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Abstract

This study presents an algorithm for solving optimal control problems with
the objective function of the Lagrange-type and multiple delays on both the
state and control variables of the constraints, with bounds on the control
variable. The full discretization of the objective functional and the multi-
ple delay constraints is carried out by using the Simpson numerical scheme.
The discrete recurrence relations generated from the discretization of both
the objective functional and constraints are used to develop the matrix op-
erators, which satisfy the basic spectral properties. The primal-dual residu-
als of the algorithm are derived in order to ascertain the rate of convergence
of the algorithm, which performs faster when relaxed with an accelerator
variant in the sense of Nesterov. The direct numerical approach for han-
dling the multi-delay control problem is observed to obtain an accurate
result at a faster rate of convergence when over-relaxed with an accelerator
variant. This research problem is limited to linear constraints and objec-
tive functional of the Lagrange-type and can address real-life models with
multiple delays as applicable to quadratic optimization of intensity mod-
ulated radiation theory planning. The novelty of this research paper lies
in the method of discretization and its adaptation to handle linearly and
proximal bound-constrained program formulated from the multiple delay
optimal control problems.
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1 Introduction

Optimal control problems (OCPs) with delays in state and/or control vari-
ables play important roles in the modeling of real-life scenarios. Time delay
effects in economical, physical, chemical, and biological processes involving
optimal control systems cannot be neglected, especially when they involve
the transmission of information between different parts of the system. These
hereditary effects of constant delays have been deliberated upon by Xue and
Duanin [27], Rihan and Anwar [21], Laarabi, Abta, and Hattaf, [14] and
Bashier and Patidar [1]. Gollman, Kern and Maurer [9] did extensive work
on mixed control-state inequality constraints with single delay on both state
and delay variables with the initial and terminal boundary conditions in a
general mixed form. Later, Gollmann and Maurer [10] extended their work
to multiple time delays in the control and state variables with mixed control-
state constraints. Olotu and Dawodu [18] and Olotu, Dawodu, and Yusuf [19]
worked on one-dimensional and generalized control problems, respectively,
with multiple delay constants and unbounded control variable (vector) using
modified alternating direction method of multipliers (ADMM), while their
earlier work in [17] on the delay proportional control system was done by the
method of Quasi-Newton embedded augmented Lagrangian functional.

The Douglas–Rachford (D-R) splitting method called the ADMM (Al-
ternating Direction Method of Multipliers) had been deployed by a plethora
of authors in solving OCPs; though very few have deployed it to solving
multi-delay OCPs with control bounds. The patronage is based on the fact
that ADMM enjoys the strong convergence properties of the method of mul-
tipliers and the decomposability property of dual ascent as in the works of
Boley [2], Boyd and Vandenberghe [4], Sun, Toh, and Yang [23], and Yao et.
al [28]; hence its relevance in solving decentralized and block-convex opti-
mization problems like the large-scaled power or distributed systems cannot
be overemphasized. Yao et al. [28] discovered that the ADMM could be
used as a tool in solving a vehicle routing problem structured as an inte-
ger programming problem provided; the quadratic penalty terms used in
ADMM can be reduced into simple linear functions. He and Yuan [13] and
He, Hong, and Yuan [12] worked on the proximal Jacobian decomposition
of the augmented Lagrangian method for the multiple-block separable con-
vex minimization problem. It was observed that it has a strong affinity for
ADMM.

Many authors have researched constrained convex quadratic problems
with simple bounds. Voglis and Lagaris [24] was among the early authors
that developed an algorithm for quadratic programming problems with box
constrained using the active set strategy with applications mainly to circus
tent, random and bi-harmonic problems. However, the scalability, simplicity,
and potential of the ADMM in solving large-scaled structured convex opti-
mization problems made it widely acceptable. The ADMM has the ability to
solve the primal-dual feasibility updates in parallel and is well amenable to
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the Gauss–Seidel accelerator or relaxation in order to improve its efficiency
and rate of convergence as in Nesterov [16].

Pasquale and Gerardo [20] also reviewed the main results on global op-
timality conditions for establishing the global minimization of a quadratic
problem with box constraints. However, Carreira-Perpiñán [5] worked on
the proximal bound-constrained quadratic problem subject to simple box
constraints. The ADMM algorithm was considered using the convex proxi-
mal operator by Moreau [15], Rockafellar [22], and Combettes and Pesquet
in [6]. The algorithm was found to be particularly efficient in solving a collec-
tion of proximal operators that share a same quadratic form with a high rate
of convergence and accuracy. Wu and Shang [25] further presented a global
optimization method for solving general nonlinear programming problems
subject to box constraints using a differential flow on the dual feasible space.
The criteria for the global optimality and existence of complete solutions to
the original problems were also given.

Xinmin et al. [26] researched the application of the ADMM algorithm
to the constrained quadratic optimization of intensity modulated radiation
theory planning. A graph form convex optimization model was formulated
as minh(y) such that y = Ax, 0 ≤ x ≤ ux, ly ≤ x ≤ uy, where the meaning
and conditions for the bounds were well-defined. This approach involves the
construction of a proximal operator and the formulation of the optimization
problem in the graph form of the ADMM algorithm. In the implementation
of the algorithm, a clinically acceptable solution was obtained with fewer
memory requirements when compared with other optimization solvers.

2 Statement of problem

The generalized form of the multiple delay OCP with bounded (box) control is
expressed below with quadratic continuous functional F and linear dynamical
function f .

2.1 Optimal control model

Considering the multi-delay OCP with bounded control below:

min J(x, u) =
1

2

∫ T

t0

F (t, x(t), u(t)) dt (1)

s.t. ẋ(t) ≤Ax+Bu+

d∑
j=1

αjx(t− rj) +
e∑

l=1

βlu(t− ql) (2)
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4 Dawodu

s.t. ẋ(t) ≤f(t, x(t), u(t), xh(t− rj), uh(t− ql)), j(l) = 1, 2, . . . , d(e), (3)
x(t0) =x0, (4)
x(t) =ϕ(t), t0 − r ≤ t ≤ t0, (5)
u(t) =ψ(t), t0 − q ≤ t ≤ t0, (6)

γ ≤ u(t) ≤ σ, (7)

where

x = (x1, x2, . . . , xn)
T ∈ Rn, ϕ = (ϕ1, ϕ2, . . . , ϕn)

T ∈ Rn,

u = (u1, u2, . . . , um)T ∈ Rm,

xh(t− rj) = (x(t− r1), x(t− r2), . . . , x(t− rd)) ∈ Rdn,

uh(t− ql) = (u(t− q1), u(t− q2), . . . , u(t− qe)) ∈ Rem,

ψ = (ψ1, ψ2, . . . , ψm)T ∈ Rm,

γ = (γ1, . . . , γm)T ∈ Rm,

σ = (σ1, . . . , σm)T ∈ Rm,

r = max{rj}dj=1, and q = max{ql}el=1.

2.2 Assumptions and properties of the model

The underlining assumptions and properties of the functions are stated below:
(i) The time interval I = [t0, T ] ⊆ R is a subset of real numbers R;

(ii) The state function x(t) : I → X of the optimal control system is abso-
lutely continuous on I provided the subset X is closed and bounded in
Rn;

(iii) The control function u(t) : I → U of the control system is piece-wise
continuous and Lebesgue measurable on I provided the subset U is
closed and bounded in Rm;

(iv) The numbers r1, r2, . . . , rd and q1, q2, . . . , qe are the known monotoni-
cally increasing positive delay constants for the state and control vari-
ables, respectively; that is, rj ≤ rj+1 for all rj ∈ R for j = 1, 2, . . . , d
and ql < ql+1 for all ql ∈ R for l = 1, 2, . . . , e;

(v) The initial (pre-shaped) functions φ(t) : [t0 − r, t0] → Rn and ψ(t) :
[t0 − q, t0] → Rm for the state and control variables, respectively, are
known and piecewise continuous;

(vi) The numbers r = max{rj}dj=1 and q = max{ql}el=1 represent the values
of the maximum delay constants for the state and control variables,
respectively;
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(vii) The cost functional F : [t0, T ] × Rn × Rm → R ∪ {∞} is nonlinear,
piecewise continuous and measurable;

(viii) The constraint functional f : [t0, T ]×R(1+d)n×R(1+e)m → Rn is linear
and piece-wise continuous;

(ix) There exist an admissible pair p = (x(·), u(·)) ∈ Ω := ([t0, T ],Rn) ×
([t0, T ],Rm) that satisfies (1)–(7) of the multi-delay OCP, where the
functional J(x(·), u(·)) is minimized by the the admissible triple Ω :=
(x(·), u(·), p(·)).

3 Methodology

A very simple discretization of (1) and (3) is obtained by means of the Simp-
sons and Euler numerical schemes, respectively. Recurrence relations gen-
erated are used in developing the respective large sparse matrix operators.
The augmented Lagrangian functional with relaxation parameter (factor) is
then used as an accelerator variant in the formulation of the modified ADMM
(M-ADMM) algorithm. The spectral and convergence analyses are carried
out to ensure the well-posedness of the algorithm.

3.1 Background and preliminaries

Suppose that the discrete time interval is given as Ik = [tk, tk+1] by letting
tk = t0 + kδ for k = 0, 1, . . . , N . Then the discretization operator, say fx,
maps each discrete point tk in the discrete time interval Ik ⊆ R into each
discrete (grid) point of the concatenated state vector x(k)i ∈ RnN for all i =
1, 2, . . . , n, while the operator, say fu, maps the points into each discrete point
of the concatenated control vector u(k)j ∈ Rm(N+1) for all j = 1, 2, . . . ,m. It
is then expressed as

fx : [t0, T ] ⊆ R −→ x
(k)
i ∈ x̄i, (8)

fu : [t0, T ] ⊆ R −→ u
(k)
j ∈ ūj , (9)

where x̄ = (x̄1, . . . , x̄n) ∈ RnN and ū = (ū1, . . . , ūm) ∈ Rm(N+1) for
x̄i = (x

(1)
i , . . . , x

(N)
i ) ∈ RN , and ūj = (u

(0)
j , . . . , u

(N)
j ) ∈ RN+1, respec-

tively. Considering the existence of multiple delay constants rj ∈ R (for
j = 1, 2, . . . , d) and ql ∈ R (for l = 1, 2, . . . , e) on the state and control vari-
ables, respectively. Then some basic Theorems are expressed below to aid in
the process of discretization.
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Theorem 1 (Rationality theorem). Given the real numbers rj , rj+1 > 0 for
rj < rj+1, then there exists a unique real number δ < 1 such that the ratios
of the numbers is a rational number Q.

Proof. Let the delay constants be arranged in an increasing manner; that is,
rj ≤ rj+1 and ql ≤ ql+1 for every j, l. It then implies that for every rj and
ql, there exist integers mj ∈ Z+ and ql ∈ Z+ such that

rj
mj

=
δql
δwl
∈ R, (10)

where δ is known as the step-length or interval length. This clearly shows
that the delays, for both the state and control variables, are integer multiples
of the step-length.

The proof of this transformation technique was suggested by Guinn [11]
to derive first-order necessary conditions for unconstrained OCPs with pure
state delays. To further elaborate on the assumptions above and the appli-
cations, we then introduce Theorem 2 below.

Theorem 2. Given any interval [a, b], there exists a step-length h ∈ R+ such
that each sub-interval is a constant multiple of the step-length.

Proof. Let the entire length of the interval l = b − a be partitioned into m
sub-intervals [rj−1, rj ] for j = 1, 2, . . . ,m. Then there exists h ∈ R with
rj = hvj for all vj ∈ Z+ such that the length of each sub-interval can be
written as lj = rj − rj−1.

lj
h

=
(rj − rj−1)

h
= nj + δj nj ∈ Z+, δj ∈ [0, 1).

Then,

(hvj − hvj−1)

h
= (vj − vj−1) = nj + δj nj ∈ Z+, δj ∈ [0, 1). (11)

Since vj − vj−1 ∈ Z+ then nj + δj ∈ Z+ such that δj = 0 or δj = 1 for all
j = 1, 2, . . . , d (by Theorem 1). Since δj = 1 ̸∈ [0, 1), then δj = 0 for all j =
1, 2, . . . , d. By slotting δj = 0 into (11), we then conclude that the length
of each sub-interval lj = (rj − rj−1) can be expressed as a multiple integer
vj ∈ Z+ of h expressed as rj = rj−1 + hnj , where vj − vj−1 = nj for all
j = 1, 2, . . . ,m.

The essence of Theorems 1 and 2 above is to establish the fact that there
exists a real number, referred to as step-length, h ∈ R that divides the entire
state and control delay constants with multiples of real positive integers.

Consequent to 1 and 2, the multiple state and control variables are pre-
sented as follows:
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x(k−vj) =


ϕ(tk−vj ), k − vj ≤ 0; k = 0, 1, 2, . . . , vj , t ∈ [t0 − r, t0], (known)
x(k−vj), k − vj > 0; k = (vj + 1), . . . , N, t ∈ [t0, T ], (unknown)

x(t0) = x0 given
(12)

and

u(k−wl) =

{
ψ(tk−wl

), k − wl < 0; k = 0, 1, 2, . . . , (wl − 1), t ∈ [t0 − q, t0], (known)
u(k−wl), k − wl ≥ 0 for k = wl, (wl + 1), . . . , N, t ∈ [t0, T ], (unknown)

(13)
where r = rd = max{rj}dj=1 and q = qe = max{ql}el=1 are the largest

delays on the state and control variables, respectively. In other words, the
discretized delay state and control variables are represented in the form below:

x(k−vj) =
(
x
(k−vj)
1 , x

(k−vj)
2 , . . . , x(k−vj)

n

)T

∈ Rn, for any j, (14)

u(k−wl) =
(
u
(k−wl)
1 , u

(k−wl)
2 , . . . , u(k−wl)

n

)T

∈ Rm, for any l, (15)

while x(t) and u(t) are estimated within their respective delay intervals by
the given delay functions ϕ(t) and ψ(t), respectively, such that ϕ(t) ≃ ϕ(t−k)
and ψ(t) ≃ ψ(t−k), where tk = t0 − kδ for k = 1, 2, . . . , vd, . . . , we if vd ≤ we.
However, the largest state and control delay vectors for each iterate k =
0, 1, . . . are represented below:

x̂ =
(
x(1−vj), x(2−vj), . . . , x(N−vj)

)T

∈ Rn(N−vj), for all j = 1, 2, . . . , d,

(16)

û =
(
u(−wl), u(1−wl), . . . , u(N−wl)

)T

∈ Rm(N+1), for all l = 1, 2, . . . , e.

(17)

3.2 Discretization of the objective functional

The objective function in (1) is of the form

min J(x, u) =
1

2

∫ T

t0

(xTPx+ uTQu) dt, (18)

where x = (x1, x2, . . . , xn)
T ∈ Rn, u = (u1, u2, . . . , um)T ∈ Rm, P ∈ Rn×n,

and Q ∈ Rm×m. The full discretization of the objective function (1) using
the Simpson integration formula gives

min J(x, u) ≃ 1

2

N−1∑
k=1

F (tk, x
(k), u(k)) (19)
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8 Dawodu

and when expanded, it can be expressed as the quadratic function

min
x̄,ū

1

2
x̄T P̄ x̄+

1

2
ūT Q̄ū+R, (20)

where R = δ
6 (x

(0))TPx(0) ∈ R and the concatenated state and control vari-
ables are x̄ = (x

(1)
1 , x

(2)
1 , . . . , x

(N)
n )T ∈ RnN and ū = (u

(0)
1 , u

(1)
1 , . . . , u

(N)
m )T ∈

Rm(N+1), respectively. However, the block-diagonal coefficient matrices
P̄ ∈ RnN×nN and Q̄ ∈ Rm(N+1)×m(N+1) are the block-matrix operators
of the objective functional stated below as

P̄ =



4δ
3 P 0 · · · · · · 0

0 2δ
3 P

. . . · · ·
...

... . . . . . . . . . ...

... . . . . . . 4δ
3 P 0

0 · · · · · · 0 δ
3P


and Q̄ =



δ
3Q 0 · · · · · · · · · 0

0 4δ
3 Q

. . . · · · · · ·
...

... . . . 2δ
3 Q

. . . · · ·
...

... · · ·
. . . . . . . . . ...

... · · · · · ·
. . . 4δ

3 Q 0
0 · · · · · · · · · 0 δ

3Q


The detailed derivation is in Appendix as in Olotu, Dawodu, and Yusuf [19].
However, in determining the properties of the derived matrix operators above,
the following definitions are then introduced.

Definition 1 (Sylvester criterion). A square (n×n) matrix is positive definite
if it is real, symmetric with all the eigenvalues (λi > 0; i = 1, 2, . . . , n) or the
leading principal minors (Mi > 0; i = 1, 2, . . . , n) are strictly positive.

Definition 2 (Corollary to Sylvester criterion). If the principal diagonal
entries aii are the only nonzero entries of a square (n× n) matrix such that
aij = 0 for i ̸= j, then the leading principal minors (Mi > 0; i = 1, 2, . . . , n)
are given by Mi =

∏i
j=1 ajj for i = 1, 2, . . . , n.

Definition 3. Every positive definite matrix is invertible.

Sequel to Definitions 1 and 2, the constructed matrix-operator P is symmetric
and positive definite since all the leading principal minors are strictly positive.
Consequently, by Definition 3, the matrix P is invertible.

3.3 Discretization of the constraints

The Euler numerical scheme in (21) below is used for the discretization of
the multi-delay constraints;

x(k+1) = x(k) + δfk, (21)
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where fk = f(tk, x
(k), u(k), x̂(k), û(k)) and expressed in terms of the RHS of

(3) as

fk = Ax(k) +Bu(k) +

d∑
j=1

αjx
(k−vj) +

e∑
l=1

βlu
(k−wl), k = 0, 1, 2, . . . , N − 1,

(22)
where x̂(k) = {x(k−v1), x(k−v2), . . . , x(k−vd)} and
û(k) = {u(k−w1), u(k−w2), . . . , u(k−we)}. Adapting (21) and (22) to (3) of the
OCP yields the recurrence relation below:

θx(k) − x(k+1) + ωu(k) ≤ −δ
d∑

j=1

αjx
(k−vj) − δ

e∑
l=1

βlu
(k−wl), (23)

where θ = (In + Aδ) ∈ Rn×n, ω = Bδ ∈ Rn×m, In ∈ Rn×n (identity) and
k = 0, 1, . . . , N −1. Slotting the various values of k into (23) forms the linear
inequality below:

Āx̄+ B̄ū ≤ Ēx̄h + F̄ ūh = C, (24)

where Ā is a multi-diagonal matrix with nN rows and nN columns (i.e.,
Ā ∈ RnN×nN ); B̄ is also a diagonal matrix with nN rows and m(N + 1)
columns (i.e., B̄ ∈ RnN×m(N+1)), and x̄ is the concatenated vector of the
state variable with dimension nN × 1 while ū is the concatenated row vector
of the control variable with dimension m(N + 1) × 1. The dimensions of
the matrices Ē, x̄h, F̄ and ūh are nN × n(vd + 1), n(vd + 1)× 1, nN ×mwe

and mwe × 1, respectively. The respective structures of the concatenated
vector-matrices are represented below:

Āx̄ =



−In 0 0 · · · · · · · · · · · · · · · · · · 0

θ −In 0 0
. . . . . . . . . . . . . . . ...

0 θ −In 0 0
. . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . . . . . . . ...

ᾱ1 · · · 0 θ −In 0
. . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . . . . . . . ...

ᾱd · · · ᾱ1 · · · 0 θ −In
. . . . . . ...

0 ᾱd · · · ᾱ1 · · · 0 θ −In
. . . ...

... . . . . . . . . . . . . . . . . . . . . . . . . 0
0 · · · 0 ᾱd · · · ᾱ1 · · · 0 θ −In





x(1)

...
x(v1+1)

...
x(v2−v1)

...
x(vd−vd−1)

...
x(vd+1)

...
x(N−1)

x(N)



,
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B̄ū =



ω 0 0 · · · · · · · · · · · · · · · · · · 0

0 ω 0 0
. . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . . . . . . . ...

β̄1 · · · 0 ω 0 · · ·
. . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . . . . . . . ...

β̄e · · · β̄1 · · · 0 ω 0
. . . . . . ...

0 β̄e · · · β̄1 · · ·
. . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . . . . . . . ...
0 · · · 0 β̄e · · · β̄1 · · · 0 ω 0





u(0)

...
x(v1+1)

...
u(w2−w1)

...

...
u(we+1)

...
u(N)



,

Ēx̄h =



−θ · · · −ᾱ1 · · · −ᾱs · · · −ᾱd−1 −ᾱd

· · · · · · · · · · · · · · · · · · − ¯· · · 0

−ᾱ1 · · · −ᾱs · · · −ᾱd−1 −ᾱd 0
...

· · · · · · · · · · · · · · · · · · − ¯· · ·
...

−ᾱs · · · −ᾱd−1 −ᾱd · · · 0 · · ·
...

· · · · · · · · · · · · · · · · · · − ¯· · ·
...

−ᾱd−1 −ᾱd · · · 0 · · · · · · · · ·
...

−ᾱd · · · 0 · · · · · · · · · · · ·
...

0 · · · · · · · · · · · · · · · − ¯· · ·
...

... · · · · · · · · · · · · · · · − ¯· · · 0





x(0)

x(−1)

...
x(v2−v3)

...

...

...
x(vd−vd−1)

...
x(1−vd)

x(−vd)


and

F̄ ūh =



−β̄1 · · · −β̄2 · · · −β̄s · · · −β̄e−1 −β̄e
· · · · · · · · · · · · · · · · · · − ¯· · · 0

−β̄1 · · · −β̄s · · · −β̄e−1 −β̄e 0
...

· · · · · · · · · · · · · · · · · · − ¯· · ·
...

−β̄s · · · −β̄e−1 −β̄e · · · 0 · · ·
...

· · · · · · · · · · · · · · · · · · − ¯· · ·
...

−β̄e−1 −β̄e · · · 0 · · · · · · · · ·
...

−β̄e · · · 0 · · · · · · · · · · · ·
...

0 · · · · · · · · · · · · · · · − ¯· · ·
...

... · · · · · · · · · · · · · · · − ¯· · · 0





x(0)

u(−1)

...
u(w2−w3)

...

...

...
u(we−we−1)

...
u(1−we)

u(−we)



,
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where the delay coefficients ᾱk and β̄k are defined below as

[ᾱk] =

{
−δαk, 1 ≤ k ≤ d,
0 elsewhere (25)

and

[β̄k] =

{
−δβk, 1 ≤ k ≤ e,
0 elsewhere. (26)

However, the entries [āij ] ∈ Ā, [b̄ij ] ∈ B̄, [ēij ] ∈ Ē, and [f̄ij ] ∈ F̄ of the
various matrix structures are described below as follows:

[āij ] =


−In, i = j 1 ≤ i ≤ N,
θ, j = i− 1 2 ≤ i ≤ N,
ᾱk, j = i− 1− vk 2 + vk ≤ i ≤ N, k = 1, 2, . . . , d,
0 elsewhere,

(27)

[b̄ij ] =

ω, i = j 1 ≤ i ≤ N,
β̄k, j = i− wk 1 + wk ≤ i ≤ N, k = 1, 2, . . . , e,
0 elsewhere,

(28)

[ēij ] =

−θ, i = j = 1,
−ᾱk, j = vk + 1− i 1 ≤ i ≤ vk, k = 1, 2, . . . , d,
0 elsewhere,

(29)

[f̄ij ] =

−σ, i = j = 1,
−β̄k, j = wk + 1− i 1 ≤ i ≤ wk, k = 1, 2, . . . , e,
0 elsewhere.

(30)

It is imperative to note that the real symmetric and positive definite prop-
erties of the discretized matrices P̄, Q̄, Ā, and B̄ affect the well-posedness
of the algorithm and the selection of the optimal (relaxation and penalty)
parameters; hence the bases for the assumption.

3.4 Splitting method

The D-R splitting technique, also known as ADMM, is a special case of the
splitting technique and can be traced back to work done on monotone opera-
tors and operator splitting methods into the general Hilbert spaces. Eckstein
and Ferris [7] showed in turn that DR splitting is also a special case of the
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proximal point algorithm applicable to optimal control systems. Suppose
there exist two separable closed convex functions (or proximal operators)
f(x) and g(x) that are non-expansive and not necessarily symmetric. Then
the iterates of the D-R splitting algorithm for min f(x) + g(x) starting with
any ζ0 and repeating for k = 0, 1, . . . are stated as

ζk+1 ←− ζk + proxg(2x
k − ζk)− xk,

xk+1 ←− proxf (ζ
k+1),

where xk converges to the solution of 0 ∈ ∂f(x) + ∂g(x), if the solution
exists. The D-R Algorithm can be re-structured by introducing a new variable
wk = xk − ζk if when substituted into the D-R splitting Algorithm above, it
yields its equivalent iterates expressed below as

uk+1 ←− proxg(x
k + wk),

xk+1 ←− proxf (u
k+1 − wk),

wk+1 ←− wk + xk+1 − uk+1,

where x = proxf (u−w) satisfies 0 ∈ ∂f(x)+ ∂g(x). However, the equivalent
D-R Algorithm can be amended by introducing the Nesterov-type accelerated
variants or relaxation factor α ∈ [0, 2] in order to improve the rate of con-
vergence of the iterates. The relaxed iterates is arrived at by replacing uk+1

with αuk+1 + (1−α)xk in the sense of Nesterov [16]. The derived algorithm
is stated as

Initialize at any ζ0, x0, fixed α and repeat for k = 0, 1, . . . ,

uk+1 ←− proxg(x
k + wk),

xk+1 ←− proxf (αu
k+1 + (1− α)xk − wk),

wk+1 ←− wk + xk+1 − (1− α)xk − αuk+1,

where it is an over-relaxation for 1 < α < 2, under-relaxation for 0 <
α < 1 and reduces to its non-relaxed form if α = 1. The extension of
the splitting method in the computations of the updates of the dual and
adjoint variables of a separable convex constrained problem of the form
min f(x1) + g(x2) s.t. h(x1, x2) = 0 requires a sequential minimization of
the augmented Lagrangian functional Lρ(x1, x2, ζ); hence the name alternat-
ing direction method of multipliers (ADMM).
The three steps iterates (updates) for the ADMM algorithm are as follows:

xk+1 ←− argmin
x1

(
f(x1) + ζTh(x1, x

k
2) +

ρ

2
∥ h(x1, xk2) ∥22

)
, (31)

xk+1
2 ←− argmin

x2

(
g(x2) + ζTh(xk+1

1 , x2) +
ρ

2
∥ h(xk+1

1 , x2) ∥22
)
, (32)

ζk+1 ←− ζk + ρh(xk+1
1 , xk+1

2 ), (33)
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where ρ > 0 is the penalty parameter and xk+1
1 ≡ αxk+1

1 −(1−α)xk2 for any ac-
celerator variant α ∈ [0, 2] puts the algorithm in a relaxed mode. The ADMM
is a more general method for handling all kinds of convex optimization prob-
lems which includes the ℓ1− regularization of the for min

∑
i fi(w) + ||w||,

which other traditional methods such as gradient descent, Newton, an so
on cannot handle. The ease with which the ADMM can be implemented
in parallel for large-scaled data at a faster rate gives it an edge over other
algorithms.

3.5 Analysis on bounded control problems

In a general box constrained nonlinear programming problem

min {f(x) |x ∈ Ω ⊆ Rn}, (34)

where Ω = {x ∈ Rn | l ≤ x ≤ u} is a feasible space and a closed convex
subset of Rn, f(x) and a strongly convex quadratic function that is twice
continuously differentiable in Rn, l and u are the lower and upper bounds,
respectively. Carreira-Perpiñán [5] and Combettes and Pesquet [6] extended
the theory of proximal operator to a proximal bound-constrained quadratic
program (QP) (34) with the Lagrange formulation presented as

Lρ(x, z, ξ) = f(x) + g(z) +
ρ

2
∥ x− z + ξ ∥22 s.t. x = z, (35)

where z ∈ Rn is the slack (auxiliary) variable, ξ = λ
ρ ∈ Rn is the scaled dual

(adjoint) vector, ρ > 0 is the penalty parameter, and g(z) = µ
2 ∥ z − v ∥

2
2 is

the convex term (or indicator function for the nonnegative orthant).
The proximal M-ADMM formulation is then expressed in the form

xk+1 ←− proxf,ρ(z
k − ξk) = argmin

x

(
f(x) +

ρ

2
∥ x− zk + ξk ∥22

)
, (36)

zk+1 ←− proxg,ρ(x
k+1 − ξk) = argmin

z

(µ
2
∥ z − v ∥22) +

ρ

2
∥ xk+1 − z + ξk ∥22

)
s.t. l ≤ z ≤ u, (37)

ξk+1 ←− ξk + xk+1 − zk+1. (38)

However, there exist three possible cases of the location of the parabola
vertex of the objective functional upon which the optimal solution is deter-
mined. See sketches below for illustration. Each of the cases indicated in
Figures 1, 2, and 3 represents the locations of the parabola vertex z∗i within
the bounds, below the lower bound, and above the upper bound, respectively,
while Figure 4 represents the median of the three points. Therefore, the op-
timal solution defined on the feasible space is the median of each of the ith
component (i = 1, 2, . . . , N) of the three vectors; lower bound l, upper bound
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Figure 1: Vertex within bounds: li ≤
zi ≤ ui

Figure 2: Vertex below lower bound: zi ≤
li

Figure 3: Vertex above upper bound:
ui ≤ zi

Figure 4: Median points: M(li, zi, ui)

u, and the parabola vertex z∗i . The choice of the next iterate z̄ is determined
as follows:

z̄i =


M(z∗i , li, ui) = Min

[
Max(z∗i , li), ui

]
= Min

[
li, ui

]
= li, z∗i ≤ li,

M(l̄i, z
∗
i , ui) = Min

[
Max(li, z∗i ), ui

]
= Min

[
z∗i , ui

]
= z∗i , l̄i ≤ z∗i ≤ ui,

M(li, ui, z
∗
i ) = Min

[
Max(li, ui), z∗i

]
= Min

[
ui, z

∗
i

]
= ūi, z∗i ≥ ūi.

(39)

3.6 M-ADMM algorithm formulation

The original ADMM formulation is modified to accommodate both the state
and control variables before imposing the Karush–Khun–Tucker (KKT) op-
timality conditions. The Gauss–seidel accelerator variant is introduced to
improve the convergence properties of the algorithm as illustrated in the
convergence analysis below. The re-formulated compact convex quadratic
optimization problem is then stated as
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MinJ(x̄, ū) = 1

2
x̄TPx̄+

1

2
ūTQū+R (40)

s.t. G(x, u) = Āx̄+ B̄ū− C ≤ 0, (41)
γ̄ ≤ ū ≤ σ̄, (42)

σ̄ − û ≥ 0, (43)
−̄γ + û ≥ 0, (44)

where

x̄ = (x(1), x(2), . . . , x(N)) ∈ RnN , ū = (u(0), u(1), . . . , u(N)) ∈ Rm(N+1),

Ā ∈ RnN×nN , C̄ ∈ RnN , B̄ ∈ RnN×m(N+1),

P̄ ∈ RnN×nN , and Q̄ ∈ Rm(N+1)×m(N+1),

while γ̄ = (1/
√
N + 1(γ

(1)
1 , γ

(2)
1 , . . . , γ

(N+1)
1 , γ

(1)
2 , . . . , γN+1

m ) ∈ Rm(N+1) and
σ̄ = (1/

√
N + 1)(σ

(1)
1 , σ

(2)
1 , . . . , σ

(N+1)
1 , σ

(1)
2 , . . . , σN+1

m ) ∈ Rm(N+1) for all
γi ∈ γ and σi ∈ σ, respectively. In addition, P̄ and Q̄ are the real, symmetric,
and positive-definite matrix operators.

3.7 Proximal-bound formulation

In formulating the convex-proximal bound constrained program for the dis-
cretized multi-delay OCP in (40)–(42), the Carreira-Perpiñá approach [5]
is applied. Suppose that the control bound (42) is re-formulated into two
equations, σ̄ − ū ≥ 0 and −̄γ + û ≥ 0 such that

0 ≤ µ

2
∥ (σ − γ)︸ ︷︷ ︸

y

− (v1 + v2)︸ ︷︷ ︸
v

∥22

≤ µ

2
∥ σ̄ − ū− v1 ∥22 +

µ

2
∥ −̄γ + ū− ξ2 ∥22 +

µ

2
∥ y − v ∥22, (45)

where g(y) = µ
2 ∥ y − v ∥

2
2 is a control bound function defined for ū ≥ y

and γ̄ ≤ y ≤ σ̄; while v is the slack variable replacing the inequalities and µ
is the penalty parameter. Therefore, the associated augmented Lagrangian
functional for the quadratic formulation is expressed as

Lρ1,ρ2
(x̄, ū, z, v, y, ξ1, ξ2, µ) =

1

2
x̄TPx̄+

1

2
ūTQū+R+

µ

2
∥ y − v ∥22

+
ρ1
2
∥ Ax̄+Bū− C + z + ξ1 ∥22

+
ρ2
2
∥ ū− y + ξ2 ∥22

s.t. z, v ≥ 0 and γ̄ ≤ y ≤ σ̄, (46)
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with the M-ADMM iterations stated as

x̄k+1 ←− argmin
x̄

{1

2
x̄TP x̄+

ρ1

2
∥ Ax̄+Būk − C + zk + ξk1 ∥22

}
,

ūk+1 ←− argmin
ū

{1

2
ūTQū+

ρ1

2
∥ Ax̄k+1 +Bū− C + zk ∥22 +

ρ2

2
∥ ū− yk + ξk2 ∥22

}
,

zk+1 ←− argmin
z

{ρ1
2
∥ Ax̄k+1 +Būk+1 − C + z + ξk1 ∥22

}
s.t. z ≥ 0,

vk+1 ←− argmin
v

{µ
2
∥ y − v ∥22

}
s.t. v ≥ 0,

yk+1 ←− argmin
y

{µ
2
∥ y − v ∥22 +

ρ2

2
∥ ūk+1 − y + ξk2 ∥22

}
s.t. γ̄ ≤ y ≤ σ̄,

ξk+1
1 = ξk1 +

(
Ax̄k+1 +Būk+1 − C + zk+1

)
,

ξk+1
2 = ξk2 +

(
ūk+1 − yk+1

)
,

where x̄ and ū are the primal variables, λ is the Lagrange multiplier, ρ1, ρ2 >
0 are the penalty parameters, ∥·∥2 is the euclidean (spectral) norm of a vector
(matrix) argument, ξi = λi/ρi, i = 1, 2 are the scaled dual vectors, y is the
introduced auxiliary (slack) vector, and l+(z) is the indicator function for the
non-negative orthants defined as l+(y) = µ

2 ∥ y − v ∥
2
2 and ∞ otherwise.

3.8 Derivations of the update formulas

Applying the KKT optimality conditions on the augmented Lagrangian func-
tional (46) for the sequential minimization of the variables requires updating
all the critical variables as indicated in the ADMM iterations. Moreover
the update formulas of the adjoint variables will be accelerated using the
Gauss–Seidel relaxation factor α ∈ [0, 2] as clearly illustrated in the works
of Nesterov [16] and Ghadimi et al. [8]; though this work considers an over-
relaxation where α ∈ (1, 2].

State-update - x̄ : Setting ∂x̄L(x̄, ·) = 0 yields

x̄k+1 = −ρ1(P + ρ1A
TA)−1AT (Būk − C + zk + ξk1 ) (x̄− update), (47)

where (P + ρ1A
TA)−1 is invertible since P is real, symmetric, and positive

definite and ATA is positive semi-definite sequel to Definitions 1, 2, and 3.

Control-update - ū : Setting ∂ūL(x̄k+1, ū, ·k) = 0 and replacing Ax̄k+1 with
h(x̄k+1, ūk, α) = αAx̄k+1− (1−α)(Būk−C+zk) to relax the algorithm with
the relaxation factor yield

ūk+1 = −ρ(Q̄+ ρB̄T B̄)−1B̄T
[
α(Āx̄k+1 −C + zk)− (1− α)B̄ūk + vk

]
. (48)
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Auxiliary (Slack)-update - z̄ : Setting ∂zL(·k+1, z, ·k) = 0 and relaxing
the algorithm by replacing Ax̄k+1 with h(x̄k+1, ūk, α) yields

z∗ = −α(Ax̄k+1 +Būk+1 − C)− (1− α)[B(ūk+1 − ūk)− zk]− ξk1 . (49)

Therefore,

zk+1 =max
{
0, z∗

}
(50)

=max
{
0,−α(Ax̄k+1 +Būk+1 − C)− (1− α)[B(ūk+1 − ūk)− zk]− ξk1

}
.

Updating the parabola vertex - y : Setting ∂yL(·k+1, y, ·k) = 0 in the
derivation of the parabola vertex y in the box constraint yields

∂yL(·k+1, y, ·k) = µ(y − v)− ρ2(ū− y + ξ2) = 0 (51)

y∗ =
µvk+1 + ρ2(ū

k+1 + ξk2 )

(µ+ ρ2)
s.t. γ̄ ≤ y∗ ≤ σ̄, (52)

where for each component y∗i of y∗ = (y1, y2, . . . , yN ), the minimum of the
upward parabola is defined in the sub-interval [γ̄i, σ̄i] such that the solution is
the median [γ̄i, y

∗
i , σ̄i] of γ̄i, σ̄i and each component y∗i of the parabola vertex

derived above is specifically defined as

y∗i =
µvk+1

i + ρ2(ū
k+1
i + ξk2i)

(µ+ ρ2)
s.t. γ̄i ≤ y∗i ≤ σ̄i and element-wise for all i.

(53)
Therefore,

yk+1 = Min
[
γ̄,
µvk+1 + ρ2(ū

k+1 + ξk2 )

(ρ2 + µ)
, σ̄

]
, (54)

= Min[Max(γ̄, y∗), σ̄],

with the steps involving element-wise thresholding operations. Considering
the extension of the above concept of proximal bound operator on the OCP,
let the state variable x̄ ∈ RN belong to a set of admissible state functions
X (written x̄ ∈ X ⊆ R∞) and let the control variable ū ∈ R(N+1) belong
to the set of admissible control functions U (written ū ∈ U ∈ R∞). We
then assume that v(γ̄) = (x̄∗, γ̄) and v(σ̄) = (x̄∗, σ̄) are the points on the
state-control coordinates (x̄, ū) for which the control is bounded below and
above by γ̄ ∈ R(N+1) and σ̄ ∈ R(N+1), respectively. If there exists any
point on the ith component of the control vector (i = 1, 2, . . . (N + 1)), then
yi ∈

[
γ̄i, σ̄i

]
is such that v(yi) = (x̄∗i , yi) is the point on the (x̄, ū) trajectory

that prescribes the parabola vertex of the objective function f(x̄, ū) at its
minimum. Therefore, the median M of v(γ̄i), v(σ̄i) and the parabola vertex
v(yi) are defined as follows:
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(x̄∗i , y
∗
i ) =


Min

[
Max(v(γ̄i), v(yi)), v(σ̄i)

]
= v(yi), v(yi) ∈

[
v(γ̄i), v(σ̄i)

]
,

Min
[
Max(v(ūi), v(γ̄i)), v(σ̄i)

]
= v(γ̄i), v(yi) ≤ v(γ̄i),

Min
[
Max(v(γ̄i), v(σ̄i)), v(yi)

]
= v(σ̄i), v(yi) ≥ v(σ̄i),

(55)
where x̄ = x̄∗i and ū = y∗i are the optimal state and control variables, respec-
tively, within the feasible space. Therefore, at x̄ = x̄(k+1), the ū-update is
defined as

(x̄k+1), yk+1) =M
[
v(γ̄i), v(σ̄i), v(yi)

]
, element-wise for all i ∈ {1, 2, . . . , (N + 1)},

(56)
where v(yi) = (x̄∗i , y

∗
i ) ≡ (x̄∗i , y

k+1
i ) such that

yk+1
i =

µvk+1
i + ρ2(ū

k+1
i + ξk2i)

(ρ2 + µ)
, x̄∗i = x̄

(k+1)
i , ui = yi, for all i ∈ {1, 2, . . . , (N+1)}.

(57)
For further illustration on the analysis of the proximal bound and its effects

on the objective functional value, we then consider the figures below.
Suppose that (x̄∗, y∗) is the vertex parabola for which f(x̄, ū) is at minimum.
Then

F (x̄∗, y∗) ≤ F (x̄∗, ū), s.t. x̄∗ ∈ X, for all ū ∈ U and y∗ ∈
[
γ̄, σ̄

]
.

Assume that there exists a bound
[
γ̄, σ̄

]
⊆ U on the control variable, sim-

ply called bounded (box) constraint, for which the objective functional value
F (x̄, ū) is at minimum; then in the process of the algorithm, the three ex-
pected cases are stated as

F (x̄∗, y∗) =

 F (x̄∗, y∗), for all ū ∈
[
γ̄, σ̄

]
⊆ U Case I

F (x̄∗, γ̄), for all ū ≤ γ̄ ⊆ U Case II
F (x̄∗, σ̄), for all ū ≥ σ̄ ⊆ U Case III

(58)

Case I: γ̄ ≤ ū ≤ σ̄
In Figure 5, the vertex point (x̄∗, ūv) that falls within the control bound is
same as the optimal state-control trajectories (x̄∗, ū∗) such that F (x̄, ū∗) =
F (x̄, ūv). The functional Ω within the region of feasibility is then defined as

Ω∗ = {F (x̄∗, ūv) | x̄∗ ∈ X and ū ∈ [γ̄, σ̄]}. (59)

Case II: ū ≤ γ̄
In Figure 6, the vertex point (x̄∗, ūv) that falls below the lower control bound
is same as the optimal state-control trajectories (x̄∗, γ̄) such that F (x̄, ū∗) =
F (x̄, γ̄). The functional Ω within the region of feasibility is then defined as

Ω∗ = {F (x̄∗, γ̄) | x̄∗ ∈ X and ū ≤ γ̄ for all ū ∈ U} (60)
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Figure 5: Control within bounds: γ̄ ≤
ūv ≤ σ̄
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Figure 6: control below lower bound:
ūv ≤ γ̄

Case III: ū ≥ σ̄
In Figure 7, the vertex point (x̄∗, ūv) falls above the upper control bound
with optimal state-control trajectories given as (x̄∗, σ̄) such that F (x̄, ū∗) =
F (x̄, σ̄). The functional Ω within the region of feasibility is then defined as

Ω∗ = {F (x̄∗, γ̄) | x̄∗ ∈ X and ū ≥ σ̄ for all ū ∈ U}. (61)

Updating the scaled-dual variables - ξ1, ξ2 : It yields

ξk+1
1 = ξk1 + (Ax̄k+1 +Būk+1 − C + zk+1), (62)

and
ξk+1
2 = ξk2 + ūk+1 − yk+1. (63)

3.9 Primal-dual convergence

The convergence of the M-ADMM for the bounded control in terms of its
primal-dual feasibility requires deriving the primal-dual residuals and their
behaviors for large iterations.
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Figure 7: Control above upper bound:
σ̄ ≤ ūv

Theorem 3. Given the bounded control problem (40)–(42) with the mul-
tipliers for the linear and bounded control constraints given as λ1 and λ2,
respectively, then there exists a dual residual sk+1 = ρ1B

T
[
zk+1 − zk

]
−

ρ2
[
uk+1 − yk

]
that converges to zero for given penalty parameters ρ1 and ρ2

for the linear and control bounds, respectively.

Proof. Given the objective function pk = f(xk) + g(uk), linear inequality
constraint Ax+Bu ≤ C and y = σ−γ, the associated Lagrangian with slack
z is stated as

L(x̄, ū, z, λ1, λ2 : ρ1, ρ2) = f(x̄) + g(ū) + λT1 (Ax̄+Bū− C + z)

+
ρ1
2
∥ Ax̄+Bū− C + z ∥22 +

µ

2
∥ y − v ∥22

+λT2 (ū− y) +
ρ2
2
∥ ū− y ∥22

Applying the optimality conditions KKT to the Lagrangian function above
yields
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∂g(ū) +BT [λk1 + ρ1(Ax̄
k+1 +Bū− C + zk)] + λk2 + ρ2(ū− yk) = 0,

∂g(ūk+1) +BT
[
λk1 + ρ1 (Ax̄

k+1 +Būk+1 − C + zk+1)︸ ︷︷ ︸
rk+1
1

]
+ λk2

+ ρ2 (ū
k+1 − yk+1)︸ ︷︷ ︸

rk+1
2

−ρ1BT zk+1 + ρ1B
T zk + ρ2y

k+1 − ρ2yk = 0,

∂g(ūk+1) +BT
[
λk1 + ρ1r

k+1
1︸ ︷︷ ︸

λk+1
1

]
+ λk2 + ρ2r

k+1
2︸ ︷︷ ︸

λk+1
2

= ρ1B
T
[
zk+1 − zk

]
− ρ2

[
yk+1 − yk

]︸ ︷︷ ︸
sk+1

,

where the primal residuals are expressed as

rk+1
1 = Ax̄k+1 +Būk+1 − C + zk+1, (64)
rk+1
2 = ūk+1 − yk+1. (65)

If xk+1 = x∗ minimizes the convex function, then

∂g(ū∗) +BTλ∗1 + λ∗2 = 0 (66)

and setting uk+1 = yk+1 completes the proof by expressing the dual residual
as

sk+1 = ρ1B
T
[
zk+1 − zk

]
− ρ2

[
uk+1 − yk

]
. (67)

Let the state-control variables be concatenated as ŵ = (x̄, ū) with dimen-
sion nN +m(N +1)× 1, Â =

[
Ā, B̄

]
with dimension nN × (nN +mN +m),

and P̂ =

[
[c|c]P̄ 0̂

0̂T Q̄

]
with dimension (nN + mN + m) × (nN + mN + m).

This yields a re-formulated augmented problem of the form

Min1
2
ŵT P̂ ŵ +R s.t. Âŵ ≤ C, (68)

which results into Theorem 4, as an extension of Ghadimi et al. [8].

Theorem 4. Given a convex quadratic programming (QP) problem
min 1

2 ŵ
T P̂ ŵ+qT ŵ such that Âŵ ≤ b, where P̂ ∈ Rn×n, ŵ ∈ Rn, q ∈ Rn, Â ∈

Rm×n, and b ∈ Rm, then the optimal step-size for the QP is

ρ̄CAL =

[√
λmin

(
ÂP̂−1ÂT

)
λmax

(
ÂP̂−1ÂT

)]−1

(69)

and the convergence factor is
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ξ∗R̄ =

λmax

(
ÂP̂−1ÂT

)
−
√
λmin

(
ÂP̂−1ÂT

)
λmax

(
ÂP̂−1ÂT

)
λmax

(
ÂP̂−1ÂT

)
+

√
λmin

(
ÂP̂−1ÂT

)
λmax

(
ÂP̂−1ÂT

) . (70)

For α ∈ (1, 2], 0 < ξR < 1, P̂ is symmetric and positive definite and
λmin(ÂP̂

−1ÂT ) and λmax(ÂP̂
−1ÂT ) are the minimum and maximum eigen-

values of the matrix ÂP̂−1ÂT , respectively.

3.10 The Error dynamics of the relaxed Algorithm

Let us consider the augmented convex OCP in (68) with ℓ2-regularized esti-
mation, with the regularization parameters δ > 0, as stated below:

Min1
2
ŵT P̂ ŵ +R+

δ

2
||z||22 s.t. Âŵ + z − C = 0. (71)

The resulting relaxed ADMM iterations take the form

ŵk+1 = −
(
P̂ + ρÂT Â

)−1

ÂT
(
λk + ρ(zk − C)

)
(72)

zk+1 =
−
[
λk + ρ

(
α(Âŵk+1 − C)− (1− α)zk

)]
δ + ρ

(73)

λk+1 = λk + ρ
(
α(Âŵk+1 + zk+1 − C) + (1− α)(zk+1 − zk)

)
. (74)

Considering the convergence of the relaxed iterations, (72)–(74), it is imper-
ative to note that the relaxed iterations return the standard iterations of the
convex control problem by setting α = 1 and δ = 0 with the augmented vari-
able ŵk+1 = [x̂k+1 ûk+1]T . In characterizing the convergence of the relaxed
iterations, we then analyze the error dynamics of the ADMM to know how
the errors associated with ŵk or zk vanish. Making λk subject of formula in
(73) and inserting into (74) yield λk+1 = −δzk+1. Inserting the w-update
into the z-update and using the fact that λk = −δzk, we arrive at

zk+1 =
1

δ + ρ

[
δI + ρ

(
(1− α)I + α(ρ− δ)Â(P̂ + ρÂT Â)−1ÂT

)]
︸ ︷︷ ︸

E

zk

− αρ

δ + ρ

[
ρÂ(P̂ + ρÂT Â)−1ÂT − I

]
C. (75)

For z = z∗ a fixed-point of (75), that is,
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z∗ = Ez∗ − αρ

δ + ρ

[
ρÂ(P̂ + ρÂT Â)−1ÂT − I

]
C,

then the dual error ek+1 = zk+1− z∗ evolves as ek+1 = Eek and zk+1− z∗ =
E(zk − z∗) such that the z− update of the relaxed iterations above converge
if and only if the spectral radius of the error matrix E in the above linear
iterations is less than one. The eigenvalues of E can then be written as

ξR̂(α, ρ, λi(P̂ )) = 1− αρ(λi(P̂ ) + δ)

(ρ+ λi(P̂ ))(ρ+ δ)
, (76)

for ρ, δ and λi(P̂ ) ∈ R+ (i.e., positive) provided α ∈
(
1, 2(ρ+λi(P̂ ))(ρ+δ)

ρ(λi(P̂ )+δ)

)
.

To ascertain the upper bounds ρ and α that guarantee an improvement with
strictly smaller convergence factor compared to that of the classical ADMM
iterations, we take the derivatives ξ∗

R̂
with respect to the parameters ρ and

α given by (ρ∗, α∗) =argmin
ρ,α

max
i
|ξR̂(α, ρ, λi(P̂ ))| while that for the lower

bound of ξR̂ is ξ∗
R̂
= max

i
|ξR̂(ρ∗, α∗, λi(P̂ ))|. This yields the jointly optimal

step-size and convergence factor expressed as (ρ∗, ξ∗
R̂
), where the detail proof

of the convergence analysis can be seen in [8]. We then conclude that the over-
relaxed iterations are guaranteed to converge faster for all α ∈ (1, 2]. The
developed M-ADMM algorithm is stated below; see Appendix for flowchart.

3.11 Algorithm: M-ADMM for proximal
bound-constrained program

Input parameters and operators ρ, α, A, B, C, ϵprim, ϵdual
Initialize x̄0, ū0, z0, ξ01 = λ01/ρ1, ξ

0
2 = λ01/ρ2

Set P ⪰ 0, Q ⪰ 0 (symmetric and positive definite)
For k = 0, 1, 2, . . . ,do
| Compute x̄k+1 using (47)
| Compute ūk+1 using (48)
| Compute z̄k+1 using (50)
| Compute ȳk+1 using (54) and set ūk+1

1 = yk+1
i , element-wise

for all i
| Update ξk+1

1 and ξk+1
2 using (62) and (63), respectively.

| Compute ||rk+1||22 and ||sk+1||22 using (64) and (67), respectively.
| If ||rk+1||22 ≤ ϵprim and ||sk+1||22 ≤ ϵdual
| | stop and return (output)
| else
| | repeat process
| end (If)
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end (for)
Return x̄k+1, ūk+1, zk+1, J∗, ξk+1

1 , ξk+1
2

3.12 Computational Complexity

Iteration complexity: Each step of the M-ADMM updates (iterations) isO(N)
with large computational efforts required. However, catching the Cholesky
factorization of the matrices (P + p1A

TA) and (Q + ρ1B
TB + ρ2I) in the

form RRT (with R the upper triangular) will make the computation more
effective, provided P and Q are real symmetric and positive definite. If P or
Q is dense, then the computation of the Cholesky factor is a one-time cost of
O
(
1
3N

3
)

while the linear system is O(N2) by solving the two triangular sys-
tems. However, if P or Q is large and (sufficiently) sparse, then computing
the Cholesky factor and solving the linear system are both possibly O(N).
The solution can be obtained in few iterations of the M-ADMM algorithm
when the CGM or L-BFGS iterative solver is deployed with a warm-start to
carry out faster convergence of the updates. In practice, the warm-start in
which the values of z = v and ξ1 = ξ2 = 0 are usually adopted.
Termination criteria: The earlier derived stopping criteria, in (64)–(67), can
be deployed with a tolerance range of 10−k (for k = 3, . . . , 6). Moreover,
the speed at which the M-ADMM converges depends significantly on the
quadratic penalty parameters by Boyd et al. in [3]. However, the primal
ϵPrim > 0 and dual ϵDual > 0 tolerances are selected as the termination
(stopping) criteria for the convergence of the M-ADMM, and their choices
depend on the relative ϵrel and absolute ϵabs criteria on account that the ℓ2
norms are in Rn and Rm, respectively. The selected primal and dual toler-
ances are so small such that the algorithm converges (terminates) whenever
||rk+1||2 ≤ ϵPrim and ||sk+1||2 ≤ ϵDual. Usually in literature, the values,
ϵrel = 10−3 and ϵabs = 10−3, are used as reasonable stopping criteria for
the ADMM algorithms and can be reduced to improve the accuracy. Stated
below are basic computations in literature as in [3].

ϵPrim =
√
nϵabs + ϵrel.max{||Axk+1||2, ||Buk+1||2, ||zk+1||2, ||C||2} (77)

ϵDual =
√
mϵabs + ϵrel.||ρu||2 (78)

4 Numerical experiments

In this section, the algorithm was implemented with numerical examples on
a Core i3 CPU. The quasi-Newton solver is interfaced with the M-ADMM
in obtaining the optimizer. The convergence factor of ADMM for varying
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tolerances and penalty parameters of the linear constraint is later illustrated.
These examples demonstrate that the M-ADMM method converges for an
over-relaxed factor α∗ ∈ [1.8, 2.0] for faster convergence.

Example 1. Consider the one-dimensional convex multi-delay bounded
OCP:

Minimize J(x(t), u(t)) =
1

2

∫ 1

0

[2x2(t) + u2(t)]dt

subject to ẋ(t) ≤ −2x(t) + 3u(t) + 2x(t− 0.1) + x(t− 0.2)

−x(t− 0.5) + u(t− 0.1)− 2u(t− 0.3)

x(0) = 1, t ∈ [0, 1],

x(t) = 2t2 + 1, t ∈ [−0.5, 0],
u(t) = 3t+ 2, t ∈ [−0.3, 0],
0 ≤ u(t) ≤ 2.

The discretized positive definite matrices P̄ (≻ 0) and Q̄(≻ 0) for the objective
functional, using δ = 0.1 for purpose of illustration, are, respectively, given
as

P̄ =



0.0889 0 · · · · · · 0

0 0.0444 0
. . .

...
...

. . . . . . . . .
...

...
. . . . . . 0.0889 0

0 · · · · · · 0 0.0222


and Q̄ =



0.0444 0 · · · · · · 0

0 0.0222 0
. . .

...
...

. . . . . . . . .
...

...
. . . . . . 0.0222 0

0 · · · · · · 0 0.0111


.

While the constraint coefficients are as given in subsection 3.3 using the
optimal relaxation parameter α∗ = 2.0. Table 1 demonstrates the various
effects of changing relaxation parameters (factors) on the convergence and
results of the M-ADMM algorithm measured by the iterative cycles. The
optimal relaxation factor is observed to be α∗ = 1.90.
Figures 8 and 9 show the effects of the varying penalty parameters ρ2 on the
rate of convergence of the M-ADMM algorithm for increasing relaxation fac-
tors α. Clearly, the lines overlap as the algorithm progresses. The optimum
values were also obtained at α∗ = 1.90, as shown in the simulation, indicating
an increase in the rate of convergence. Table 2 shows the results when the
algorithm was ran for various values of the step-length δ and tolerances for
fixed values of ρ1, ρ2, ρ3, and µ.

Figure 10 illustrates primal and dual convergences of the M-ADMM al-
gorithm using the optimal over-relaxation factor α = 2.00 while Figure 11
demonstrates the responses of the state-control variables and the objective
values for the chosen tolerance (Tol.=10−3). The objective values J∗ = 0.3824
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Tolerances 10−3 10−4 10−5 10−6

No. of iterations (k) (k) (k) (k)
α = 1.00 66 128 193 259
α = 1.20 55 107 160 216
α = 1.40 47 98 138 189
α = 1.60 42 80 122 170
α = 1.80 37 71 109 155
α∗ = 2.00 34 69 130 204

Table 1: Effects of varying relaxation factors on fixed penalty parameters (µ = 0.3, ρ1 =
0.1, ρ2 = 0.2, ρ3 = 0.3 : δ = 0.1)

Step-lengths δ = 0.10 δ = 0.05 δ = 0.01
Tolerances 10−3 10−4 10−3 10−4 10−3 10−4

||x|| 2.3788 2.3919 2.8830 2.9223 3.2970 3.6359
||u|| 0.8937 0.8933 0.9271 0.9263 0.9812 0.9796
||J ∗ || 0.3827 0.3900 0.3968 0.3982 0.3623 0.3730
ξ∗
R̄

0.5827 0.5827 0.0528 0.0528 0.0471 0.0471
ρ̄CAL 0.0557 0.0557 0.7379 0.7379 0.9383 0.9383
k 11 16 14 25 34 69

Time (secs) 0.0504 0.05623 0.0886 00305 0.3778 0.2057

Table 2: Summary of results at optimum relaxation parameter (µ = 0.3, ρ1 = 0.1, ρ2 =

0.2, ρ3 = 0.3, α∗ = 2.0)
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Figure 11: Optimal trajectories: State,
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were arrived at with the respective optimal state and control values 2.3788
and 0.8937 ∈ [0, 2], respectively.

Example 2. Considering the generalized multi-delay OCP with bounded
control:

MinJ(x, u) =
∫ 0.5

0

[
2x21 + x1x2 + x22 + u21 + u1u2 + u22

]
dt (79)

s.t. ẋ1(t) ≤2x1(t) + x2(t) + u1(t) + 3u2(t) + x1(t− 0.1) + x2(t− 0.1)

+ 2x1(t− 0.2) + x2(t− 0.2)− x1(t− 0.3) + 2u1(t− 0.1)

+ u2(t− 0.1) + u1(t− 0.3) + 2u2(t− 0.2),

ẋ2(t) ≤x1(t)− u1(t) + 2u2(t)− x1(t− 0.1) + x1(t− 0.2)

+ 2x2(t− 0.2)− x1(t− 0.3) + u2(t− 0.1) + u1(t− 0.2)

+ 3u2(t− 0.2), t ∈ [0, 0.5] (80)
x(0) =(1, 1), (81)
x(t) =(2t+ 1, t2 + 1), −0.3 ≤ t ≤ 0, (82)
u(t) =(2, 2 + t), −0.2 ≤ t ≤ 0, (83)

(1, 1) ≤ u(t) ≤ (2, 3), (84)
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where x(t) ∈ R2 and u(t) ∈ R2.
The problem is re-formulated into the format in (1)–(7) to make it amenable
to the M-ADMM algorithm. The coefficient matrices are defined below.

P =

[
4 1
1 2

]
, Q =

[
2 1
1 2

]
, A =

[
2 1
1 0

]
, B =

[
1 3
−1 2

]
, γ =

[
1
1

]
, σ =

[
2
3

]
,

α1 =

[
1 1
−1 0

]
, α2 =

[
2 1
1 2

]
, α3 =

[
−1 0
−1 0

]
, β1 =

[
2 1
0 1

]
, and β2 =

[
1 2
1 3

]
.

The coefficient matrices, P and Q, of the quadratic functional are sym-
metric, invertible (non-singular), and positive definite (i.e., P ≻ 0 and
Q ≻ 0) since their respective eigenvalues (λ1 = 1.585, λ2 = 4.4142) and
(λ1 = 1, λ2 = 3) are all positive. This ensures that the operators are well-
posed for the algorithm. The choice of the step-length δ = 0.1 was made
with N = 5 such that the coefficient matrices P and Q of the state and
control variables for the continuous-time problem yield the block matrices
P̄ ∈ R10×10 and Q̄ ∈ R12×12, respectively. The structures of their block
matrix operators, are as defined in (3.2). However, the recurrence relation
from the discretization of the constraint, as derived in (23), yields

θx(k) − x(k+1) + ωu(k) = −δ
3∑

j=1

αjx
(k−vj) − δ

2∑
l=1

βlu
(k−wl), (85)

where v = r3/δ = 3, w = q2/δ = 2 and the various associated matrices are
defined below:

θ = In +Aδ =

[
1.2000 0.1000
0.1000 1.0000

]
, ω = Bδ =

[
0.1000 0.3000
−0.1000 0.2000

]
,

with the formulated block-matrices Ā, B̄, and C are as defined in subsection
3.3. Table 3 shows the results in the first phase of the algorithm. The
M-ADMM was ran for various values of the relaxation parameter α evenly
spaced between 1.0 and 2.0 with a step-size of 0.05 for a fixed value of the
penalty parameters (ρ1 = 0.1, ρ2 = 0.2, ρ3 = 0.3, α∗ = 2.0) and tolerance
(Tol = 10−3) to ascertain the optimum relaxation factor (α∗) using the
number of iterations as the measure of convergence.

Table 4 also demonstrates the effects of some of the selected relaxation pa-
rameters (factors) on the optimum values of the optimization problem as the
tolerances decrease geometrically for fixed values of the penalty parameters.
Figures 12 and 13 show the rate of convergence of M-ADMM Algorithm using
the primal and dual residuals for increasing values of the iteration. Clearly,
both lines converge to zero as the algorithm progresses for the varying values
of α and ρ2 as shown in Figure 14, where the average elapsed time per/cycle
falls within a second when run on an Intel computer (Inspiron 15 Core i3).
The optimum values were obtained at α∗ = 2.0, as shown in the number of
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Step-lengths δ = 0.10 δ = 0.05 δ = 0.01
Tolerances 10−3 10−4 10−3 10−4 10−3 10−4

||x|| 14.5367 14.1757 0.138099 0.135782 0.138099 0.135782
||u|| 2.7139 2.7203 0.15 144 0.22 164
||J ∗ || 18.3905 18.6315 0.16 140 0.22 164
ξ∗
R̄

0.6910 0.6910 0.16 140 0.22 164
ρ̄CAL 0.1612 0.1612 0.16 140 0.22 164
k 117 138 0.16 140 0.22 164

Time (secs) 0.2678 0.3852 0.16 140 0.22 164

Table 3: Summary of results at optimum relaxation parameter
(ρ1 = 0.1, ρ2 = 0.2, ρ3 = 0.3, α∗ = 2.0)

Tolerances 10−3 10−4 10−5 10−6

No. of iterations (k) (k) (k) (k)
α = 1.00 239 467 703 940
α = 1.20 199 389 585 786
α = 1.40 175 345 523 700
α = 1.60 155 307 464 622
α = 1.80 140 277 419 562
α∗ = 2.00 127 253 383 514

Table 4: Effects of varying relaxation factors on fixed penalty parameters (ρ1 =

0.1, ρ2 = 0.2, ρ3 = 0.3 : δ = 0.1)

iterations per cycle, indicating a decrease in the rate of convergence. The
M-ADMM ran for various values of the step-length δ geometrically spaced
between 0.010 and 0.10 with a constant factor of 0.5 using the tolerances of
10−3 and 10−4. Figure 14 further illustrates the faster rate of convergence
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Figure 12: Dual convergence: ||dk||22 → 0,
µ and α∗ = 2.0

Figure 13: Primal-dual convergence:
||rk||2 → r∗, ||dk||22 → 0

of the M-ADMM with the optimal over-relaxation factor α = 2.00 compared
to the non-relaxed ADMM for which α∗ = 1. However, Figure 15 demon-
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strates the responses of the state-control variables and the objective values to
increasing iterations at chosen tolerance (Tol.=10−3), relaxation parameters
(ρ1 = 0.1, ρ2 = 0.2, ρ3 = 0.3) and optimal penalty parameter α∗ = 2.0. In
addition, the objective values are observed to increase with increasing values
of the state variables until the optimal objective value J∗ = 18.3905 was
arrived at with the respective optimum state and control trajectories stated
as

x∗ =

[
4.1416
13.9343

]
and u∗ =

[
1.0000
2.5230

]
while

[
||x∗||
||u∗||

]
=

[
14.5367
2.7139

]
and ||(1, 2)T || ≤ ||u∗|| ≤ ||(2, 3)T ||. Applying the formulas in (69) and
(70) yields the results for the calculated penalty parameter and conver-
gence factor as ρ̄∗ = 0.1612 and xi∗

R̄
= 0.6910, respectively, where

P̄ ∈ R(4N+2)×(4N+2) and Ā = [A,B] ∈ R2N×(4N+2).

5 Conclusion

The ADMM for strictly convex QP with a particular focus on the QPs arising
from discretized multi-delay OCP with bounded control was studied. A con-
vergence proof and a method of analysis of the problem were proposed that
allows the selection of the optimal relaxation parameter for the acceleration
of the algorithm for varying penalty parameters of the augmented Lagrangian
functional; while other parameters remain fixed. A major drawback of this
approach is that, the penalty parameters for both the linear and bound con-
straints cannot be derived simultaneously. In the future, we will extend the
computational framework to include the effects of both varying parameters in
the computational complexity of the algorithm. This research was limited to
OCP with linear constraints of non-fractional order. However, in subsequent
work, the scope of the work will be extended to convex constrained OCPs
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with coupled and/or nonlinear differential constraints with both integer and
(or) fractional order.
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Appendix

A. Derivation of P̄ and Q̄

By Simpson’s rule, if for each k = 1, 2, . . . , N2 − 1, f(t2k) appears in the
term corresponding to the interval [t2k−2, t2k] and f(t2k−1) appears in the
term corresponding to the interval [t2k, t2k+2] for k = 1, 2, . . . , N2 , then the
approximation of the integral in (18), given that F (t, x(t), u(t)) = xTPx +
uTQu, can be expressed as

I :=
1

2

∫ T

t0

F (t, x(t), u(t)) dt ≃
1

2

N−1∑
k=1

F (tk, x
(k), u(k)) (86)

≃
1

2

 δ
3

(
f (0) + 2

N
2
−1∑

k=1

f (2k) + 4

N
2∑

k=1

f (2k−1) + f (N)
) ,

where

f (0) = (x(0))TPx(0) + (u(0))TQu(0), (87)
f (2k) = (x(2k))TPx(2k) + (u(2k))TQu(2k), (88)

f (2k−1) = (x(2k−1))TPx(2k−1) + (u(2k−1))TQu(2k−1), and (89)
f (N) = (x(N))TPx(N) + (u(N))TQu(N). (90)

Substituting equations (87)–(90) into (86) yields

I ≈ δ

6
(x(0))TPx(0) +

1

2

[2δ
3

N
2 −1∑
k=1

(x(2k))TPx(2k) +
4δ

3

N
2∑

k=1

(x(2k−1))TPx(2k−1)

+
δ

3
(x(N))TPx(N)

]
+

1

2

[δ
3
(u(0))TPu(0) +

2δ

3

N
2 −1∑
k=1

(u(2k))TPu(2k)

+
4δ

3

N
2∑

k=1

(u(2k−1))TPu(2k−1) +
δ

3
(u(N))TPu(N)

]
. (91)

Expanding (91) for various values of k gives
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I ≈
δ

6
(x(0))TPx(0) + (x

(1)
1 , x

(2)
1 , . . . , x

(N)
n )



4δ
3
P 0 · · · · · · 0

0 2δ
3
P

. . . · · ·
...

...
. . . . . . . . .

...
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. . . . . . 4δ
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P 0

0 · · · · · · 0 δ
3
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1
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(N)
m )
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3
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0 4δ
3
Q

. . . · · · · · ·
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. . . 2δ

3
Q

. . . · · ·
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... · · ·
. . . . . . . . .

...
... · · · · · ·

. . . 4δ
3
Q 0

0 · · · · · · · · · 0 δ
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1
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(1)
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...
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(N)
m )


expressed as

I ≈ min
x̄,ū

1

2
x̄T P̄ x̄+

1

2
ūT Q̄ū+R, (92)

where any elements p̄ij ∈ P̄ and q̄ij ∈ Q̄ are described as

[p̄ij ] =


4δ
3 P, i = j(odd) 1 ≤ i ≤ N − 1,
2δ
3 P, i = j(even) 2 ≤ i ≤ N,
2δ
3 P, i = j, i = N,
0 elsewhere

and

[q̄ij ] =


δ
3Q, i = j, i = 1, N,
4δ
3 Q, i = j(even) 2 ≤ i ≤ N,
2δ
3 Q, i = j(odd) 3 ≤ i ≤ N,
0 elsewhere.

B. Flowchart for the M-ADMM Algorithm

The diagram below (Figure 16) is the flowchart demonstrating the procedure
of the M-ADMM algorithm in handling the discretized optimal control (or
constrained optimization) problem with bounded (boxed) control. The left-
side of the flowchart is the M-ADMM subroutine, which is the outer loop
of Algorithm. However, the right-side of the flowchart is the optimization
solver, which in this case is the ”quasi-Newton solver” of the low-memory
BFGS type.
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Figure 16: Flowchart for M-ADMM with bounded control
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