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Review of the strain-based formulation
for analysis of plane structures

Part II: Evaluation of the numerical performance

M. Rezaiee-Pajand∗, N. Gharaei-Moghaddam and M. Ramezani

Abstract

In this part of the study, several benchmark problems are solved to evalu-
ate the performance of the existing strain-based membrane elements, which
were reviewed in the first part. This numerical evaluation provides a basis
for comparison between these elements. Detailed discussions are offered
after each benchmark problem. Based on the attained results, it is con-
cluded that inclusion of drilling degrees of freedom and also utilization of
higher-order assumed strain field result in higher accuracy of the elements.
Moreover, it is evident that imposing the optimal criteria such as equilib-
rium and compatibility on the assumed strain field, in addition to reducing
the number of degrees of freedom of the element, increases the convergence
speed of the resulting strain-based finite elements.
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1 Introducton

Among different formulation methods for the development of membrane finite
elements, the assumed strain approach is proved to be very effective in re-
moving problems such as shear parasitic error, mesh sensitivity, and different
locking phenomena [28]. Therefore, various authors utilized this scheme to
develop strain-based plane elements [6]. These finite elements were reviewed
in the first part of this study. The main objective of the second part is to
evaluate the numerical performance of the reviewed elements and study the
effect of different assumptions and criteria on the performance of assumed
strain formulation. For this purpose, the results attained by the reviewed
elements for a series of benchmark problems are presented. Based on the
obtained results by the reviewed membrane elements, a short discussion is
provided after each problem. Moreover, according to the overall outcomes,
the existing strain-based plane elements are ranked according to their differ-
ent advantages and shortcomings. This ranking can be used to detect the
most suitable assumptions and configurations to achieve a robust plane finite
element. It should be noted that in the present paper, only the performance
of the strain-based membrane elements in the analysis of linear problems is
investigated. This is mainly because even the finite elements developed for
nonlinear applications first should pass the upcoming benchmark tests to be
considered as robust and powerful elements. It is also reminded that most
of the reviewed research works evaluated the performance of their suggested
elements in the analysis of linear problems. However, it is obvious that the
reviewed element can also be used for the analysis of nonlinear problems and
some of the previously published pursued this issue. The interested readers
can refer to references [14, 26] for further information in this regard.

Tables 1 and 2 present a list of the elements used for comparison.
As it can be seen, an abbreviation is used for each element, which is se-

lected based on the following order. The first part of the abbreviation is
taken from the authors’ names. The second part of the abbreviation starts
with a letter that indicates the geometric shape of the element. Accordingly,
“T”, “Q”, and “R” stand for triangular, quadrilateral, and rectangular, re-
spectively. This letter is followed by a number that indicates the number
of degrees of freedom. If the drilling degrees of freedom are used in the
formulation of an element, then the letter “D” comes after the previously
mentioned number. Finally, if two or more elements with the same geometry
and number of nodes are proposed by the same authors, then roman numer-
als distinct those elements. For instance, based on this abbreviation method,
the triangular element proposed by Belarbi and Bourezane, which has nine
degrees of freedom and includes drilling degrees of freedom is called “BB-
T9D”, and since two different elements with the same abbreviation in this
convention exist, they are distinguished from each other by roman numerals
as “BB-T9D-I” and “BB-T9D-II”.



Review of the strain-based formulation for analysis of ..., Part II 487

Table 1: List of triangular plane elements used for comparison
No. Abbreviation Description of the element Reference

Triangular Elements
1 S-T9D Three-node nine-degree of freedom triangular

element with drilling proposed by Sabir
[28]

2 SS-T8 Four-node eight-degree of freedom triangular
element proposed by Sabir and Sfendji

[29]

3 T-T9D Three-node nine-degree- of freedom triangular
element with drilling proposed by Tayeh

[30]

4 BB-T9D-I First three-node nine-degree of freedom trian-
gular element with drilling proposed by Belarbi
and Bourezane

[2]

5 BB-T9D-II Second three-node nine-degree of freedom tri-
angular element with drilling proposed by Be-
larbi and Bourezane

[3]

6 RY-T10 Six-node ten-degree of freedom triangular
element proposed by Rezaiee-Pajand and
Yaghoobi

[25]

7 RY-T10D Seven-node ten-degree of freedom triangular
element with drilling proposed by Rezaiee-
Pajand and Yaghoobi

[26]

8 R-T9D Three-node nine-degree of freedom triangular
element with drilling proposed by Rebiai

[13]

9 RGR-T10 Five-node ten-degree of freedom triangular el-
ement proposed by Rezaiee-Pajand et al.

[17]

10 RGR-T10D Four-node ten-degree of freedom triangular ele-
ment with drilling proposed by Rezaiee-Pajand
et al.

[17]

11 RGR-T11D-I Seven-node eleven-degree of freedom triangu-
lar element with drilling proposed by Rezaiee-
Pajand et al.

[18]

12 RGR-T11D-
II

Four-node eleven-degree of freedom triangu-
lar element with drilling proposed by Rezaiee-
Pajand et al.

[19]

13 RGR-T14 Seven-node fourteen-degree of freedom trian-
gular element proposed by Rezaiee-Pajand et
al.

[22]

In addition to the reviewed membrane elements, which are formulated by
the assumed strain approach, results of three common displacement-based
elements namely four-node and eight-node isoparametric quadrilateral ele-
ments (Q4 and Q8) and linear strain triangular element (LST) are provided
in some problems to compare the performance of the strain-based formulation
with them.



488 Rezaiee-Pajand, Gharaei-Moghaddam and Ramezani

Table 2: List of quadrilateral plane elements used for comparison
No. Abbreviation Description of the element Reference

Quadrilateral Elements
1 SS-R10 Five-node ten-degree of freedom rectangular el-

ement proposed by Sabir and Sfendji
[29]

2 T-R12D Four-node twelve-degree of freedom rectangu-
lar element with drilling proposed by Tayeh

[30]

3 BM-R10 Five-node ten-degree of freedom rectangular el-
ement proposed by Belarbi and Maalem

[4]

4 RY-Q10 Five-node ten-degree of freedom quadrilat-
eral element proposed by Rezaiee-Pajand and
Yaghoobi

[23]

5 RY-R10-I First five-node ten-degree of freedom rectan-
gular element proposed by Rezaiee-Pajand and
Yaghoobi

[24]

6 RY-R10-II Second five-node ten-degree of freedom rectan-
gular element proposed by Rezaiee-Pajand and
Yaghoobi

[24]

7 RB-R12D Four-node twelve-degree of freedom rectangu-
lar element with drilling proposed by Rebiai
and Belounar

[14]

8 RB-Q12D Four-node twelve-degree of freedom quadrilat-
eral element with drilling proposed by Rebiai
and Belounar

[15]

9 RSB-Q12D Four-node twelve-degree of freedom quadrilat-
eral element with drilling proposed by Rebiai
et al.

[16]

10 RY-Q14D Five-node fourteen-degree of freedom quadri-
lateral element with drilling proposed by
Rezaiee-Pajand and Yaghoobi

[27]

11 RY-Q18 Nine-node eighteen-degree of freedom quadri-
lateral element proposed by Rezaiee-Pajand
and Yaghoobi

[8]

2 Numerical evaluation

In this section, several benchmark problems are solved to evaluate the perfor-
mance of the strain-based elements, which were reviewed in the first part of
this study. It should also be noted that in the following benchmark problems,
consistent units are used for various quantities. Accordingly, the problems
are presented in a dimensionless format. Moreover, it should be noted that
except for the elements proposed by the authors themselves, the results of
the other elements are taken from the related references, and many of the re-
viewed references did not report the results for some of the following problem.
Therefore, in some problems, the results of some elements are not reported.
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2.1 Cantilever beam with distorted mesh

One of the available tests to examine the performance of the membrane ele-
ments in the coarse distorted meshes, under both bending and shear loadings,
is the cantilever beam, which is depicted in Figure 1 [6, 26].

Figure 1: Cantilever beam with distorted quadrilateral mesh

This figure illustrates the geometric characteristics, loading, and utilized
meshes for quadrilateral elements. The modulus of elasticity and Poisson’s
ratio of this beam are 1500 and 0.25, respectively, and its thickness is equal to
1. The utilized mesh for analysis using triangular elements is demonstrated
in Figure 2. As it is evident, each quadrilateral element is divided by a dashed
line into two triangular elements.

Figure 2: Triangular mesh for analysis Cantilever beam with distorted mesh

The analytical vertical displacements at point A under the shear and
bending loadings are equal to 102.60 and 100, respectively. The attained
results by Q4, Q8, and other strain-based elements are listed in Table 3. In
fact, this test measures the performance of different elements for the analysis
of structures with distorted meshes under bending and shear loading condi-
tions. According to the results, almost all the strain-based elements, except
T-T9D, provide acceptable accuracy. The most accurate quadrilateral ele-
ment is RY-Q10 and BM-R10. Among the triangular elements, RGR-T10D,
RGR-T11D-I, and RGR-T11D-II show the highest accuracy. An interesting
finding is that, in general, the accuracy of the strain-based elements under
flexural loading is higher. However, there are exceptions such as RY-Q18.
Another important finding is the unexpectedly poor performance of T-T9D,
which is the second weakest element after Q4. The attained results by RGR-
T10 and RGR-T10D, which have the same assumed strain field and their
differences are only in distribution and type of degrees of freedom, verify this
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conjecture that inclusion of drilling degrees of freedom in the plane elements,
improves their accuracy under in-plane bending.

Table 3: Deflection of point A of the cantilever beam with distorted mesh
Load P Load M

Element Displacement Relative
Error (%)

Displacement Relative
Error (%)

Q
ua

dr
ila

te
ra
le

le
m
en
ts

Q4 50.70 50.58 45.70 54.30
Q8 101.50 1.07 99.70 0.30
SS-R10 97.91 4.51 98.57 1.43
T-R12D 93.28 9.08 96.11 3.89
BM-R10 101.77 0.81 99.93 0.07
RY-Q10 102.79 0.18 100.00 0.00
RB-R12D 98.83 3.67 97.30 2.70
RB-Q12D 99.35 3.17 99.19 0.81
RY-Q14D 104.16 1.52 101.66 1.66
RY-Q18 103.52 0.89 101.48 1.48

Tr
ia
ng

ul
ar

el
em

en
ts

LST 101.05 1.51 98.30 1.70
S-T9D 100.08 2.45 97.82 2.18
SS-T8 100.89 1.67 98.36 1.64
T-T9D 79.87 22.15 83.05 16.95
RY-T10D 100.58 1.96 100.00 0.00
R-T9D 100.98 1.57 99.86 0.14
RGR-T10 103.65 1.02 98.50 1.50
RGR-T10D 101.83 0.75 100.00 0.00
RGR-
T11D_I

103.92 1.29 100.70 0.70

RGR-
T11D_II

101.58 0.99 100.99 0.99

RGR-T14 103.72 1.09 101.03 1.03
Analytical Solution 102.60 - 100.00 -

2.2 Cantilever beam under parabolic shear loading

To investigate the performance of the elements in the analysis of structures
under distributed surface traction, the cantilever beam demonstrated in Fig-
ure 3 is analyzed [5, 12, 26].

This beam is made of an elastic material with the modulus of elasticity and
Poisson’s ratio equal to 3000 and 0.25, respectively and its thickness is taken
one unit. The beam is loaded by the parabolic distributed traction at its free
end, which is equal to 40 units. This benchmark problem also evaluates the
efficiency of elements in the analysis of structures using coarse meshes. As it
is evident in Figure 3, the beam is discretized by four quadrilateral elements.
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Figure 3: Cantilever beam under parabolic shear loading

In the case of triangular elements, eight elements are used, which the utilized
mesh is demonstrated in Figure 4. However, results of some of the reviewed
elements are reported for the regular mesh.

Figure 4: Triangular mesh for analysis Cantilever beam under parabolic shear loading

Table 4 presents the obtained responses by the mentioned membrane ele-
ments for deflections at the tip of the beam. Felippa reported the near-exact
tip deflection of the beam equal to 0.35601 [7].

Based on the reported results, RGR-T10 and RY-Q14D are the most accu-
rate elements in this problem with only 0.03 percent error in their estimations.
Similar to the previous problem, T-T9D has the worst performance with 25
percent error, and again the RY-Q10 is among the most accurate quadri-
lateral elements. As it can be seen, RGR-T14 is among the most accurate
elements. This was expected, since as mentioned in the respective reference,
an important feature of the complete second-order assumed strain-filed is
its ability in providing accurate responses for the problems with distributed
loading [22].

2.3 Cook’s skew beam

Cook trapezoidal beam is one of the most fundamental tests for checking
shear displacements in non-rectangular geometry [6]. Figure 5 demonstrates
this beam under uniformly distributed tip loading. This beam has a unit
thickness and is made of a material whose Young’s modulus and Poisson’s
ratio are 1 and 1

3 , respectively.
Many researchers also implement this benchmark to challenge the con-

vergence of their elements. Here, four different meshes, namely 2×2, 4×4,
8×8, and 16×16, are used. These meshes are demonstrated in Figure 6. The
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Table 4: Tip deflection of cantilever beam under parabolic shear
Element Vertical Dis-

placement
Relative
Error (%)

Q
ua

dr
ila

te
ra
le

le
m
en
ts

Q4 0.21290 40.20
Q8 0.34790 2.28
SS-R10 0.34070* 4.30
T-R12D 0.31328 12.00
BM-R10 0.34604* 2.80
RY-Q10 0.35280 0.90
RY-R10-I 0.32724* 8.08
RY-R10-II 0.33027* 7.23
RB-R12D 0.34120* 4.16
RSB-Q12D 0.33470* 5.99
RY-Q14D 0.35590 0.03
RY-Q18 0.35230 1.04

Tr
ia
ng

ul
ar

el
em

en
ts

LST 0.34770 2.33
T-T9D 0.26701 25.00
BB-T9D-I 0.27822* 21.85
RY-T10 0.35031* 1.60
RY-T10D 0.34680 2.59
RGR-T10 0.35610 0.03
RGR-T10D 0.34680 2.59
RGR-T11D-I 0.35850 0.70
RGR-T11D-II 0.35713 0.31
RGR-T14 0.35555 0.13

Near-exact solution 0.35601
* The results are attained from a regular mesh

Figure 5: Cook’s skew beam
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results of the point C deflection are presented in Table 5. It should be noted
that the near-exact solution for this problem is reported equal to 23.96 [21].

Outcomes of this problem are again in complete agreement with the find-
ings of previous numerical examples, and once more, the RGR-T11D-I and
RGR-T11D-II are among the best-performing elements. The other elements,
which provide accurate estimations, are RY-Q10, RGR-T10, and R-T9D. It
is somehow unexpected that R-T9D can compute a very accurate response
by a coarse 4×4 mesh. One of the elements that have relatively fast con-
vergence is RGR-T14. As it is evident, the convergence trend of different
elements is not similar. While most of the elements converge to the exact
response asymptotically from below, the RGR-T11D-I element approaches
the accurate response from above. Also, there are elements, such as RY-
T10 and RY-T10D, which show non-uniform convergence behavior, and even
RY-Q14D goes beyond the response. Nevertheless, most of the strain-based
elements demonstrate reasonable accuracy and convergence in this bench-
mark problem.

Figure 6: Utilized meshes for analysis of Cook’s skew beam

2.4 Thick curved beam

To appraise the ability of finite elements, especially triangular ones, in the
analysis of structures with curved geometry, many of the previous researchers
have evaluated the performance of their proposed element in solving the
curved beams, which is demonstrated in Figure 7 [5, 26, 32]. This beam is
loaded by the shear load P = 600 at its tip.

The module of elasticity, poison’s ratio, and thickness of this beam are
1000, 0, and 1, respectively. As depicted in Figure 7, four quadrilateral
elements are used to mesh this structure. In the case of triangular elements,
eight elements are used as demonstrated in Figure 8.
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Table 5: Deflection of point C of the Cook’s beam
Mesh

Element 2×2 4×4 8×8 16×16
Q4 11.80 18.29 22.08 23.43
SS-R10 17.06 30.64 30.64 30.65
T-R12D 14.85 17.25 19.88 21.80

Quadrilateral RY-Q10 25.65 24.27 24.01 23.96
elements RB-Q12D 17.87 23.37 23.38 23.50

RY-Q14D 27.61 30.48 31.85 32.44
RY-Q18 23.45 23.70 23.86 23.92
S-T9D 18.25 20.32 22.18 22.18
SS-T8 17.86 20.15 21.21 21.46
T-T9D 12.45 15.09 18.44 20.13
BB-T9D-I 18.52 21.36 22.45 23.69
BB-T9D-II 18.58 23.88 23.88 23.88
RY-T10 20.94 23.84 24.18 24.13

Triangular RY-T10D 25.82 27.19 27.23 27.09
elements R-T9D 18.78 23.94 23.94 23.94

RGR-T10 21.18 23.03 23.69 23.95
RGR-T10D 19.06 22.85 23.14 23.87
RGR-
T11D-I

26.00 24.39 24.01 23.97

RGR-
T11D-II

23.37 23.42 23.93 23.97

RGR-T14 23.64 23.73 23.85 23.96
Near-exact Solution 23.96

Figure 7: Thick curved beam with quadrilateral mesh

The exact vertical displacement of point A under the applied load is equal
to 90.10. The attained results by different elements are presented in Table
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Figure 8: The triangular mesh for analysis of thick curved beam

6. It is evident that the RGR-T11D-I element provides the most accurate
estimation with only 0.24% error. After this element, RGR-T10 with the
relative error of 0.79% is in the second place. It is interesting to note that
among the quadrilateral elements, the performance of Q8 is better than the
strain-based elements. Nonetheless, the error of most of the strain-based
elements is less than 5 percent, which for the utilized coarse mesh is negligible
by any set of standards. This problem shows that the elements formulated
by the assumed strain approach are a suitable option for efficient analysis of
curved structures, and can compete with isoparametric elements in terms of
accuracy and convergence.

Table 6: Deflection of point A of thick curved beam
Load P

Element Vertical Dis-
placement

Relative
Error (%)

Q8 88.60 1.66
SS-R10 98.71 9.56

Quadrilateral RY-Q10 86.92 3.53
elements RY-Q14D 87.00 3.44

RY-Q18 86.45 4.05
RY-T10 87.15 3.27
RY-T10D 87.47 2.92
RGR-T10 89.39 0.79

Triangular RGR-T10D 84.62 6.08
elements RGR-T11D-I 89.88 0.24

RGR-T11D-
II

88.30 2.00

RGR-T14 83.79 7.00
Analytical Solution 90.10
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2.5 Thin curved beam

To investigate the effect of the shear lock-in curved structures and also the
convergence rate to achieve the precise response, a thin curved beam test is
available. The modulus of elasticity, Poisson’s ratio, and thickness of this
structure, which is demonstrated in Figure 9 are 107, 0.25, and 0.1, respec-
tively [31, 32]. This beam is loaded by a unit vertical force at its tip.

Figure 9: Thin curved beam

Three different meshes are used to analyze this structure, namely 1×6,
2×12, and 4×24. These meshes are named based on the number of quadri-
lateral elements used in them. Needless to say, for analysis using triangular
elements, each quadrilateral element is divided into two triangular elements.
For instance, 1×6 is demonstrated in Figure 10.

Figure 10: The used 1×6 mesh for analysis of thin curved beam

The main purpose of solving this problem is to compute the tip deflection
of the beam under applied load and therefore, investigate the effect of the
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locking problem on the performance of the strain-based elements. The exact
vertical displacement at the tip is reported to be equal to 0.08734[23]. Table
7 presents the obtained results by some of the strain-based elements.

Table 7: Deflection of point A of thin curved beam
Mesh

Element 1×6 2×12 4×24
Deflection Relative

Error
(%)

Deflection Relative
Error
(%)

Deflection Relative
Error
(%)

Quadrilateral RY-Q10 -0.08901 1.91 -0.08844 1.26 -0.08846 1.28
elements RY-Q14D -0.08748 0.16 -0.08898 1.87 -0.08925 2.19

RY-Q18 -0.08745 0.12 -0.08840 1.21 -0.08850 1.33
RY-T10 0.05634 35.49 0.08491 2.78 0.08815 0.93
RGR-T10 -0.06305 27.81 -0.08493 2.76 -0.08609 1.43

Triangular RGR-T10D -0.06486 25.74 -0.08501 2.67 -0.08650 0.96
elements RGR-T11D -0.08291 5.07 -0.08434 3.43 -0.08691 0.49

RGR-T11D -0.08265 5.36 -0.08656 0.89 -0.08622 1.28
RGR-T11D -0.08712 0.25 -0.08713 0.24 -0.08728 0.07

Analytical Solution -0.08734

It is evident that the mentioned triangular elements, except the RGR-
T11D-I and II and RGR-T14, face the locking problem in the coarsest mesh
and behave too stiffly. In contrast, these elements provide an acceptable
response. In the coarsest mesh, these elements do not lock and have a maxi-
mum error of 5.36%. This error reduces to 0.07% in the finest mesh. It should
be noted that the quadrilateral elements provide more accurate estimations
in the coarse mesh. However, in the case of the finest utilized mesh, they
tend to become a bit more flexible and therefore, predict responses higher
than the exact values.

2.6 McNeal’s beam

McNeal and Harder proposed this benchmark to examine the sensitivity of
the elements to the mesh distortion and the trapezoidal locking phenomenon
[9]. The geometry of this beam and the rectangular, parallelogram, and
trapezoidal meshes used for analysis by quadrilateral elements are depicted
in Figure 11. The utilized meshes for triangular meshes are demonstrated in
Figure 12.

Modulus of elasticity, Poisson’s ratio, and thickness of the structure are
107, 0.3, and 0.1, respectively. Two modes of loading are assumed, as depicted
in Figure 10. The derived responses by the strain-based elements are listed in
Table 8. This test is a difficult problem for many of the displacement-based
membrane elements since they demonstrate high sensitivity to the trapezoidal
meshes. For example, the powerful Q8 element with all of its capabilities
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Figure 11: McNeal’s beam and utilized quadrilateral meshes

Figure 12: The utilized triangular meshes for analysis of McNeal’s beam

faces fatal error for both modes of loading in trapezoidal mesh. However,
as it is evident from the results presented in Table 7, most of the strain-
based elements have no problem in this case. Although SS-R10 and S-T9D
are exceptions, they suffer from trapezoidal locking severely. It is interesting
to note that the RGR-T11D-II provides very accurate estimations for the
shear loading without any problem due to locking, while most of the other
elements face the trapezoidal locking under shear loading. In the flexural
loading, RGR-T14 can capture the exact response in all the utilized meshes.

2.7 Higher-order patch test

The beam, which is demonstrated in Figure 13, is the next numerical example
that evaluates the performance of plane strain-based elements.

This beam, which has a geometric ratio of 10, is made of the elastic
material with a modulus of elasticity and Poisson’s ratio equal to 100 and 0,
respectively. The thickness of the beam is taken as 1. Two different types of
meshes, namely regular and distorted, which are demonstrated in Figure 14,
are used.
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Table 8: Normalized tip deflection of the McNeal’s beam
Load P Load M

Element Rectang Parallelo Trapezoi Rectang Parallelo Trapezoi
ular
mesh

gram
mesh

dal
mesh

ular
mesh

gram
mesh

dal
mesh

Q4 9.30 3.58 3.06 9.34 3.14 2.21
Q8 95.12 91.94 85.43 100.00 75.94 9.32
SS-R10 4.62 3.61 0.00 11.77 10.07 0.37

QuadrilateralRY-Q10 99.30 99.42 99.42 100.00 100.00 100.00
elements RB-Q12D 99.26 98.69 98.78 99.63 99.26 99.26

RSB-Q12D 100.00 97.59 97.78 100.00 98.89 98.89
RY-Q14D 98.33 98.74 98.79 98.88 99.11 99.19
RY-Q18 100.00 100.00 100.00 100.00 100.00 100.00
LST 98.3 97.05 96.12 99.34 99.40 99.22
S-T9D 4.75 3.63 0.05 11.82 10.13 0.04
BB-T9D-I 94.42 87.40 83.35 94.83 94.42 95.21
BB-T9D-II 96.40 95.04 98.82 98.94 98.79 98.81
RY-T10 99.44 94.30 92.11 100.00 100.00 100.01

Triangular RY-T10D 99.43 94.94 92.31 100.00 100.00 100.00
elements R-T9D 99.63 97.87 97.87 99.62 99.25 99.25

RGR-T10 99.41 99.52 99.92 100.00 99.95 100.00
RGR-T10D 99.33 94.12 90.56 100.00 99.98 100.00
RGR-
T11D-I

104.34 102.48 104.99 100.79 100.56 100.94

RGR-
T11D-II

100.00 100.00 100.30 107.40 108.80 106.90

RGR-T14 0.994 0.995 0.995 100.00 100.00 100.00
Analytical Solutions 0.1081 0.0054

Figure 13: Higher-order patch test

This test examines the performance of the elements under pure bending
and considering the simple support conditions. The attained results by the
strain-based elements are listed in Table 9. It is evident that all of the
elements can compute the exact response regardless of the utilized mesh.
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Figure 14: Utilized regular and distorted meshes

Table 9: Maximum displacements of the higher-order patch test
Regular mesh Distorted mesh

Element Max U Max V Max U Max V
RY-Q10 -0.600 1.500 -0.600 1.500
RY-R10-I -0.600 1.500 -0.600 1.500
RB-R12D -0.600 1.500 -0.600 1.500

Quadrilateral RB-Q12D -0.594 1.493 -0.592 1.484
elements RSB-Q12D -0.590 1.500 -0.590 1.490

RY-Q14D -0.600 1.500 -0.600 1.500
RY-Q18 -0.600 1.500 -0.600 1.500
RY-T10D -0.600 1.500 -0.600 1.500
RGR-T10 -0.600 1.500 -0.600 1.500

Triangular RGR-T10D -0.600 1.500 -0.600 1.500
elements RGR-T11D-I -0.600 1.500 -0.600 1.500

RGR-T11D-II -0.600 1.500 -0.600 1.500
RGR-T14 -0.600 1.500 -0.600 1.500

Analytical Solution -0.600 1.500 -0.600 1.500

2.8 Thick-walled cylinder

The cylindrical plane strain test of the thick wall under uniform internal
pressure is the eighth problem, which investigates the effect of the Poisson’s
locking on the performance of strain-based elements [1]. Due to symmetry,
only a quarter of this cylinder will be analyzed. This structure and utilized
mesh are depicted in Figure 15.
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Figure 15: Thick-walled cylinder and used mesh

The elastic modulus of the material is 1000, and it is solved for different
values of Poisson’s ratio varying from 0.3 to 0.4999. The derived results by
different elements are presented in Table 10. According to the outcomes, the
assumed strain approach results in elements free from the Poisson’s locking.

Table 10: Normalized radial displacement of the thick-walled cylinder at the inner
radius

Poisson’s ratio
Element 0.3 0.49 0.499 0.4999

RY-Q10 0.9799 0.9789 0.9790 0.9794
Quadrilateral RY-Q14D 1.1805 1.1839 1.1841 1.1846
elements RY-Q18 0.9360 0.9576 0.9593 0.9599

BB-T9D-I 0.9743 - - -
Triangular RGR-T11D-I 1.01869 1.0356 1.0361 1.0365
elements RGR-T11D-II 1.02838 1.04484 1.04545 1.04604

RGR-T14 1.07564 1.07724 1.07726 1.07527
Analytical Solution [12] 0.00506 0.00506 0.00504 0.00458

2.9 Theoretical slender beam

The beam depicted in Figure 16, with a length of 100 is made of an elastic
material with Young’s modulus and Poisson’s ratio of 106 and 0.3, respec-
tively. This structure is used to investigate the shear effect on the slender
plane problems. This structure is analyzed using two different meshes. The
obtained results for tip displacements of the beam are listed in Table 11.
RGR-T10 has the best performance among the reported elements. It is evi-
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Figure 16: Extremely slender cantilever beam

dent that Q4 suffers from the locking problem and therefore, cannot compute
the exact response even using a fine mesh.

Table 11: Tip displacements of slender cantilever beam
Displacements

Element Mesh Ux ×100 Uy

Q
ua

dr
ila

te
ra
le

le
m
en
ts

Q4 1×100 2.0222 2.6965
2×200 2.1280 2.8371

RY-Q10 1×100 3.0046 4.0067
2×200 2.9991 3.9982

RY-R10-I 1×100 3.0046 4.0067
2×200 2.9991 3.9982

RY-R10-II 1×100 3.0000 4.0002
2×200 2.9987 3.9976

RY-Q14D 1×100 3.0000 4.0067
2×200 3.193 4.2581

RY-Q18 1×100 2.9983 3.9967
2×200 2.9989 3.9980

Tr
ia
ng

ul
ar

el
em

en
ts

RY-T10 1×100 3.0000 4.0001
2×200 2.9992 3.9986

RGR-T10 1×100 3.0000 4.0000
2×200 3.0000 4.0000

RGR-T10D 1×100 2.9845 3.9767
2×200 2.9944 3.9975

RGR-
T11D-I

1×100 3.0001 4.0003

2×200 3.0001 4.0001
RGR-
T11D-II

1×100 3.0002 4.0002

2×200 3.0001 4.0000
RGR-T14 1×100 3.0012 4.0131

2×200 3.0007 4.0043
Analytical Solution 3 4
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2.10 Cantilever beam with distortion parameter

A distorted mesh is a finite element mesh that some of its elements deviate
vastly from the equilateral triangle and symmetric quadrilateral shapes. To
study the influence of the distortion on the behavior of the strain-based el-
ements and prove their superiority in comparison with displacement-based
elements, the beam showed in Figure 17 is analyzed by using two quadrilat-
eral or four triangular elements [6].

Figure 17: Cantilever beam with distortion parameter and utilized meshes

Table 12: Tip deflection of the cantilever beam with distortion parameter
E

Element 0 0.5 1 2 3 4 4.9
Q4 28.00 21.00 14.10 9.70 8.30 7.20 6.20
Q8 100.00 99.90 99.30 89.39 59.70 32.01 -

QuadrilateralRY-Q10 100.00 100.00 100.00 100.00 100.00 100.00 100.00
elements RY-Q14D 99.80 100.00 100.10 100.70 101.20 102.8 -

RY-Q18 96.60 97.60 98.50 100.4 105.30 116.8 -
S-T9D 45.08 45.33 45.84 47.96 49.15 49.47 -
BB-T9D-I 96.02 96.60 97.04 97.40 97.26 96.90 -
BB-T9D-II 96.02 96.60 97.04 97.40 97.26 96.90 -
RY-T10D 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Triangular R-T9D 100.00 97.72 98.15 98.64 99.20 98.76 -
elements RGR-T10 100.00 100.00 100.00 100.00 100.00 100.00 100.00

RGR-T10D 100.00 100.00 100.00 100.00 100.00 100.00 100.00
RGR-T11D-I 99.96 99.98 99.94 99.96 99.95 99.89 99.91
RGR-T11D-II 100.00 100.00 100.00 100.00 99.95 99.91 99.89
RGR-T14 100.00 100.00 100.00 100.00 104.90 114.70 114.73

Analytical Solution 100

The beam is made of a material with a modulus of elasticity and Poisson’s
ratio equal to 1500 and 0.25, respectively and its thickness is taken equal
to 1 unit. A distortion parameter, e, controls the shape of the elements.
The thickness of the beam is taken equal to 1. This beam is reanalyzed by
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increasing distortion parameter, and the attained results for tip deflection are
listed in Table 12. As it can be seen, the strain-based elements are completely
insensitive to the mesh distortion, and increasing the distortion parameter
has no remarkable effect on their performance, while the accuracy of Q4 and
Q8 diminishes rapidly by the increase in the distortion parameter. Another
interesting finding of this numerical example is the poor performance of S-
T9D, which is one of the first suggested strain-based elements.

2.11 Cantilever shear wall

An important purpose of formulating efficient elements is to analyze practical
structures with coarser meshes and consequently fewer degrees of freedom.
Therefore, in order to investigate the efficiency of the strain-based elements
in practical problems, two shear walls are examined with the strain-based
elements. In the first problem, the shear wall shown in Figure 18 is analyzed
[24].

Figure 18: The shear wall and the utilized meshes

The modulus of elasticity and Poisson’s ratio of the wall are 2×107 and
0.2, respectively. Here, to reevaluate the accuracy and efficiency of strain
formulation, the conventional element Q8 is brought for comparison. Fur-
thermore, to investigate the convergence, two finer meshes have been used.
The normalized responses are provided in Table 13.

Based on the results presented in Table 13, the RGR-T14 element demon-
strates the best performance among the compared elements. Two interesting
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outcomes are the lower accuracy of Q8 and the inability of RY-Q14D, which
becomes too flexible when using finer meshes. As it can be seen, all the
reported strain-based elements except RGR-T10D have less than 5 percent
error in their estimations when a coarse 1×5 meshes are used. Once again,
this finding demonstrates the high efficiency of the assumed strain approach.

Table 13: Tip deflection of the cantilever beam with distortion parameter
Element Mesh

1×5 2×10 4×20
Q8 62.17 80.10 89.17
RY-R10-I 95.91 97.13 98.24

Quadrilateral RY-R10-II 95.87 96.99 98.19
elements RY-Q14D 95.86 127.16 138.61

RY-Q18 96.23 97.04 97.76
RY-T10 96.86 97.53 98.35
RGR-T10 96.62 97.78 98.12

Triangular RGR-T10D 89.60 95.63 95.89
elements RGR-T11D-I 96.21 98.56 99.01

RGR-T11D-II 98.01 98.86 99.45
RGR-T14 98.85 99.14 99.76

Near-exact solution 0.002570

2.12 Coupled shear walls

In the last numerical example, two coupled shear walls are analyzed to study
the performance of the elements in the presence of opening. This structure,
which is demonstrated in Figure 19, is made of the elastic material with mod-
ulus of the elasticity and Poisson’s ratio equal to 2×107 and 0.2, respectively
[11].

The thickness of this structure is assumed 0.4. Lateral loads with an in-
tensity of P = 500 are applied to each story level of the left shear wall. The
structure is analyzed using two meshes consisting of 48 and 192 quadrilateral
elements (96 and 384 triangular elements). To achieve a near-exact solution,
the coupled wall is analyzed using 26880 eight-node isoparametric elements
(Q8). The obtained results for lateral displacements at different story levels
are reported in Table 14. It is evident that the RGR-T11D-II element pro-
vides the most accurate estimations. Based on the reported results for Q8
element, most of the strain-based membrane elements are more accurate and
efficient. However, there is an exception about RY-Q14D, which becomes too
flexible by using finer meshes and fails to converge to the exact response.
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Figure 19: The Coupled shear wall and the utilized meshes a) applied lateral load b)
coarse mesh with 48 elements c) fine mesh with 192 elements

3 Discussion

The performance of the existing strain-based plane elements reviewed in the
first part of this study was evaluated using a series of benchmark problems
in the previous section. First, a cantilever beam with distorted mesh was an-
alyzed. The attained results showed low sensitivity of strain-based elements
to mesh distortion compared to the classical displacement-based element,
such as, Q4, Q8, and LST. Based on the reported results, the triangular
elements are less sensitive than quadrilateral ones. In the next problem,
the performance of the strain-based elements in the analysis of structures
under distributed surface tractions with coarse mesh was evaluated. Once
again, the superior performance of strain-based formulation in comparison
with the displacement-based approach is demonstrated. It is also found that
the higher-order elements provide better responses than others. However,
the part of this better performance can be attributed to the larger num-
ber of degrees of freedom. To test the convergence trend of the elements,
Cook’s skew beam was analyzed using different plane elements. The derived
results proved faster convergence of strain-based elements. However, their
convergence trend is not uniform, that is, some elements converge to the ex-
act solution form below and some other approaches the exact response from
above.

The next two problems were devoted to assessing the performance of
strain-based membrane elements in the analysis of structures with curved
geometry. As it was expected, the triangular elements demonstrate better
accuracy and faster convergence. It should be noted that some of the quadri-
lateral elements provided more accurate estimations than triangular ones in
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Table 14: Lateral story displacements of the coupled shear wall
Lateral displacement

Element Number
of ele-
ments

Number of
degrees-of-
freedom

Story 2 Story 4 Story 6 Story 8

Q8 48 440 0.56 1.53 2.59 3.64
192 1348 0.68 1.82 3.02 4.16

RY-R10-I 48 264 0.77 2.07 3.40 4.71
192 844 0.78 2.07 3.44 4.71

QuadrilateralRY-R10-II 48 216 0.69 1.88 3.13 4.28
elements 192 668 0.74 2.00 3.32 4.65

RY-Q14D 48 348 0.90 2.62 4.61 6.63
192 962 1.14 3.22 5.49 7.70

RY-Q18 48 540 0.76 2.03 3.36 4.61
192 1700 0.80 2.13 3.51 4.81

RY-T10 96 402 0.71 1.92 3.18 4.38
384 1272 0.80 2.12 3.50 4.79

RGR-T10 96 396 0.76 2.03 3.29 4.54
384 1252 0.85 2.26 3.63 4.96

Triangular RGR-T10D 96 348 0.73 1.94 3.19 4.45
elements 384 1018 0.82 2.14 3.55 4.86

RGR-
T11D-I

96 530 0.75 2.07 3.26 4.63

384 1800 0.83 2.25 3.56 5.02
RGR-
T11D-II

96 444 0.78 2.15 3.35 4.66

384 1442 0.88 2.31 3.67 5.19
RGR-T14 96 732 0.69 1.96 3.05 4.18

384 2404 0.85 2.21 3.48 4.99
Near-exact solution 0.90 2.38 3.91 5.35

the coarse mesh. However, in the case of the finest utilized mesh, they tend
to become a bit more flexible and therefore, predict responses higher than
the exact values. To show the insensitivity of the strain-based formulation to
trapezoidal locking, the McNeal’s beam was analyzed. In fact, the trapezoidal
locking is generally a problem for quadrilateral displacement-based elements,
such as, Q4 and Q8. Once more, utilization of strain-based quadrilateral
elements removes this problem and results in highly accurate responses irre-
spective of the mesh type. Another problem, which tested the performance
of the strain-based elements with respect to mesh distortion was the higher-
order patch test. The results of this numerical test proved considerable the
insensitivity of the strain-based element to mesh distortion. The effect of dis-
tortion extent on the accuracy of the element responses was also investigated
in the tenth studied problem. In this part, a cantilever beam loaded with a
bending moment at its free end was reanalyzed considering different distorted
meshes. Based on the attained results, elements, such as, RY-Q10, RY-T10D,
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RGR-T10, and RGR-T10D are completely insensitive to the mesh distortion
irrespective of its extent. The other element, however, showed some deviation
from the exact responses by introducing severe mesh distortion.

Another problem that occurs for the classical plane elements is the Pois-
son’s locking phenomenon, in which the finite elements face difficulty in pre-
dicting accurate responses for the structures made of nearly incompressible
material. Solving a thick-walled cylinder under internal pressure for dif-
ferent values of Poisson’s ratio, it is shown that higher-order strain-based
elements are free from this locking phenomenon. To assess the influence of
shear loading of the responses of strain-based elements for slender structures,
a theoretically very slender cantilever beam with two different meshes was
analyzed. Again, the elements such as RGR-T10, which the equilibrium con-
ditions were applied on their assumed strain field, provided the most accurate
estimations.

Finally, two problems tested the ability of the reviewed strain-based ele-
ments in the analysis of practical problems. For this purpose, two multistory
single and coupled shear wall structures were analyzed to study the conver-
gence and numerical efficiency of the strain-based formulation. The results
of the single shear wall showed the fast convergence, as well, high accuracy of
the strain-based element in coarse meshes compared to the classical elements.
The coupled shear wall test provided a rough measure for evaluating the nu-
merical efficiency of the studied elements by comparing the accuracy of the
responses, as well as, the total number of degrees-of-freedom for two different
types of meshes. It should be noted that by efficiency, the authors mean the
number of elements and degrees of freedom required for a specific level of
accuracy. From the numerical results in section 2, it is evident the strain-
based elements provide enough accurate estimations with coarser meshes,
in comparison with the classical displacement-based elements. However, to
achieve a better judgment about the efficiency of the elements, the issue of
computational time should also be investigated, which is not pursued in the
present study and require further investigation in future research works.

4 Conclusion

Based on the performed review, many of the existing strain-based membrane
elements were formulated by using linear assumed strain fields. On the other
hand, most of the limited elements with higher-order strain fields were devel-
oped using incomplete higher-order polynomials, which do not provide any
clear justification for the selected polynomial terms. Another interesting find-
ing from the first part of this study was that in many of the available plane
elements, the equilibrium criterion is not imposed on the assumed strain field.
Moreover, it was shown that the inclusion of drilling degrees of freedom would
improve the performance of resulting elements under in-plane bending. In
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this part, several well-known benchmark problems were solved using the ex-
isting strain-based membrane elements and common displacement-based el-
ements such as Q4, Q8, and LST. The obtained results clearly demonstrated
the superiority of the strain-based formulation in accuracy and efficiency
against displacement-based membrane elements. Various problems such as
mesh sensitivity, shear, trapezoidal, and Poisson’s locking were investigated,
and the attained results showed that almost all the plane elements formulated
by the assumed strain approach are free from these shortcomings, and even
can compute response practical problems using a coarse mesh of elements.
Therefore, the strain-based elements completely fit in the definition of robust
finite elements. It must be added that the recently proposed higher-order tri-
angular plane elements such as RGR-T11D-I, RGR-T11D-II, and RGR-T14
are among the best-performing elements in all the analyzed benchmark prob-
lems. This shows the merit of using higher-order assumed strain fields and
imposing equilibrium equations to the opted strain components. The men-
tioned advantages make assumed strain formulation an interesting alternative
for developing robust finite elements of different types, such as plates, shells,
and solids.
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