradiction, let
(
x1,y1

)
and

(
x2,y2

)
be two distinct strict com-

plementary solutions such that x1
ĵ
> 0 and x2

ĵ
= 0 for some ĵ ∈ {1, . . . , n}.

Then, v1
ĵ
= 0 and v2

ĵ
> 0. Because both optimal sets of programs (1) and (4)



The strict complementarity in linear fractional optimization 319

are convex, 1
2

(
x1,y1

)
+ 1

2

(
x2,y2

)
must be an optimal solution such that

1
2

(
u1 + u2

)
and 1

2

(
v1 + v2

)
are, respectively, its primal and dual slack

vectors. For this solution, we have the contradiction (with the CSC) that
1
2

(
x1
ĵ
+ x2

ĵ

)
> 0 and 1

2

(
v1
ĵ
+ v2

ĵ

)
> 0. Therefore, the optimal partition of

{1, . . . , n} is unique. The uniqueness of the optimal partition of {1, . . . ,m}
follows from a similar argument.

It is worth noting that the optimal partitions can be useful in situations,
where knowing the positivity of a variable in some optimal solution of an LFP
is concerned with. For example, while the slack-based measure (SBM) model
of Tone [26] is used for the measurement of efficiency in the field of data
envelopment analysis, the global reference set (peer group) of an inefficient
decision making unit can be identified by the optimal partition of the index
set of intensity vector.7

4.3 Geometrical interpretation

We begin this section by recalling the following definition from [4].

Definition 2. Let S ⊂ Rd. A subset S+ of Rd+d′ is a representing set for
S, if its projection onto the space of x-variables is exactly S, that is, x ∈ S
if and only if there exists some s ∈ Rd′ such that (x; s) ∈ S+:

S =
{
x ∈ Rd : (x; s) ∈ S+ for some s ∈ Rd′

}
.

By adding slack vectors to the inequality constraints of X ∗ and Y∗, we
define the following nonnegative polyhedral sets:

X ∗+ =
{
(x;u) ∈ Rn+m : (c− d∗)⊤x = −α+ β∗, Ax+ u = b, x ≥ 0, u ≥ 0

}
,

Y∗+ =
{
(y;v) ∈ Rm+n : b⊤y = −α+ β∗, A⊤y − v = c− d∗, y ≥ 0, v ≥ 0

}
.

By Definition 2, X ∗+ and Y∗+ are polyhedral representing sets for X ∗

and Y∗, respectively. The next result shows that projecting the relative
interiors of these representing sets gives the strict complementary solutions
of programs (1) and (4).

Theorem 8. It follows that (x∗s,y∗s) is a strict complementary solution to
LFP (1) and its dual (4) if and only if (x∗s;u∗s) ∈ ri (X ∗+) and

(
y∗s;v∗s) ∈

ri (Y∗+).

7 For more details on the concept of global reference set and its identification, the reader
may refer to [17, 18, 19].
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Proof. Let (x∗s;u∗s) ∈ ri (X ∗+) and let
(
y∗s;v∗s) ∈ ri (Y∗+). By [20, The-

orem 4.1 ], the relative interior of a nonnegative polyhedral set with equal-
ity defining constraints consists of its maximal elements. It follows that
(x∗s;u∗s) ∈ me (X ∗+) and

(
y∗s;v∗s) ∈ me (Y∗+). By the Goldman–Tucker

theorem, (x∗s,y∗s) is thus a strict complementary solution to LPs (6) and (7).
By part (i) of Theorem 6, it follows that (x∗s,y∗s) is a strict complementary
solution to programs (1) and (4).

Conversely, let (x∗s,y∗s) be a strict complementary solution to pro-
grams (1) and (4). Then, similar to the proof of Theorem 6, it can be proved
that (x∗s,y∗s) is a strict complementary solution to LPs (2) and (4).

To illustrate the concept of strict complementarity, we return back to
Example 1. Adding the nonnegative slack variables u1 and u2 to (8b) and
(8c) obtains the following representing set for X ∗:

X ∗+ =
{(

xλ;uλ
)
∈ R4

+ :
(
xλ
1 , x

λ
2 , u

λ
1 , u

λ
2

)
= (1− λ, 4− 2λ, 4λ, 0) , λ ∈ [0, 1]

}
.

Similarly, adding the nonnegative slack variables v1 and v2 to (10b) and
(10c) results the following representing set for Y∗:

Y∗+ =
{
(y;v) ∈ R4

+ :
(
y1, y2, v1, v2

)
=

(
0,

1

3
, 0, 0

)}
.

Consider the midpoint P =
(
1
2 , 3

)
of the line segment AB in Figure 1.

This point is associated with the vector
(
x

1
2 ;u

1
2

)
=

((
1
2 , 3

)⊤
; (2, 0)

⊤
)

, which
is a maximal element and, therefore, a relative interior point of the set X ∗+.
Furthermore, consider the point

(
0, 1

3

)
in Figure 3 that is associated with the

single element (y;v) =
((

0, 1
3

)⊤
;0

)
of the set Y∗+. Clearly,

(
x

1
2 ,y

)
is a

strict complementary solution to programs (8) and (9).
Note that

(
xλ,y

)
is a strict complementary solution for all λ ∈ (0, 1).

However, this is not true for λ = 0, 1. This is because in either of these two
cases, pairwise sum of the complementary variables is not positive.

5 Finding a strict complementary solution

5.1 Finding a maximal element of a nonnegative
polyhedral set

Consider the following nonempty polyhedral set in Rd:

P =
{
x ∈ Rd : Px+Qy +Rz = t, x,y ≥ 0, z sign free

}
,
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where x ∈ Rd, y ∈ Re, and z ∈ Rf are the vectors of variables, P, Q, and R
are, respectively, matrices of coefficients of orders c× d, c× e, and c× f , and
t ∈ Rc is a constant vector.

Mehdiloozad et al. [20] developed a general convex optimization program
for finding a maximal element of a nonnegative convex set. As a consequence
of their Theorem 3.2, the following result develops an LP for finding a max-
imal element of P.

Theorem 9. Let
(
x1∗,x2∗,y∗, z∗, w∗) be an optimal solution to the following

LP:

max 1⊤x1

subject to

P
(
x1 + x2

)
+Qy +Rz = tw,

1 ≥ x1 ≥ 0, x2,y ≥ 0, z sign free, w ≥ 1.

(15)

Then 1
w∗

(
x1∗ + x2∗) ∈ me (P).

Proof. By [20, Definition 2.5], the characteristic cone of the nonnegative poly-

hedral set P is CP =
{
xd+1

(
x
1

)
: x ∈ P, xd+1 > 0

}
. To find a maximal

element of P, this cone is incorporated into the convex program proposed in
[20, Theorem 3.2]. This leads to the following LP:

max 1⊤x1 + w1

subject to

P
(
x1 + x2

)
+Qy +Rz = t

(
w1 + w2

)
,

1 ≥ x1 ≥ 0, x2,y ≥ 0, z sign free, 1 ≥ w1 ≥ 0, w2 ≥ 0.

(16)

Because the maximization linear program (16) is feasible and its objective
function is upper bounded by d+ 1, it has a finite optimal solution, namely,(
x1∗,x2∗,y∗, z∗, w1∗, w2∗).

By the assumption, we have P ̸= ∅. Hence, it follows from [20, Theo-
rem 3.2] that w1∗ = 1. It is clear that program (15) is derived from pro-
gram (16) by replacing w1 with its optimal value and using the variable
substitution w = w1 + 1. This implies that any optimal solution of pro-
gram (15) gives an optimal solution to program (16). Namely, if we define
x1′ = x1∗, x2′ = x2∗, y′ = y, z′ = z, w1′ = 1, and w2′ = w∗ − 1, then(
x1′,x2′,y′, z′, w1′, w2′) is an optimal solution to program (16). Therefore,

the statement of the theorem follows from [20, Theorem 3.2 ].
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5.2 Our proposed approaches

Though Theorem 6 demonstrates the existence of a strict complementary
solution for programs (1) and (4), it does not specify how to identify such a
solution. To deal with this issue, we develop two approaches in this section
by applying Theorem 9. The GAMS code of these approaches is provided in
Appendix A.

5.2.1 First approach

From Theorem 8, any pair of relative interior points of X ∗+ and Y∗+ deter-
mines a strict complementary solution to programs (1) and (4). By Theo-
rem 9, we develop the following two LPs to find such relative interior points:

max 1⊤x1 + 1⊤u1

subject to[
(c− d∗)

⊤
0⊤

A I

](
x1 + x2

u1 + u2

)
=

(
−α+ β∗

b

)
wP ,

1 ≥
(
x1

u1

)
≥ 0,

(
x2

u2

)
≥ 0, wP ≥ 1.

(17)

max 1⊤y1 + 1⊤v1

subject to[
b⊤ 0⊤

A⊤ −I

](
y1 + y2

v1 + v2

)
=

(
−α+ β∗

c− d∗

)
wD,

1 ≥
(
y1

v1

)
≥ 0,

(
y2

v2

)
≥ 0, wD ≥ 1.

(18)

Let
(
x1∗,x2∗,u1∗,u2∗, w∗

P

)
and

(
y1∗,y2∗,y1∗,y2∗, w∗

D

)
be optimal solu-

tions to programs (17) and (18), respectively. Then, it follows from Theo-
rem 9 that (

xri;uri
)
=

1

w∗
P

(
x1∗ + x2∗;u1∗ + u2∗) ∈ me

(
X ∗+) , (19a)

(
yri;vri

)
=

1

w∗
D

(
y1∗ + y2∗;v1∗ + v2∗) ∈ me

(
Y∗+) . (19b)

Therefore, taking into account [20, Theorem 4.1] and Theorem 8, it follows
from (19) that

(
xri,yri

)
is a strict complementary solution to programs (1)

and (4).
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5.2.2 Second approach

Our first approach of identifying a strict complementary solution requires the
knowledge of the optimal objective value of program (1). In this section, we
propose an alternative approach that is exempt from this requirement. We
exploit the fact that the optimality of feasible solutions to a pair of primal and
dual LPs follows from the equality of their corresponding objective function
values. Specifically, we consider the following set:

W∗ =
{
(x̄;y) ∈ Rn+m : c⊤x̄+ αt = z,

Ax̄ ≤ bt, d⊤x̄+ βt = 1,

−b⊤y + βz = α, A⊤y + dz ≥ c,

x̄ ≥ 0, t ≥ 0, y ≥ 0, z sign free
}
.

(20)

By the projection lemma,8 it follows that W∗ is a nonnegative polyhedral
set in Rn+m

+ . By adding slack vectors ū and v to the inequality constraints
of this set, we obtain the following set:

W∗+ =
{
(x̄;y; ū;v) ∈ R2(n+m) : c⊤x+ αt− z = 0,

Ax̄+ ū− bt = 0, d⊤x+ βt = 1,

−b⊤y + βz = α, A⊤y + dz − v = c,

x,v ≥ 0, y, ū ≥ 0, t ≥ 0, z sign free
}
.

(21)

By Definition 2, W∗+ is a polyhedral representing set for W∗. Let
(x̄;y; ū;v) ∈ W∗+. Then (x̄;y; ū;v) satisfies (21) with some scalars t and z.
The set W∗ is defined by conditions (2b)–(2d) and (4b)–(4d) and the addi-
tional equality requiring that the objective function of LP (2) to be equal to
the objective function of its dual (4). By the optimality criterion theorem of
linear optimization, it follows that (x̄, t) and (y, z) are optimal solutions to
LPs (2) and (4), respectively. Additionally, ū and v are their corresponding
slack vectors added to inequalities (2b) and (4b), respectively. Consequently,
we have 1

t (x̄; ū) ∈ X ∗+ and (y;v) ∈ Y∗+. Based on this, the next result
shows that any maximal element of W∗+ determines two relative interior
points of X ∗+ and Y∗+, and therefore a strict complementary solution to
programs (1) and (4).

Theorem 10. Let (x̄me;yme; ūme;vme) ∈ me (W∗+) satisfy (21) with some
scalars tme and zme. Then

(
1

tme x̄
me,yme

)
is a strict complementary solution

to programs (1) and (4).

8 The projection lemma states that the projection of a polyhedral set onto the space
of any subset of its characterizing variables is a polyhedral set; see, for example, [6,
Corollary 2.4].
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Proof. Let (x̄me;yme; ūme;vme) be a maximal element of W∗+ that satis-
fies (21) with some scalars tme and zme. Then 1

tme (x̄
me; ūme) ∈ me (X ∗+)

and (yme;vme) ∈ me (Y∗+). Therefore, by [20, Theorem 4.1], the statement
follows from Theorem 8.

Based on Theorem 9, we develop the following LP to find a maximal
element of W∗+:

max 1⊤x̄1 + 1⊤ū1 + 1⊤y1 + 1⊤v1

subject to
c⊤ 0 0 0
A I 0 0
d⊤ 0 0 0
0 0 −b⊤ 0
A⊤ 0 0 −I



x̄1 + x̄2

ū1 + ū2

y1 + y2

v1 + v2

+


α
−b
β
0
0

 t+


−1
0
0
β
d

 z =


0
0
1
α
c

w,

1 ≥


x̄1

ū1

y1

v1

 ≥ 0,


x̄2

ū2

y2

v2

 ≥ 0, t ≥ 0, z sign free, w ≥ 1.

(22)

Let
(
x̄1∗, x̄2∗, ū1∗, ū2∗,y1∗,y2∗,v1∗,v2∗, t∗, z∗, w∗) be an optimal solution

to program (22), and define

(x̄me;yme; ūme;vme) =
1

w∗

(
x̄1∗ + x̄2∗;y1∗ + y2∗; ū1∗ + ū2∗;v1∗ + v2∗) .

By Theorem 9, we have (x̄me;yme; ūme;vme) ∈ me (W∗+). If
tme = t∗

w∗ , then it follows by Theorem 10 that
(

1
tme x̄

me,yme
)

=(
1
t∗

(
x̄1∗ + x̄2∗) , 1

w∗

(
y1∗ + y2∗)) is a strict complementary solution to pro-

grams (1) and (4).

6 Numerical example

In this section, we illustrate our proposed approaches of finding strict com-
plementary solutions with a numerical example, taken from [1, 14].

Example 2. Consider the following LFP:
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max
x1 + 2x2 + 3.5x3 + x4 + 1

2x1 + 2x2 + 3.5x3 + 3x4 + 4

subject to

2x1 + x2 + 3x3 + 3x4 ≤ 10,

x1 + 2x2 + x3 + x4 ≤ 14,

x1, x2, x3, x4 ≥ 0.

(23)

The dual of program (23) is the following LP:

min z

subject to

2y1 + y2 + 2z ≥ 1,

y1 + 2y2 + 2z ≥ 2,

3y1 + y2 + 3.5z ≥ 3.5,

3y1 + y2 + 3z ≥ 1,

−10y1 − 14y2 + 4z = 1,

y1, y2 ≥ 0, z sign free.

(24)

Let us add primal slack variables u1 and u2 to program (23), and dual
slack variables v1, v2, v3, and v4 to the inequality constraints of program (24),
to turn their inequality constraints to equalities. We use our proposed ap-
proaches to find a strict complementary solution to the above pair of pro-
grams. Running the modified version of the GAMS code provided in Ap-
pendix A results that the joint optimal objective value of programs (23) and
(24) is equal to 0.857. Furthermore, the strict complementary solution ob-
tained from both of our proposed approaches is

x∗
1 = 0, x∗

2 = 1.071, x∗
3 = 1.2, x∗

4 = 0, u∗
1 = 0, u∗

2 = 0;

v∗1 = 1.071 v∗2 = 0 v∗3 = 0, v∗4 = 2.071, y∗1 = 0.143 y∗2 = 0.071.

7 Concluding remarks

An indirect approach for establishing duality results in linear fractional op-
timization is based on applying the well-known transformation of Charnes
and Cooper [9]. This approach converts a primal LFP into an equivalent
LP and then defines the dual of the obtained LP as the dual of the primal
LFP. An advantage of using this approach is that it allows exploiting the
duality results of linear optimization for establishing duality statements in
linear fractional optimization.

In this paper, we show that the dual program derived from the above
approach is the same dual program suggested in [8]. Based on this version of
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duality, we provide new criteria for primal and dual optimality as our first
contribution. We equivalently represent the primal and dual optimal sets
as the optimal sets of a pair of primal and dual LPs. By this representa-
tion, it follows that a primal (resp., dual) feasible solution is optimal if and
only if its binding polyhedral cone contains the objective vector of the corre-
sponding primal (resp., dual) LP. This condition not only is (theoretically)
necessary and sufficient for the optimality of any general LFP, but also is a
new geometrical tool for solving two- and three-dimensional LFPs.

As our second contribution, we introduce the concept of strict comple-
mentarity into the framework of linear fractional optimization. We prove the
existence of a strict complementary solution and show that all such solutions
induce unique optimal partitions for the sets of indices of nonnegative vari-
ables. To geometrically interpret the strict complementarity, we equivalently
represent primal and dual optimal sets by two nonnegative polyhedral sets
that are described only by equality constraints. Then we prove that each pair
of relative interior points of these representing sets is a strict complementary
solution, and vice versa. By this result, we deal with the problem of identify-
ing a strict complementary solution. Specifically, we turn this problem to the
equivalent problem of identifying a maximal element of a nonnegative poly-
hedral set. Then, by applying the technique of finding a maximal element of
a nonnegative polyhedral set, we develop two linear optimization approaches
with different strategies for finding a strict complementary solution in linear
fractional optimization.

Our first approach identifies a strict complementary solution by solving
two LPs and requires knowing the optimal objective value of the given LFP.
In contrast, our second approach involves solving a single (but larger) LP
and does not need the per-knowledge of the optimal objective value. As our
proposed approaches are linear optimization based, they allow for applying
the ordinary simplex algorithm of linear optimization to identify a strict com-
plementary solution in linear fractional optimization. Nonetheless, regarding
the preference on using the proposed approaches, note that each of the LPs
developed in our first approach has less number of constraints than the LP
of our second approach. Therefore, the use of our first approach is particu-
larly recommended in situations, where only primal or dual part of a strict
complementary solution needs to be found. For example, while the SBM
model of Tone [26] is used for the measurement of efficiency in the field of
data envelopment analysis, the global reference set of an inefficient decision
making unit can be identified by either the primal or dual part of a strict
complementary solution. However, solving the primal SBM model is recom-
mended because the number of its constraints are mostly less than that of
its dual.

The approaches developed in our paper open up a number of further
research avenues. First, it should be interesting to extend the results pro-
posed in linear optimization literature on the use of strict complementarity
for post-optimality analysis [5, 13] to linear fractional optimization. Second,
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an interesting method for finding a strict complementary solution in linear
optimization is to apply the so-called Balinski–Tucker tableau [2]. From our
contribution, it is found that this method can be used to generate (indirectly)
a strict complementary solution in linear fractional optimization. Therefore,
it is worth exploring modification of the Balinski–Tucker method so that a
strict complementary solution is directly obtained.

Appendix A

The following computer program written in GAMS identifies a strict com-
plementary solution for the primal LFP (8) and its dual (9). Making this
program applicable for any LFP in the general form of (1) just requires
modifying “Sets”, “Table A(i, j)”, “Parameters”, “Alpha,” and “Beta” in
Lines 1–23.

1 Sets
2 i row number of matrix A /i1*i2/
3 j column number of matrix A /j1*j2/;
4
5 Table A(i,j)
6 j1 j2
7 i1 2 1
8 i2 -2 1;
9
10 Parameters
11 b/i1 6
12 i2 2/
13 c/j1 6
14 j2 3/
15 d/j1 5
16 j2 2/;
17
18 Scalars
19 Alpha
20 Beta;
21
22 Alpha=6;
23 Beta =5;
24
25 File ProgSC / Results.txt /;
26 Put ProgSC;
27
28 ************************************************************
29 *Stage 1: Solving program (3)
30
31 Free Variables
32 Theta;
33
34 Positive Variables
35 xbar(j)
36 t ;
37
38 Scalar
39 ThetaStar;
40
41 Equations
42 Obj
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43 Con1
44 Con2;
45
46 Obj.. Theta =E= Sum(j, c(j)*xbar(j)) + Alpha*t;
47 Con1(i).. Sum(j, a(i,j)*xbar(j)) =L= b(i)*t;
48 Con2.. Sum(j, d(j)*xbar(j)) + Beta*t =E= 1;
49
50 Model MainLFP / Obj, Con1, Con2 /;
51
52 Put /'Finding the Optimal Obj. Value (ThetaStar)';
53 Put /'------------------------------------------'/;
54 Option LP=CONOPT;
55 Solve MainLFP using LP Maximizing Theta;
56 Put 'Obj = ':>6; Put Theta.L:<10:3;
57 ThetaStar=Theta.L;
58 Put /'------------------------------------------'/;
59
60 *End of Stage 1
61 ************************************************************
62
63 ************************************************************
64 *First approach: Solving program (18)
65
66 Positive Variables
67 xbar1(j)
68 xbar2(j)
69 ubar1(i)
70 ubar2(i)
71 y1(i)
72 y2(i)
73 v1(j)
74 v2(j)
75 w1
76 w2
77 p;
78
79 Free variable
80 q;
81
82 xbar2.up(j) = 1;
83 ubar2.up(i) = 1;
84 y2.up(i) = 1;
85 v2.up(j) = 1;
86 w2.up = 1;
87
88 Parameters
89 XbarStar
90 tStar
91 UbarStar
92 YStar(i)
93 zStar
94 VStar(j);
95
96 Equations
97 ObjP
98 ConP1
99 ConP2
100 ConP3
101 ObjD
102 ConD1
103 ConD2
104 ConD3;
105
106 ObjP.. Theta =E= Sum(j, xbar2(j)) + Sum(i, ubar2(i)) + w2;
107 ConP1(i).. Sum(j, a(i,j)*(xbar1(j)+xbar2(j))) - b(i)*p

+ ubar1(i)+ubar2(i) =E= 0;
108 ConP2.. Sum(j, d(j) *(xbar1(j)+xbar2(j))) + Beta*p
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- w1+w2 =E= 0;
109 ConP3.. Sum(j, c(j) *(xbar1(j)+xbar2(j))) + Alpha*p

- (w1+w2)*ThetaStar =E= 0;
110
111 ObjD.. Theta =E= Sum(i, y2(i)) + Sum(j, v2(j)) + w2;
112 ConD1(j).. Sum(i, a(i,j)*(y1(i)+y2(i))) + d(j)*q - v1(j)

- v2(j) - c(j)*(w1+w2) =E= 0;
113 ConD2.. -Sum(i, b(i) *(y1(i)+y2(i))) + Beta*q

- Alpha*(w1+w2) =E= 0;
114 ConD3.. q - ThetaStar*(w1+w2) =E= 0;
115
116 Models Primal_SCSC / ObjP , ConP1, ConP2, ConP3 /
117 Dual_SCSC / ObjD , ConD1, ConD2, ConD3 / ;
118
119 Solve Primal_SCSC using LP Maximizing Theta;
120 XbarStar(j) = (xbar1.L(j)+xbar2.L(j))/(w1.L+w2.L);
121 tStar = p.L/(w1.L+w2.L);
122 UbarStar(i) = (ubar1.L(i)+ubar2.L(i))/(w1.L+w2.L);
123
124 Solve Dual_SCSC using LP Maximizing Theta;
125 YStar(i) = (y1.L(i)+y2.L(i))/(w1.L+w2.L);
126 zStar = q.L/(w1.L+w2.L);
127 VStar(j) = (v1.L(j)+v2.L(j))/(w1.L+w2.L);
128
129 Put / /'Finding a SC Solution via Approach I';
130 Put /'-----------------------------------------------'/;
131 Put ' Primal Dual '/;
132 Put '-----------------------------------------------'/;
133 Loop(j,
134 Put 'x(':>5; Put ord(j):<>3:0; Put ')= ':3; Put (XbarStar(j)/tStar):<10:3;
135 Put 'v(':>5; Put ord(j):<>3:0; Put ')= ':3; Put Vstar(j):<10:3;
136 Put /;
137 );
138 Put /;
139 Loop(i,
140 Put 'u(':>5; Put ord(i):<>3:0; Put ')= ':3; Put (UbarStar(i)/tStar):<10:3;
141 Put 'y(':>5; Put ord(i):<>3:0; Put ')= ':3; Put Ystar(i):<10:3;
142 Put /;
143 );
144 Put '-----------------------------------------------'/ / /;
145
146 *End of First approach
147 ************************************************************
148
149 ************************************************************
150 *Second approach: Solving program (22)
151
152 Equations
153 ObjPD
154 ConPD ;
155
156 ObjPD.. Theta =E= Sum(j, xbar2(j)) + Sum(i, ubar2(i)) + Sum(i, y2(i))

+ Sum(j, v2(j)) + w2;
157 ConPD.. Sum(j, c(j)*(xbar1(j)+xbar2(j))) + Alpha*p - q =E= 0;
158
159 Model PD_SCSC / ObjPD, ConP1, ConP2, ConD1, ConD2, ConPD/ ;
160
161 Solve PD_SCSC using LP Maximizing Theta;
162 XbarStar(j) = (xbar1.L(j)+xbar2.L(j))/(w1.L+w2.L);
163 UbarStar(i) = (ubar1.L(i)+ubar2.L(i))/(w1.L+w2.L);
164 Ystar(i) = (y1.L(i)+y2.L(i))/(w1.L+w2.L);
165 Vstar(j) = (v1.L(j)+v2.L(j))/(w1.L+w2.L);
166
167 Put / /'Finding a SC Solution via Approach II';
168 Put /'-----------------------------------------------'/;
169 Put ' Primal Dual '/;
170 Put '-----------------------------------------------'/;
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171 Loop(j,
172 Put 'x(':>5; Put ord(j):<>3:0; Put ')= ':3; Put (XbarStar(j)/tStar):<10:3;
173 Put 'v(':>5; Put ord(j):<>3:0; Put ')= ':3; Put Vstar(j):<10:3;
174 Put /;
175 );
176 Put /;
177 Loop(i,
178 Put 'u(':>5; Put ord(i):<>3:0; Put ')= ':3; Put (UbarStar(i)/tStar):<10:3;
179 Put 'y(':>5; Put ord(i):<>3:0; Put ')= ':3; Put Ystar(i):<10:3;
180 Put /;
181 );
182 Put '-----------------------------------------------'/ / /;
183
184 *End of Second approach
185 ************************************************************
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