
Iranian Journal of Numerical Analysis and Optimization
Vol. 12, No. 1, (2022), pp 37-53
DOI:10.22067/ijnao.2021.69416.1021
https://ijnao.um.ac.ir/

How to cite this article
Research Article

Numerical solution of a system of Volterra
integral equations in application to the
avian human influenza epidemic model

R. Katani

Abstract

We propose an efficient multistage method for solving a system of linear
and nonlinear Volterra integral equations of the second kind. This numer-
ical method is based on the Gauss–Legendre quadrature rule that obtains
several values of unknown function at each step, and it will be shown that
the order of the convergence is O(M−4), where M is the number of the
nodes in the time discretization. The method has also the advantages of
simplicity of application, less computational time, and useful performance
for large intervals. In order to show the efficiency of the method, numerical
results for the avian human influenza epidemic model is obtained that is
comparable with the fourth-order Runge–Kutta method.
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1 Introduction

Numerical methods for solving a variety of system of Volterra integral equa-
tions (SVIE) are offered in many publications. Here readers may refer to
[1, 3, 7, 10] and others.
In this article, we introduce a multistage numerical method for solving SVIE,
and then the introduced method will be used to the avian human influenza
epidemic model, which recently has been described by Iwami, Takeuchi, and
Liu [6]. This mathematical model is proposed to interpret the spread of the

Received 15 March 2021; revised 1 August 2021; accepted 1 August 2021
Roghayeh Katani
Faculty of Sciences, Yasouj University, Yasouj-Iran. email: katani@yu.ac.ir

37

https://ijnao.um.ac.ir/article_40401.html
https://ijnao.um.ac.ir/


38 Katani

avian influenza from the bird world to the human world. The avian influenza
has caused the death of millions of birds (almost 100% death) and it has
become a disease of great importance both for animal and human health.
Fortunately, there is still no evidence that the avian influenza virus can be
transmitted among humans [12], but this virus is unstable and lacks of gnomic
proofreading mechanism. Therefore the small errors, which occur when the
copies themselves, go undetected and uncorrected. Since the specifics of mu-
tations and evolution of the influenza viruses cannot be predicted, it is hardly
possible to know if or when a virus such as the avian influenza, might ac-
quire the properties needed to spread easily and sustainably among humans
[5]. However, experts warn about an occurrence of the so-called “mutant
the avian influenza”, which can be easily transmitted among humans with
potentially devastating consequence. The US Congressional Budget Office
has formally modeled the likely consequences of pandemic influenza and es-
timates that up to 2 million of the US population might die, with up to 40%
of all workers ill for as long as three or more weeks [11]. Thus, it is necessary
and urgent to investigate the transmission process of the avian influenza and
to take efficient measures to control the spread of the avian influenza.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminaries facts,
which are used throughout this article. Consider SVIE

Y (t) = G(t) +

∫ t

0

K(t, s, Y t(s))ds, 0 ≤ s ≤ t ≤ T, (1)

where Y (t) = [y(1)(t), y(2)(t), . . . , y(n)(t)]t is the desired function,
G(t) = [g(1)(t), g(2)(t), . . . , g(n)(t)]t, and

K(t, s, Y t(s)) =


k1(t, s, y

(1)(t), y(2)(t), . . . , y(n)(t))
k2(t, s, y

(1)(t), y(2)(t), . . . , y(n)(t))
...
kn(t, s, y

(1)(t), y(2)(t), . . . , y(n)(t))

 ,

are the source functions (At is the transposed matrix of A). Let system (1)
is uniquely solvable. Necessary and sufficient conditions for the existence
and uniqueness of solution (1) can be found in [9]. Therefore we assume the
following conditions:
(I) The source function G(t) is continuous (i.e., each component is continu-
ous).
(II) The kernel K(t, s, U) is a continuous function for 0 ≤ s ≤ t ≤ T and
0 ≤∥ U ∥< ∞.
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(III) The kernel K satisfies the Lipschitz condition

∥ K(t, s, U)−K(T, s, V ) ∥≤ L ∥ U − V ∥,

where the norm is defined as ∥ U ∥= max
0≤i≤n

|ui(t)|.

3 Numerical procedure

Let Ih = {tm = mh,m = 0, 1, . . . ,M} with tM = Mh = T be a given uniform
mesh on [0, T ]. For given real numbers cj with 0 = c0 < c1 < · · · < cp = 1, we
choose the set of mesh points as Πh := {tm,j = tm + cjh,m = 0, 1, . . . ,M −
1, j = 0, 1, . . . , p}, where cj , j = 1, 2, . . . , p− 1, are the roots of the (p− 1)th
Legendre polynomial. The Legendre polynomials Pp−1(x) are orthogonal
with respect to the weight functions w(x) = 1 over the interval [−1, 1], that
is, ∫ 1

−1

Pm(x)Pn(x)dx = δnm,

where δmn is the Kronecker delta (see, for example, [8, 4] for Legendre poly-
nomials and [13] for funding roots of polynomials).

For simplicity, let p = 3 (c1 = 3−
√
3

6 , c2 = 3+
√
3

6 ) and let n = 2 (system
dimensional). Then we will have a multistep method with at least four order
of convergence, which one can generalize it by increasing the Legendre poly-
nomial degree.
Assume that y

(i)
m,j ≈ y(i)(tm,j), m = 0, 1, . . . ,M − 1, j = 0, 1, 2, 3 and that

Ym,j ≈ Y (tm,j) = [y(1)(tm,j), y
(2)(tm,j)]

t. Thus system (1) can be rewrite as

y(1)(tm,j) =g(1)(tm,j) +

∫ tm

0

k1(tm,j , s, y
(1)(s), y(2)(s))ds

+

∫ tm,j

tm

k1(tm,j , s, y
(1)(s), y(2)(s))ds, (2)

y(2)(tm,j) =g(2)(tm,j) +

∫ tm

0

k2(tm,j , s, y
(1)(s), y(2)(s))ds

+

∫ tm,j

tm

k2(tm,j , s, y
(1)(s), y(2)(s))ds, (3)

m = 0, 1, . . . ,M − 1, j = 1, 2, 3.

Note that Y0,0 = [y
(1)
0,0, y

(2)
0,0]

t = [g(1)(0), g(2)(0)]t, and suppose that approxi-
mations Y0,1, Y0,2, Y1,0, . . . , Yn,0, have been calculated in the previous steps.
Therefore the first integral in relations (2) and (3) can be estimated by using
the Gauss–Legendre quadrature rule,
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40 Katani∫ tm

0

k1(tm,j , s, y
(1)(s), y(2)(s))ds =

m−1∑
i=0

∫ ti+1

ti

k1(tm,j , s, y
(1)(s), y(2)(s))ds

≈ h

2

m−1∑
i=0

[
k1(tm,j , ti,1, y

(1)
i,1 , y

(2)
i,1 ) + k1(tm,j , ti,2, y

(1)
i,2 , y

(2)
i,2 )

]
=: A1(m, j),

∫ tm

0

k2(tm,j , s, y
(1)(s), y(2)(s))ds =

m−1∑
i=0

∫ ti+1

ti

k2(tm,j , s, y
(1)(s), y(2)(s))ds

≈ h

2

m−1∑
i=0

[
k2(tm,j , ti,1, y

(1)
i,1 , y

(2)
i,1 ) + k2(tm,j , ti,2, y

(1)
i,2 , y

(2)
i,2 )

]
=: A2(m, j).

(4)

If j = 3, then the second integral in relations (2) and (3) can be similarly
approximated as∫ tm,3

tm

k1(tm,3, s, y
(1)(s), y(2)(s))ds

≈ h

2

[
k1(tm,3, tm,1, y

(1)
m,1, y

(2)
m,1) + k1(tm,3, tm,2, y

(1)
m,2, y

(2)
m,2)

]
,∫ tm,3

tm

k2(tm,3, s, y
(1)(s), y(2)(s))ds

≈ h

2

[
k2(tm,3, tm,1, y

(1)
m,1, y

(2)
m,1) + k2(tm,3, tm,2, y

(1)
m,2, y

(2)
m,2)

]
, (5)

and for j = 1, by using this quadrature rule, we obtain∫ tm,1

tm

k1(tm,1, s, y
(1)(s), y(2)(s))ds

≈ c1h

2

[
k1(tm,1, tm +

h

6
, y(1)(tm +

h

6
), y(2)(tm +

h

6
))

+k1(tm,1, tm +
2−

√
3

6
h, y(1)(tm +

2−
√
3

6
h), y(2)(tm +

2−
√
3

6
h))

]
,∫ tm,1

tm

k2(tm,1, s, y
(1)(s), y(2)(s))ds

≈ c1h

2

[
k2(tm,1, tm +

h

6
, y(1)(tm +

h

6
), y(2)(tm +

h

6
))

+k2(tm,1, tm +
2−

√
3

6
h, y(1)(tm +

2−
√
3

6
h), y(2)(tm +

2−
√
3

6
h))

]
.

(6)

Finally, for j = 2, we obtain
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tm

k1(tm,2, s, y
(1)(s), y(2)(s))ds

≈ c2h

2

[
k1(tm,2, tm +

h

6
, y(1)(tm +

h

6
), y(2)(tm +

h

6
))

+k1(tm,2, tm +
2 +

√
3

6
h, y(1)(tm +

2 +
√
3

6
h), y(2)(tm +

2 +
√
3

6
h))

]
,∫ tm,2

tm

k2(tm,2, s, y
(1)(s), y(2)(s))ds

≈ c2h

2

[
k2(tm,2, tm +

h

6
, y(1)(tm +

h

6
), y(2)(tm +

h

6
))

+k2(tm,2, tm +
2 +

√
3

6
h, y(1)(tm +

2 +
√
3

6
h), y(2)(tm +

2 +
√
3

6
h))

]
.

(7)

In relations (6) and (7), tm + 2±
√
3

6 h and tm + h
6 do not belong to the mesh

points Πh. Then we will have a problem to computing y(i)(tm + 2±
√
3

6 h) and
y(i)(tm + h

6 ), i = 1, 2. In order to overcome to this difficulty, we use the
Lagrange interpolation

y(i)(x) ≈ Pi(x) =

3∑
i′=0

Li′(x)y
(i)
m,i′ , Li′(x) =

3∏
j′=0
j′ ̸=i′

x− tm,j′

ci′ − cj′
,

for x = tm + 2±
√
3

6 h or x = tm + h
6 . Substituting these approximations into

(2), leads to the system of algebraic equations

y
(i)
m,1 =g(i)(tm,1) +Ai(m, 1) +

c1h

2

[
ki(tm,1, tm +

h

6
,P1(tm +

h

6
),P2(tm +

h

6
))

+ki(tm,1, tm +
2−

√
3

6
h,P1(tm +

2−
√
3

6
h),P2(tm +

2−
√
3

6
h))

]
,

y
(i)
m,2 =g(i)(tm,2) +Ai(m, 2) +

c2h

2

[
ki(tm,2, tm +

h

6
,P1(tm +

h

6
),P2(tm +

h

6
))

+ki(tm,2, tm +
2 +

√
3

6
h,P1(tm +

2 +
√
3

6
h),P2(tm +

2 +
√
3

6
h))

]
,

y
(i)
m,3 =g(i)(tm,3) +Ai(m, 3)

+
h

2

[
ki(tm,3, tm,1, y

(1)
m,1, y

(2)
m,1) + ki(tm,3, tm,2, y

(1)
m,2, y

(2)
m,2)

]
,

i = 1, 2. (8)
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This system can be solved by using an iterative method such as Newton–
Raphson method or by using a suitable software package such as Maple or
MATLAB

4 Convergence analysis

Theorem 1. The approximation method given by system (8) is convergent,
and its order of convergence is at least 4 for the functions ki and g(i) (i = 1, 2)
with at least fourth-order continuous derivatives.

Proof. Define Em,j = Ym,j − Y (tm,j), where Y (tm,j), Ym,j ∈ R2 denote,
respectively, the exact and approximate solutions of (1) at the point t = tm,j .
Subtracting (6) from (2) and (3) (for j = 1) leads to

Em,1 =Ym,1 − Y (tm,1)

=
h

2

m−1∑
i=0

[
K(tm,1, ti,1, Y

t
i,1) +K(tm,1, ti,2, Y

t
i,2)

]
+

c1h

2

[
K(tm,1, tm +

h

6
,P(tm +

h

6
))

+K(tm,1, tm +
2−

√
3

6
h,P(tm +

2−
√
3

6
h))

]
−
∫ tm

0

K(tm,1, s, Y
t(s))ds−

∫ tm,1

tm

K(tm,1, s, Y
t(s))ds,

where P(x) = [P1(x),P2(x)]. By adding and diminishing the terms

h

2

m−1∑
i=0

[
K(tm,1, ti,1, Y

t(ti,1)) +K(tm,1, ti,2, Y
t(ti,2))

]
,

and

c1h

2

[
K(tm,1, tm +

h

6
, Y t(tm +

h

6
)) +K(tm,1, tm +

2−
√
3

6
h, Y t(tm +

2−
√
3

6
h))

]
,

we can write

||Em,1|| ≤
h

2

m−1∑
i=0

[
||K(tm,1, ti,1, Y

t
i,1)−K(tm,1, ti,1, Y

t(ti,1))||

+||K(tm,1, ti,2, Y
t
i,2)−K(tm,1, ti,2, Y

t(ti,2))||
]

+
c1h

2

[
||K(tm,1, tm +

h

6
,P(tm +

h

6
))−K(tm,1, tm +

h

6
, Y t(tm +

h

6
))||
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+ ||K(tm,1, tm +
2−

√
3

6
h,P(tm +

2−
√
3

6
h))

−K(tm,1, tm +
2−

√
3

6
h, Y t(tm +

2−
√
3

6
h))||

]
+ (m+ 1)||e(G)||.

In the previous relation, e(G) is the upper bound of the Gauss–Legendre
integration error, that is,

||
h

2

m−1∑
i=0

[
K(tm,1, ti,1, Y

t(ti,1)) +K(tm,1, ti,2, Y
t(ti,2))

]
−

m−1∑
i=0

∫ ti+1

ti

K(tm,1, s, Y
t(s))ds||

+ ||
c1h

2

(
K(tm,1, tm +

h

6
, Y t(tm +

h

6
)) +K(tm,1, tm +

2−
√
3

6
h, Y t(tm +

2−
√
3

6
h))

)
−

∫ tm,1

tm

K(tm,1, s, Y
t(s))ds|| ≤ m||e(G)||+ ||e(G)||.

If ki ∈ C4([0, 1]) (i = 1, 2), then e(G) = 1
4320h

4k(4)(t, t̃, Y t(t̃)) where 0 < t̃ <
1; see [2].
In the following, by using the Lipschitz condition for the kernel K, we have

||Em,1|| ≤
hL

2

m−1∑
i=0

(||Ei,1||+ ||Ei,2||) +
c1hL

2

[
||P(tm +

h

6
))− Y t(tm +

h

6
))||

+ ||P(tm +
2−

√
3

6
h))− Y t(tm +

2−
√
3

6
h))||

]
+ (m+ 1)||e(G)||.

Let I(t) be the Lagrange interpolation error, that is, I(t) = Y t(t) − P(t).
Thus

||Em,1|| ≤
hL

2

m−1∑
i=0

(||Ei,1||+ ||Ei,2||)

+
c1hL

2

[
||I(tm +

h

6
))||+ ||I(tm +

2−
√
3

6
h))||

]
+ (m+ 1)||e(G)||.

Without loss of generality, assume max
j=1,2,3

||Em,j || = ||Em,1||. Then it is easy
to see that

||Em,1|| ≤ hL

m−1∑
i=0

||Ei,1||+ c1hL||I||+ (m+ 1)||e(G)||,

where I is the maximum error of the Lagrange interpolation. Finally, from
the Gronwall inequality [2], we conclude that
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||Em,1|| ≤ (c1hL||I||+M ||e(G)||) exp(Ltm).

This yields ||Em,1|| → 0 as h → 0 and for the functions k1, k2, and g with
at least fourth-order continuous derivatives, we have e(G) = O(h4) and I =
O(h4). So we expect the error generally to be at least O(h4) as the numerical
results confirm it.

5 Application

5.1 Description of the model

In this part, the introduced numerical method is applied to interpret the avian
human influenza epidemic model. Iwami, Takeuchi, and Liu [6] proposed the
following mathematical model to interpret the spread of the avian human
influenza epidemic

X ′ = η − bX − ωXY,

Y ′ = ωXY − (b+m)Y,

S′ = λ− µS − (β1Y − β2H)S,

B′ = β1SY − (µ+ d1 + ϵ)B,

H ′ = β2SH + ϵB − (µ+ α+ γ)H,

R′ = γH − µR. (9)

All birds and humans in the effective population are divided into six main
groups, respectively, including susceptible birds (X), birds infected with the
avian influenza (Y ), susceptible humans (S), humans infected with the avian
influenza (B), humans infected with mutant the avian influenza (H), and
humans recovered from mutant the avian influenza (R). It is assumed that
all birds infected with the avian influenza are dead or remain infected and
can never recover. The parameter η and λ are the birth rates for birds and
humans, respectively. The natural death rate is assumed to be b and µ for
birds and humans, respectively. Furthermore, m and d are the death rates
infected by wild the avian influenza, respectively, for birds and humans, and
α is the additional death rate induced by mutant the avian influenza. The
parameters ω and β1 are the rate at which the avian influenza is contracted
from an average infected bird, β2 is the transmission rate of mutant the avian
influenza in humans, γ is the recovery rate, and ϵ is the mutation rate.

In [6], it was investigated mathematical properties and qualitative anal-
ysis of the above model, also was defined the basic reproductive number for
infected birth with the avian influenza (“r0, which is the number of newly
infected birds that are produced from anyone infected bird when all birds are
susceptible”) and the basic reproductive number for infected humans with
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mutant the avian influenza (R0) as

r0 =
ηω

b(b+m)
, R0 =

λβ2

µ(µ+ α+ γ)
.

Finally, using some theorems, global analysis to spread of the avian influenza
and mutant influenza in the human world is obtained as follows:
“If r0 ≤ 1 and R0 < 1, then the avian influenza and mutant the avian
influenza cannot spread in the human world. On the other hand, if R0 > 1,
then mutant the avian influenza spreads in the human world. Moreover, if
r0 > 1, then both the avian influenza and mutant the avian influenza spread
in the human world.”
It must be pointed that all constants are positive in the system (9) and that
ϵ is sufficiently small. Moreover, b is sufficiently larger than µ (b ≫ µ), α is
less than d, and d is less than m (m > d > α) because of the differences of
the virulence [6].

5.2 Solution procedure

One can transfer the system (9) to the SVIE

X(t) = X(0) + ηt−
∫ t

0

(b+ ωY (s))X(s)ds,

Y (t) = Y (0) +

∫ t

0

(ωX(s)− b−m)Y (s)ds,

S(t) = S(0) + λt−
∫ t

0

(µ+ β1Y (s) + β2H(s))S(s)ds,

B(t) = B(0) +

∫ t

0

(β1S(s)Y (s)− (µ+ d+ ϵ)B(s))ds,

H(t) = H(0) +

∫ t

0

(β2S(s)H(s) + ϵB(s)− (µ+ α+ γ)H(s))ds,

R(t) = R(0) +

∫ t

0

(γH(s)− µR(s))ds. (10)

In this way, we can apply the multistage method for this SVIE. In order to
do it, set t = tn,i. Therefore

X(tn,i) =X(0) + ηtn,i −
∫ tn

0

(b+ ωY (s))X(s)ds−
∫ tn,i

tn

(b+ wY (s))X(s)ds,

Y (tn,i) =Y (0) +

∫ tn

0

(ωX(s)− b−m)Y (s)ds+

∫ tn,i

tn

(wX(s)− b−m)Y (s)ds,
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S(tn,i) =S(0) + λtn,i −
∫ tn

0

(µ+ β1Y (s) + β2H(s))S(s)ds

−
∫ tn,i

tn

(µ+ β1Y (s) + β2H(s))S(s)ds,

B(tn,i) =B(0) +

∫ tn

0

(β1S(s)Y (s)− (µ+ d+ ϵ)B(s))ds

+

∫ tn,i

tn

(β1S(s)Y (s)− (µ+ d+ ϵ)B(s))ds,

H(tn,i) =H(0) +

∫ tn

0

(β2S(s)H(s) + ϵB(s)− (µ+ α+ γ)H(s))ds

+

∫ tn,i

tn

(β2S(s)H(s) + ϵB(s)− (µ+ α+ γ)H(s))ds, (11)

R(tn,i) =R(0) +

∫ tn

0

(γH(s)− µR(s))ds+

∫ tn,i

tn

(γH(s)− µR(s))ds,

n = 0, 1, . . . , N − 1, i = 1, 2, 3.

Assume that Xn,i, Yn,i, . . . , Rn,i are approximation for exact solutions X(t),
Y (t), . . . , R(t) in the point tn,i. Similar to the previous section, we can ap-
proximate the integrals in the SIVE (11). Use two points Gauss–Legendre
for integration on the interval [0, tn]. Thus∫ tn

0

(b+ ωY (s))X(s)ds ≈ h

2

n−1∑
j=0

[(b+ ωYj,1)Xj,1 + (b+ ωYj,2)Xj,2] =: A1,∫ tn

0

(ωX(s)− b−m)Y (s)ds

≈ h

2

n−1∑
j=0

[(ωXj,1 − b−m)Yj,1 + (ωXj,2 − b−m)Yj,2] =: A2,

...∫ tn

0

(γH(s)− µR(s))ds ≈ h

2

n−1∑
j=0

[γHj,1 − µRj,1 + γHj,2 − µRj,2] =: A6.

Continuing the same process for other integrals leads to the system of alge-
braic equations

Xn,1 =X0 + ηtn,1 −A1 −
hc1
2

[
(b+ ωP2(tn +

2−
√
3

6
h))P1(tn +

2−
√
3

6
h)

+(b+ ωP2(tn +
h

6
))P1(tn +

h

6
)

]
,
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Xn,2 =X0 + ηtn,2 −A1

− hc2
2

[
(b+ ωP2(tn +

2 +
√
3

6
h))P1(tn +

2 +
√
3

6
h)

+(b+ ωP2(tn +
h

6
))P1(tn +

h

6
)

]
,

Xn,3 =X0 + ηtn,3 −A1

− h

2
[(b+ ωYn,1)Xn,1 + (b+ ωYn,2)Xn,2] ,

Yn,1 =Y0 +A2

+
hc1
2

[
(ωP1(tn +

2−
√
3

6
h)− b−m)P2(tn +

2−
√
3

6
h)

+(ωP1(tn +
h

6
)− b−m)P1(tn +

h

6
)

]
,

Yn,2 =Y0 +A2

+
hc2
2

[
(ωP1(tn +

2 +
√
3

6
h)− b−m)P2(tn +

2 +
√
3

6
h)

+(ωP1(tn +
h

6
)− b−m)P1(tn +

h

6
)

]
,

Yn,3 =Y0 +A2

− h

2
[(ωXn,1 − b−m)Yn,1 + (ωXn,2)Yn,2] ,

...
Rn,1 =R0 +A6

+
hc1
2

[
γP5(tn +

2−
√
3

6
h)− µP6(tn +

2−
√
3

6
h)

+γP5(tn +
h

6
)− µP6(tn +

h

6
)

]
,

Rn,2 =R0 +A6

+
hc2
2

[
(γP5(tn +

2 +
√
3

6
h)− µP6(tn +

2 +
√
3

6
h)

+γP5(tn +
h

6
)− µP6(tn +

h

6
)

]
,
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Rn,3 =R0 +A6

− h

2
[γHn,1 − µRn,1 + γHn,2 − µRn,2] , n = 0, 1, . . . , N − 1,

where

X(tn + hx) ≈ P1(tn + hx) =

3∑
j=0

Lj(tn + hx)Xn,j ,

Y (tn + hx) ≈ P2(tn + hx) =

3∑
j=0

Lj(tn + hx)Yn,j ,

...

R(tn + hx) ≈ P6(tn + hx) =

3∑
j=0

Lj(tn + hx)Rn,j ,

for the Lagrange polynomial Lj(tn + hx) =
3∏

m=0
m ̸=j

x−cm
cj−cm

and x = 2±
√
3

6 or

x = 1
6 .

In each step (n = 0, 1, . . . , N − 1), three values of unknowns functions can be
obtained by solving this system.

6 Numerical results and discussion

In this section, we present some numerical results to investigate the spread
of the avian influenza. The initial value of system (10) is fixed at X(0) = 10,
Y (0) = 2, S(0) = 100, B(0) = 0, H(0) = 0, and R(0) = 0. These amounts
are chosen from the region Ω := {(X,Y, S,B,H,R) : X > 0, Y > 0, S >
0, B = 0,H = 0, R = 0}, which denotes that there do not exist the infected
humans with the avian influenza and mutant the avian influenza.
Similar to [6], the parameters are fixed at b = 5, m = 5, λ = 3, µ = 0.015,
β1 = 0.2, ϵ = 10−3, d = 1, α = 0.06, and γ = 0.01. We will provide numerical
results of infected birds (Y ) with the avian influenza, infected humans (B)
with the avian influenza, and infected humans (H) with mutant the avian
influenza by choosing different constants η, ω, and β2.
The numerical experiments are carried out in Maple, and nonlinear systems
arising from the nonlinear integral equations are solved by Maple routine
fsolve.

Example 1. In system (10), let η = 26.5, ω = 2 and β2 = 0.003. Then
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r0 =
ηω

b(b+m)
= 1.06, R0 =

β2λ

µ(µ+ α+ γ)
≈ 7.1.

Figures 1 and 2:(a) describe the pandemic effect on the birds and the
human world. Figure 1:(a) describes an endemic in the infected birds just
after the occurrence of the avian influenza. According to the reported global
analysis from [6], Figure 1:(b) shows an initially pandemic of the avian in-
fluenza and afterward pandemic level would be decreased, and Figure 2:(a)
interprets that the infected humans with mutant the avian influenza outbreak
and eventually keep the relatively high level of the size. It suggests that the
mutant the avian influenza pandemic will occur if we do not take efficient
measures to control the spread of the avian influenza. Moreover, CPU times
of the computations are shown in the figures.

(a) (b)

Figure 1: (a) The bird rate infected with avian, T = 10,M = 100, CPU time=19.5s. (b)
The human rate infected with the avian influenza, T = 100,M = 1000, CPU time=408s.
r0 = 1.06, R0 ≈ 7.1.

Example 2. The parameters are the same as the previous example except for
β2 = 0.0015 (the transmission rate of mutant the avian influenza is reduced
by half). Therefore the basic reproduction number for the avian influenza
in the bird and human world, respectively, is equal to r0 = ηω

b(b+m) = 1.06,
R0 = β2λ

µ(µ+α+γ) ≈ 3.5.

Figures 2:(b) and 3:(a), respectively, show the endemic process in the bird
world after the morbidity of the avian influenza and the occurrence of the
pandemic of the avian influenza in the human world. Figure 3:(b) shows the
human rate infected with mutant the avian influenza. Since R0 is relatively
small, we do not have mutant the avian influenza pandemic and in this case,
we have only the avian influenza pandemic.
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(a) (b)

Figure 2: (a) The rate infected with mutant the avian influenza, T = 100,M = 1000,
CPU time=408s, r0 = 1.06, R0 ≈ 7.1. (b) The bird rate infected with the avian influenza,
T = 10,M = 100, CPU time=19.3s, r0 = 1.06, R0 ≈ 3.5.

Example 3. Let η = 30 and ω = 1.5; then r0 = 0.9 and R0 ≈ 7.1.

The numerical results for this example are shown in Figures 4 and 5. In
these figures, there are two pandemic for the avian influenza and mutant the
avian influenza even, when all the infected birds and humans with the avian
influenza were extinct.

(a) (b)

Figure 3: (a) The human rate infected with the avian influenza, (b) The rate infected
with mutant the avian influenza. T = 100,M = 1000, CPU time=398s. r0 = 1.06, R0 ≈
3.5.
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(a) (b)

Figure 4: (a) The bird rate infected with the avian influenza, T = 10,M = 100, CPU
time=18.2s. (b) The human rate infected with the avian influenza, T = 100,M = 1000,
CPU time=409s. r0 = 0.9, R0 ≈ 7.1.

From these numerical results similar to [6], we conclude the following
result:

• Elimination policy of the infected birds is not necessarily useful, because
the speed of spread of disease in the bird world is fast and their lifetime
is shorter than humans.

• For r0 < 1, the infected humans extinct, but there are some infected
humans for r0 > 1 (see Figures 1:(a), 3:(a), 4:(b)).

• If R0 is not large enough, then the outbreak of mutant influenza will
not occur (see Figures 2:(a), 3:(b), 5).

The numerical results for Examples 1–3 are comparable with the fourth-order
Runge–Kutta method [6] in the whole intervals. Moreover, the presented
method, in contrast to Runge–Kutta methods, did not need to computation
a lot of derivations, and the computation time for this method is short. Of
course, we can increase the convergence order of the method. Also, numerical
results are obtained for each time interval that is one of the other advantages
of the introduced method.
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Figure 5: The rate infected with mutant the avian influenza, T = 100,M = 1000, CPU
time=409s, r0 = 0.9, R0 ≈ 7.1.
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