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Solving quantum optimal control
problems by wavelets method

M. Rahimi, S.M. Karbassi∗ and M.R. Hooshmandasl

Abstract

We present the quantum equation and synthesize an optimal control proce-
dure for this equation. We develop a theoretical method for the analysis of
quantum optimal control system given by the time depending Schrödinger
equation. The Legendre wavelet method is proposed for solving this prob-
lem. This can be used as an efficient and accurate computational method
for obtaining numerical solutions of different quantum optimal control
problems. The distinguishing feature of this paper is that it makes the
method, previously used to solve non-quantum control equations based
on Legendre wavelets, usable by using a change of variables for quantum
control equations.
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1 Introduction

With the advent of the twentieth century, the inability of classical physics in
the fields of relativity and microscopy led to the outburst of quantum physics.
After the development of quantum physics, the issue of quantum control
was inspired by experimental advances and issues raised in sciences such as
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quantum chemistry, quantum optics, quantum information, and atomic and
molecular physics [7, 10, 24, 27, 34]. Recently, classical control methods such
as optimal control, robust control, Lyapunov control, and feedback control
for quantum systems have been studied and expanded [5, 16, 19, 20, 22, 25].
In quantum control, the main goal is to effectively control the system from
an initial state to a desired final state using external control fields. However,
control in quantum systems is at the beginning of the road, and further
research is needed. In particular, optimal control in quantum systems is of
particular importance as one of the most widely used issues [3, 9, 12, 15, 17,
23, 26, 31].

Along with the development of analytical control methods in quantum
systems, numerical methods have also been developed. Numerical methods
that have been considered in solving classical equations and problems are also
studied [3, 11, 18, 28]. One of the most useful numerical methods for solving
differential problems is wavelets-based numerical method [2, 14, 21, 29, 33].
This article tries to provide a useful way to solve optimal quantum control
based on wavelets method.
Let H be a finite- or infinite-dimensional Hilbert space of a quantum system
and let Ψ denote the state of this system. Then the Schrödinger equation
can be found as follows [13, 32]:

ih
∂Ψ

∂t
= HΨ, (1)

where Ψ ∈ H is the state variable, h is the Planck constant, and H is a
self-adjoint Hamiltonian operator in H.

In every physical system, energy is an important quantity. In quan-
tum systems, Hamiltonian H is corresponding to energy, then we can write
Hei = Eiei, i = 1, . . . , N , where Ei are eigenvalues, ei are eigenvectors of
the physical system concerned, and N is the dimension of H. In this paper,
we suppose that ei is an orthogonal basis; then we expand a state vector Ψ
as follows:

Ψ =

N∑
i=1

ψiei.

The population of energy states of level i are the quantities |ψi|2.
When a quantum system is operated by an external field, the Schrödinger
equation in (1) is modified as

ih
∂Ψ

∂t
= (H0 +

∑
k

Hkuk(t))Ψ,

where H0 : H 7→ H, which is the internal Hamiltonian, and the Hamiltonian
linear operator Hk : H 7→ H describes the coupling of the system to external
fields uk(t). In this paper, for simplicity, we consider a quantum system with
one control, and set k = 1. Then we can write
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ih
∂Ψ

∂t
= (H0 +H1u(t))Ψ.

The design of controls in quantum systems is considered for energy-
efficient population transfer. These controls perform the desired transmission
and in addition optimize a specific performance index. The specific energy
performance index considered in this section is shown below:

min J [u] =

∫ T

0

u2(t)dt.

This cost function for control has been widely used in the literature on optimal
control of quantum systems as a part of various objective functions. It is a
measure of the energy expended to create a control field.

The main object of this paper is to present an efficient numerical algorithm
based on the Legendre wavelets methods to solve the following optimal control
problems of the form:

min J [u] =

∫ T

0

u2(t)dt,

subject to the dynamical quantum systems

iΨ̇ = (H0 + V u(t))Ψ.

The initial condition for the above equation is

Ψ(0) = ψ0

It is worthy to note that V = H1.

2 The hat function

In this section, we introduce a family of basic functions, namely, the hat
functions. An n-set of the hat functions is defined on the interval [0, T ] as
follows:

h0(t) =

{
k−t
k , 0 ≤ t ≤ k,

0, o.w.

hj(t) =


t−(j−1)k

k , (j − 1)k ≤ t ≤ jk,
(j+1)k−t

k , (jk) ≤ t ≤ (j + 1)k,

0, o.w.
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hn−1(t) =

{
t−(1−k)

k , T − k ≤ t ≤ T,

0, o.w.

where k = T
n−1 . For hat functions, we can write hi(jk) = δij , where δ is the

Kronecker delta. By the definition of the hat functions, we can expand any
function like g(t) ∈ L2[0, T ] as follows:

g(t) ≃
n−1∑
j=0

gjhj(t) = GTH(t) = HT (t)G, (2)

where
G ≜ [g0, g1, . . . , gn−1]

and
H(t) ≜ [h0(t), h1(t), . . . , hn−1(t)]

T .

When we use the hat functions for the g(t), it can be observed that

gj = g(jk), j = 0, 1, . . . , n− 1. (3)

Now, we introduce another family of basic functions, namely, Legendre
wavelet functions. The set of these functions is an orthogonal set on the
interval [0, 1] with the weight function w(t) = 1. If Pk(t) is the Legendre
polynomials of degree k that are orthogonal on the interval [−1, 1] with re-
spect to the weight function w(t) = 1, then we can write Legendre wavelets
as follows [2, 14]:

wlk(t) =

{√
2k + 12

n
2 Pk(2

n+1t− 2l + 1), t ∈ [ l−1
2n ,

l
2n ],

0, o.w.
(4)

In fact, wlk(t) = w(l, k, n, t), where l = 1, 2, . . . , 2n and n is an arbitrary
positive integer.
For any arbitrary function, like g(t) defined over [0, 1] and square-integrable
over [0, 1], we can expand g(t) by the Legendre wavelets as follows:

g(t) =

∞∑
l=1

∞∑
k=0

alkwlk(t).

By approximating the above infinite series, we can write

g(t) ≃
2n∑
l=1

K−1∑
k=0

alkwlk(t) = ATW (t), (5)

where A and W (t) are k̂ = 2nK column vectors.
For the index lk, we can write j = k(l − 1) + k + 1. Then alk = aj and
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wlk = wj . Thus (5) can be written as

g(t) ≃
k̂∑

l=1

ajwj(t) = ATW (t),

where
A ≜ [a1, a2, . . . , ak̂]

T

and
W (t) ≜ [w1(t), w2(t), . . . , wk̂(t)]. (6)

Now by taking tj = j

k̂−1
as the collocation points into (6), we can write

Pk̂×k̂ ≜ [W (0),W (
1

k̂ − 1
), . . . ,W (1)].

It can be simplify verified that the Legendre wavelets can be expanded in k̂
in terms of the hat function by using (2) and (3) as follows:

W (t) ≃ Pk̂×k̂H(t). (7)

Theorem 1. Suppose that f(t) ≃ FTH(t) and that g(t) ≃ GTH(t). Then

f(t)g(t) ≃ STH(t), (8)

where Sij = (F.G)ij = FijGij denotes pointwise product of F and G.

Proof. By applying (2) and (3) for f(t) and g(t), we can write

g(t) ≃ GTH(t) =

n−1∑
j=0

gjhj(t) =

k̂−1∑
j=0

g(jk)hj(t),

f(t) ≃ FTH(t) =

n−1∑
j=0

fjhj(t) =

k̂−1∑
j=0

f(jk)hj(t).

Then by using the point wise product, we have

f(t)g(t) ≃
k̂−1∑
j=0

f(jk)g(jk)hj(t) = DTH(t),

which completes the proof.

Corollary 1. Suppose that g(t) ≃ GTH(t) by hat functions. Then, for any
integer number n ≥ 2, we have

(g(t))n ≃ [gn0 , g
n
1 , . . . , g

n
k̂−1

]H(t). (9)
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Proof. For n = 2 by Theorem 1, we have

(g(t))2 ≃ [g20 , g
2
1 , . . . , g

2
k̂−1

]H(t);

then by induction for n > 2, we have

(g(t))n ≃ [gn0 , g
n
1 , . . . , g

n
k̂−1

]H(t),

which completes the proof.

Theorem 2. Suppose that g(t) ≃ ATW (t) and f(t) ≃ BTW (t) by Legendre
wavelets. Then we can write

f(t)g(t) ≃ QTP−1

k̂×k̂
W (t), (10)

where AT
1 = ATPk̂×k̂, BT

1 = BTPk̂×k̂, and Q = A1.B1.

Proof. By Theorem 1 and equation (7), we have

g(t) ≃ ATW (t) ≃ ATPk̂×k̂H(t) = AT
1H(t),

f(t) ≃ BTW (t) ≃ BTPk̂×k̂H(t) = BT
1 H(t),

and then

f(t)g(t) ≃ (A1.B1)
TH(t) = QTH(t) ≃ QTP−1

k̂×k̂
W (t).

In Theorem 1, the multiplication of two functions is obtained according to
the hat functions, and in Theorem 2 by using Theorem 1, the multiplication
of two functions is obtained according to the Legendre wavelets. If g(t) ≃
ATW (t) by the Legendre wavelets, then by Theorem 2 and Corollary 1, we
can write

(g(t))n ≃ [ãn1 , ã
n
2 , . . . , ã

n
k̂
]P−1

k̂×k̂
W (t). (11)

3 Analysis of the proposed method

In previous works, using Legendre wavelet, numerical solutions for non-
quantum control equations have been obtained. In this section, we try to
implement one of these methods, which is based on the Legendre wavelet,
for quantum control equations. To overcome this problem, first change of
variables to make the equation usable is performed.

In this section, we consider the quantum control systems of the form
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min J [u] =

∫ T

0

u2(t)dt,

subject to the dynamical system

iΨ̇ = (H0 + V u(t))Ψ, (12)

with the initial condition Ψ(0) = Ψ0.
First, we introduce a change of variables that generalizes

Ψ = e−iH0tx,

such that for (12), we obtain

i(−iH0e
−iH0tx+ e−iH0tẋ) = (H0 + V u(t))e−iH0tx→ H0e

−iH0tx+ e−iH0tẋ

= H0e
−iH0tx+ V u(t)e−iH0tx.

Thus we can write
ẋ = eiH0tV u(t)e−iH0tx.

By considering E(t) = eiH0tV e−iH0t, equation (12) can be written as

ẋ = E(t)u(t)x(t), (13)

and the new initial condition is x(0) = Ψ0.
By the Legendre wavelets for the derivative of the state variable ẋ and the
control variable u(t), we can write

ẋ ≃ XTW (t) (14)

and
u(t) ≃ UTW (t), (15)

where
UT = [u1, u2, . . . , uk̂]

and
XT = [x1, x2, . . . , xk̂].

We can apply integration on both sides of (14) and considering the initial
condition

x(t) ≃ XTQW (t) + Ψ0.

Let η be the coefficients vector of the unit function. Then

x(t) ≃ (XTQ+Ψ0η
T )W (t). (16)

Now (16) can be written as
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x(t) ≃ ATW (t) = [a1, a2, . . . , ak̂]W (t). (17)

In this part, by applying (11) and (9) for the above approximation, we have

(x(t))n ≃ [ãn1 , ã
n
2 , . . . , ã

n
k̂
]P−1

k̂×k̂
W (t) ≃ [ãn1 , ã

n
2 , . . . , ã

n
k̂
]H(t),

and also for (15), we have

(u(t))n ≃ [ũn1 , ũ
n
2 , . . . , ũ

n
k̂
]P−1

k̂×k̂
W (t) ≃ [ũn1 , ũ

n
2 , . . . , ũ

n
k̂
]H(t). (18)

We can also approximate E(t) by Legendre wavelets as

E(t) ≃ ETW (t), (19)

where
ET = [e1, e2, . . . , ek̂].

In this part, by using (8) and (10) for E(t)u(t)x(t), we have

E(t)u(t)x(t) ≃ [ẽ1ũ1x̃1, ẽ2ũ2x̃2, . . . , ẽk̂ũk̂x̃k̂]P
−1

k̂×k̂
W (t)

≃ [ẽ1ũ1x̃1, ẽ2ũ2x̃2, . . . , ẽk̂ũk̂x̃k̂]H(t)

= ∆T
1H(t), (20)

also by using (18) for n = 2, we have

(u(t))2 ≃ [ũ21, ũ
2
2, . . . , ũ

2
k̂
]P−1

k̂×k̂
W (t) ≃ [ũ21, ũ

2
2, . . . , ũ

2
k̂
]H(t) = ∆T

2H(t). (21)

Now by using (21), the index J can be written as

J ≃ J [U ] = ∆T
2 Ω, (22)

where
Ω = [

∫ T

0

ho(t)dt,

∫ T

0

h1(t)dt, . . . ,

∫ T

0

hk̂−1(t)dt]. (23)

By applying (20) for (13) and (12 ), we can write

XT −∆1P
−1

k̂×k̂
≃ 0. (24)

In this part, by Lagrange multiplier method for minimization index J in (22)
subject to systems of algebraic equation (24), we can write

J̃ [X,U,L] = J [U ] +XT −∆1P
−1

k̂×k̂
L = ∆T

2 Ω+XT −∆1P
−1

k̂×k̂
L, (25)

where
L = [L1, L2, . . . , Lk̂]

T .
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Hence L is the vector of Lagrange multiplier.
For minimizing by the Lagrange method, the necessary conditions are

∂J̃

∂X
= 0,

∂J̃

∂U
= 0,

∂J̃

∂L
= 0.

(26)

By the Newton iteration method, we can solve equations of (26) for X, U ,
and L. Then the approximation of x(t) and u(t) can be determined by (17)
and (15).

4 Proposed algorithm

The object of this algorithm is designed to solve the Schrödinger equation:
Input: T (final time), N( dimension of H), H0, and H1 .
Step1: Make a change of variable Ψ = e−iH0tx in dynamical system (12) to
obtain (13).
Step2: Define x(t), u(t), and E(t) by (17),(15), and (19), respectively.
Step3: Write the index J as (22) and (23).
Step4: Compute dynamical system (13) by applying (20) to the form (24).
Step5: Compose new index J̃ [X,U,L] as (25) by (24) and (23).
Step6: Solve equation systems in (26) and obtain X and U .
Step7: Compute x(t) and u(t) by (17) and (15).
Step8: Compute Ψ = e−iH0tx.
Output: The approximate solution u(t) and Ψ.

5 Numerical experiments

Example 1. In this example, we consider the two-level system iΨ̇ = (H0 +
V u(t))Ψ, where Ψ ∈ C2 as follows:

H0 =

(
E1 0
0 E2

)
. V =

(
0 v12
v∗12 0

)
.

The concept of optimal control of two-level quantum systems was presented
in [1, 3, 4, 6, 8, 11, 13, 30]. In the most of these researches, optimal control
is constructed on the basis of geometric arguments. If we suppose E1 = 2,
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E2 = −2, and v12 = 2+3i, then we can obtain the numerical results as follows:

Table 1: Approximate and exact value of u(t) in Example 1 for different values of t.
t approximate of u(t) exact of u(t) error
1 -0.0359 -0.0459 0.0120
5 -0.0496 -0.0578 0.0102
10 0.1010 0.0999 0.0051
15 -0.0922 -0.0878 0.0016
20 0.0663 0.0594 0.0119
25 0.0286 0.0066 0.0220
30 -0.0630 -0.0635 0.0020

Table 2: Approximate and exact value of x(t) in Example 1 for different values of t.
t approximate of ψ1(t) exact of ψ1(t) approximate of ψ2(t) exact of ψ2(t) error of ψ1(t) error of ψ2(t)
1 1.0097 1.0078 0.0690 0.0590 0.0109 0.0190
5 0.9869 0.9769 0.2664 0.2564 0.0108 0.0190
10 0.8666 0.8766 0.4681 0.4764 0.0110 0.0113
15 0.7197 0.7297 0.6656 0.6756 0.0120 0.0160
20 0.5513 0.5413 0.8645 0.8445 0.0110 0.0230
25 0.3033 0.3133 0.9270 0.9470 0.0120 0.0220
30 0.0830 0.0737 1.0105 1.0005 0.0123 0.0130
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Figure 1: Plots of approximate and exact results of control variable for Example 1



Solving quantum optimal control problems by wavelets method 343

0 5 10 15 20 25 30 35

t

0

0.2

0.4

0.6

0.8

1

1.2

E
x
a
c
t 
a
n
d
 a

p
p
ro

x
im

a
te

 s
o
lu

ti
o
n
s
 f
o
r 

x
(t

)

Figure 2: Plots of the approximate and exact results of state variable for Example 1
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Figure 3: Plots of the approximate and exact results of population for Example 1

We solved the above problem by our proposed algorithm with n = 2 and
K = 10 or k̂ = 40. The stopping condition is |u∗(t) − u(t)| < 5 × 10−2,
where u∗(t) and u(t) are approximate and exact results of control variable,
respectively, and by the stopping condition, we have 73 iterations. The plots
of the approximate and exact values of u(t) is shown in Figure 1. The plots
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of the approximate and exact values of ψ1(t) and ψ2(t) are shown in Figure
2. The plots of the approximate and exact values of |ψ1(t)|2 and |ψ2(t)|2 are
shown in Figure 3.
Approximation and exact results of control variable u(t) and their absolute
errors for different t are presented in Table 1. In fact, because the index J(t)
in each step depends on the control variable, so by approximating the control
variable in each step, the index J(t) is also approximated. Approximation
and exact results of state variables ψ1(t) and ψ2(t) and their absolute errors
for different t are presented in Table 2. The above results show that using
the algorithm and method mentioned numerically is very useful and efficient.
The main advantage of this method is to provide a simple solution based on
classical numerical methods in the field of optimal quantum control. In [32],
an index similar to the index used in this article has been used and numerical
and graphical results have been obtained. Carefully in these results, it is
observed that the solutions obtained in this article have been obtained with
less repetition and more accuracy.

Example 2. In this example, we consider the three-level system iΨ̇ = (H0+
V u(t))Ψ, where Ψ ∈ C3 as follows [32]:

H0 =

E1 0 0
0 E2 0
0 0 E3

 , V =

 0 v12 v13
v∗12 0 v23
v∗13 v

∗
23 0

 .

The concept of optimal control of three-level quantum systems were presented
in [3, 4, 13, 32]. In the most of these works, the optimal control is constructed
on the basis of geometric arguments. If we suppose E1 = 2, E2 = 0, E3 = 6,
v12 = i + 1, v13 = 4, and v23 = 2 + 3i, then we can obtain the numerical
results as follows:

Table 3: Approximate and exact values of u(t) in Example 2 for different values of t.
t approximate of u(t) exact values of u(t) error
2 0.0074 0.0074 3.3× 10−4

10 0.0029 0.0029 5.2× 10−4

20 -0.0107 -0.0105 2.0× 10−4

30 -0.0002 -0.0001 1.1× 10−4

40 0.0062 0.0062 3.3× 10−4

50 -0.0032 -0.0032 2.3× 10−4

60 0.0060 0.0063 4.1× 10−4
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Table 4: Approximate and exact values of Ψ in Example 2 for different values of t.
t approximate of approximate of approximate of error of error of error of

ψ1(t) ψ2(t) ψ3(t) ψ1(t) ψ2(t) ψ3(t)
2 1.0188 -0.1011 0.0731 0.0200 0.0220 0.0220
10 0.9837 -0.3944 0.2748 0.0140 0.0154 0.0220
20 0.9016 -0.6478 0.5012 0.0210 0.0141 0.0123
30 0.7168 -0.7977 0.6782 0.0220 0.0215 0.0144
40 0.5713 -0.6806 0.8288 0.0180 0.0125 0.0214
50 0.3356 -0.4449 0.9638 0.0000 0.0112 0.0124
60 0.0799 -0.0525 0.9767 0.0225 0.0114 0.0126
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Figure 4: Plots of approximate and exact results of control variable for Example 2
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Figure 5: Plots of the approximate and exact results of state variable for Example 2
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Figure 6: Plots of the approximate and exact results of population for Example 2

We solved the above problem by our proposed algorithm with n = 2 and
K = 10 or k̂ = 40. The stopping condition is |u∗(t) − u(t)| < 5 × 10−4,
where u∗(t) and u(t) are approximate and exact results of control variable,
respectively, and by the stopping condition, we have 97 iterations. The plot
of the approximate and exact values of u(t) is shown in Figure 4. The plots
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of the approximate and exact values of ψ1(t), ψ2(t), and ψ3(t) are shown in
Figure 5. The plots of the approximate and exact values of |ψ1(t)|2, |ψ2(t)|2
and |ψ3(t)|2 are shown in Figure 6.
Approximation and exact results of control variable u(t) and their absolute
errors for different t are presented in Table 3. Approximation and exact
results of state variables ψ1(t), ψ2(t), and ψ3(t) and their absolute errors
for different t are presented in Table 4. Figures and tables obtained above
show that the numerical method used in this paper is simpler and more
useful than other methods. In [32], an index similar to the index used in
this article has been used, and numerical and graphical results have been
obtained. Investigating these results carefully, it can be observed that the
solutions obtained in this article endure less repetition while having more
accuracy.

6 Conclusion

Today, the issue of quantum optimal control is one of the most widely used
issues in many basic sciences and engineering. At the same time, numerical
methods are one of the most useful solutions to these problems. In this paper,
a numerical method based on wavelets was proposed to solve the problem of
optimal quantum control. This method was benefited by using topics related
to applied mathematics in the field of classical equations and presented usable
in the field of quantum systems. The above results showed that using the
algorithm and method mentioned numerically is very useful and efficient.
The merit of this method is to provide a simple solution based on classical
numerical methods in the field of optimal quantum control.
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