تعداد نشریات | 50 |
تعداد شمارهها | 1,872 |
تعداد مقالات | 19,702 |
تعداد مشاهده مقاله | 11,526,982 |
تعداد دریافت فایل اصل مقاله | 7,589,692 |
تعدیل مدل پیشبینی دستکاری سود با تأکید بر متغیرهای محیطی و روش ترکیبی شبکه عصبی مصنوعی و الگوریتمهای فراابتکاری | ||
اقتصاد پولی مالی | ||
مقاله 1، دوره 27، شماره 20، اسفند 1399، صفحه 1-26 اصل مقاله (905.28 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/mfe.2021.68842.1028 | ||
نویسندگان | ||
حسین عسگری آلوج* 1؛ محمد رضا نیکبخت2؛ غلامرضا کرمی3؛ منصور مومنی4 | ||
1استادیار، حسابداری، دانشگاه آزاد سلامی واحد بیله سوار، بیله سوار ، ایران | ||
2. دانشیار ، گروه حسابداری، دانشکده مدیریت دانشگاه تهران ، تهران، ایران | ||
3دانشیار ، گروه حسابداری، دانشکده مدیریت دانشگاه تهران ، تهران، ایران. | ||
4استاد ، گروه مدیریت صنعتی ، دانشکده مدیریت دانشگاه تهران ، تهران، ایران. | ||
چکیده | ||
چکیده سود یکی از عوامل مهم در رشد و توسعه اقتصادی بوده و دستکاری سود هم یکی از چالشهای اساسی کارایی بازار است که محققین اغلب برای پیشبینی دستکاری سود از دادههای حسابداری استفاده میکنند؛ درحالیکه دادههای غیرحسابداری هم نقش بسزایی در پیشبینی دستکاری سود دارند. این پژوهش به توسعه مدل بنیش با متغیرهای غیرحسابداری شامل عدم تقارن اطلاعاتی و رقابت در بازار محصول پرداخته است. دادههای 184شرکت پذیرفته شده در بورس تهران طی سالهای 1386-1396 جمعآوری و دقت پیشبینی مدلهای پژوهش در کشف و شناسایی شرکتهای دستکاری کننده سود با دو الگوریتم بهینهسازی حرکت تجمعی ذرات و رقابت استعماری در ترکیب شبکه عصبی مورد مقایسه قرار گرفت. یافتههای پژوهش نشان میدهد دقت پیشبینی مدل پیشنهادی با الگوریتم رقابت استعماری و حرکت تجمعی ذرات به ترتیب از 55/57 به 86/63 درصد و از 71/55 به 84/59 درصد افزایش یافته است. با توسعه مدل سطح زیرمنحنی راک افزایش یافته و کاهش خطای پیشبینی در الگوریتم رقابت استعماری 31/6 درصد و در الگوریتم حرکت تجمعی ذرات 13/4 درصد است ولی همچنان نتیجه آزمون ضعیف میباشد. درواقع میزان دقت پیشبینی مدل با الگوریتم رقابت استعماری در مقایسه با الگوریتم حرکت تجمعی ذرات بهبود یافته است. | ||
کلیدواژهها | ||
الگوریتم رقابت استعماری؛ رقابت در بازار محصول؛ شبکه عصبی مصنوعی؛ مدل بنیش؛ محیط اطلاعاتی شرکت | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
References
[1] Asgari Alouj, H., Nikbakht, M., Karami, G., & Momeni, M. (2020). Development of the beneish model by combining artificial neural network and particle swarm optimization algorithm for earnings management prediction. Accounting and Auditing Review, 26(4), 615-638 (in Persian).
[2] Atashpaz-Gargari, E. (2008). Development of social optimization algorithm and Its efficiency. M.Sc. Thesis, Faculty of Electrical and Computer Engineering, University of Tehran (in Persian).
[3] Aymen, A., & Aymen, H. (2017). Examining the relationship between Earning management and market liquidity. Research in International Business and Finance, 42, 1164-1172.
[4] Bahri Sales, J., Pak Maram, A., & Qaderi, G. (2018). Explanation of the relationship between product market competition and corporate earnings management (Evidence from discretionary Accruals items). Quarterly journal of Management Accounting, 11 (38), 15-26 (in Persian).
[5] Barzegar, G., Taleb Tabar Ahangar, M., & Esabat Tabari, E. (2014). Investigating of the relationship between product market competition and earnings management (Case Study: Companies Listed in Tehran Stock Exchange). Quarterly Journal of Financial Accounting Research, 6 (4), 88-73 (in Persian).
[6] Beneish, M. D. (1999). The detection of earnings manipulation. Financial Analysts Journal, 55 (5), 24-36.
[7] Cormier, D., Sylvain, H., & Marie, L. (2013). The incidence of earnings management on information asymmetry in a certain environment: Some Canadian evidence. Journal of International Accounting, Auditing and Taxation, 22, 26– 38
[8] Dhaliwal, D., Huang, S., Khurana, I. K., & Pereira, R. (2014). Product market competition and accounting conservatism. Review of Accounting Studies, 19, 1309-1345.
[9] Ghaderi, E., Amini, P., Mohammadi Mlqrny, A. (2020). Application of artificial neural network hybrid models with metaheuristic algorithms (PSO, ICA) in earnings management forecast. Empirical Research in Accounting, 10(2), 213-248 (in Persian).
[10] Heidarzadeh Hanzaei, A., & Barati, L. (2019). Information environment and earnings management in companies to dual holdings. Journal of Investment Knowledge, 8(29), 315-332. (in Persian)
[11] Kordestani, G., & Tatli, R. (2014). Identification the efficient and opportunistic earnings management approaches in the earnings quality levels. Accounting and Auditing Review, 21(3), 293–312 (in Persian).
[12] Laksmana, I., & Yang, Y. W. (2014). Product market competition and earnings management: evidence from discretionary accruals and real activity manipulation. Advances in Accounting, 30(2), 263-275.
[13] Li, T., & Zaiats, N. (2017). Information environment and earnings management of dual class firms around the world. Journal of Banking & Finance, 74, 1-23.
[14] Mashayekhi, B., Beyrami, H., Beyrami, H., & Akhlaqi, S. (2012). Discovering profit management using neural networks. Financial Engineering and Securities Management, 3 (11), 63-79 (in Persian).
[15] Moradi, M. (2015). Designing earnings quality model in tehran stock exchange (TSE) with emphasizing on the role of accruals. Journal of Accounting and Auditing Research, 25, 76-99. (in Persian).
[16] Noravesh, I., Sepasi, S., & Nikbakht, M. R. (2005). Study of earnings management in listed companies in the stock Tehran. Shiraz University Journal of Humanities and Social Sciences, 22 (2), 165-177 (in Persian).
[17] Pourali, M.R., & Koucheki Tajani, M. (2020). Comparing the accuracy of companies' profit manipulation prediction using colonial competition algorithm and genetic algorithm. The first international conference on new challenges and solutions in industrial engineering, management and accounting, Chalous (in Persian)
[18] Ramírez Orellana, A., Martínez Romero, M. J., & Mariño Garrido, T. (2017). Measuring fraud and earnings management by a case of study: evidence from an international family business. European Journal of Family Business, 7, 41-53.
[19] Rostami, W., Ghorbani, B., & Tadrisi, M. (2015). The impact of product market competition on real profit management of companies listed in tehran stock exchange (TSE). First International Conference on Management and Accounting with Value Creation Approach, Islamic Azad University of Fars, Shiraz (in Persian).
[20] Rotemberg, J., & Scharfstein, D. (1990). Shareholder value maximization and produc market competition. Review of Financial Studies, 3(3), 367–391.
[21] Salehi, M., & Farokhi Pile Rood, L. (2018). Predicting of earnings management using neural network and decision tree. Quarterly Journal of Financial Accounting and Auditing Research, 10 (37), 1-24 (In Persian).
[22] Salehi, M., & Garshasbi, F. (2019). Tehran stock exchange index forecasting using approach adaptive neural-fuzzy inference system and imperialist competitive algorithm. IT Management Studies, 8(29), 5-34 (in Persian).
[23] Setayesh, M., Mohammadian, M., & Mehtari, Z. (2015). Extended abstract investigation of interactive effect accounting information quality and information asymmetry on inefficient investment tehran stock exchange (TSE). Journal of accounting advances, 7(1), 73-102 (in Persian).
[24] Sheikh, M. J., Najjari, M., Roozbakhsh, N., & Anvari Glojeh, A. (2013). Predicting earnings management using artificial neural networks A case study on the Iranian Stock Exchange. The first international conference on political epic (with an approach to Middle East developments) and economic epic (with an approach to management and accounting), Roodehen (in Persian).
[25] Sheri Anagiz, S., Rahimiyan, N., Salehi Sedghiyani, J., & Khorasani, A. (2017). Investigating and adjusting the accuracy of the results of beneish and modified beneish models based on iran's economic environment in discovering and disclosure of fraudulent financial reporting. Quarterly Journal of Financial Management Outlook, 7 (18), 105-123 (in Persian).
[26] Tarjoa, N. H. (2015). Application of beneish m-score models and data mining to detect financial fraud. Social and Behavioral Sciences, 211, 924 – 930. | ||
آمار تعداد مشاهده مقاله: 2,065 تعداد دریافت فایل اصل مقاله: 941 |