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sive complementary expansion method (SCEM) for solving singularly per-
turbed differential-difference equations with mixed shifts. It is compared
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1 Introduction

It is noteworthy to observe the wide use of differential equations involving
small parameters in a variety of disciplines from physics, chemistry, eco-
nomics to biology. A differential equation, in general, is said to be singularly
perturbed if its higher-order derivative gets multiplied with a small parameter
ε (0 < ε≪ 1) known as the perturbation parameter. In many mathematical
models, these types of equations contain some small delay and small advance
terms, which make them singularly perturbed differential-difference equa-
tions (SPDDE). Due to the presence of the perturbation parameter, these
problems exhibit boundary or interior layers. The development in solutions
to these problems both analytically and numerically is not a settled direc-
tion in mathematics. The massive use of these equations in many fields of
science and engineering leads many researchers to solve such problems more
efficiently. These equations usually arise in control theory [12], generation
of action potential in nerve cells by random synaptic inputs in dendrites,
modeling of activation of a neuron, and many more [25, 27].

Over the last few decades, many researches have been done on singularly
perturbed differential equations. One may refer to [1, 6, 5, 13, 14, 24] and
the references therein for different kinds of numerical methods. To mention
a few, Kadalbajoo and Sharma [10, 9] surveyed various asymptotic and nu-
merical methods for the solution of such problems. Lange and Miura [15, 16]
gave an asymptotic approach to solve SPDDE along with the turning point
problems. Sirisha, Phaneendra, and Reddy [26] used the idea of domain
decomposition and introduced the mixed finite difference method. Using
post-processing and grid distribution techniques, Mohapatra and Natesan
[19, 20, 21] formulated uniformly convergent numerical methods. Duressa
and Reddy [8] constructed a domain decomposition method and used a ter-
minal boundary point to the domain for decomposing it into two regions.
Melesse, Tiruneh, and Derese [18] used an initial value method for solving
these problems. A collocation method was proposed to solve these bound-
ary value problems using a modified B-spline basis function by Arora and
Kaur [2]. Rao and Chakravarthy [23] used an exponentially fitted tridiago-
nal finite difference method. Recently, Cengizci, Natesan, and Atay [4] used
an asymptotic numerical hybrid method for the singularly perturbed system
of two-point reaction-diffusion boundary-value problems. Mushahary, Sahu,
and Mohapatra [22] used a finite difference scheme for solving SPDDE.

Our main objective in this paper is to prove a successive complemen-
tary expansion method (SCEM) as an efficient alternative to the method of
matched asymptotic expansion (MMAE) for solving SPDDE. This method,
in general, applies to all the singularly perturbed problems that can be ap-
proximated by the MMAE. The main idea of SCEM is to use a correction
term for the approximation of the inner layer to complement the solution for
the entire domain. The quality of the approximation is improved by itera-
tively using corrections to the new terms for the inner layer. The ability to
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provide a uniformly valid approximation without any matching procedure is
the main advantage of using SCEM over MMAE.

In this work, some SPDDEs are taken into consideration, which exhibit
boundary layer behavior at the left-end of the interval. These problems
contain mixed shifts, that is, both the delay and the advance terms. The
complete description of the problem is given in section 2. At first, the model
is approximated asymptotically by the MMAE, and then we have used an
efficient asymptotic method as an alternative of widely used MMAE, that
is, the SCEM. This method was first introduced by Cousteix and Mauss
in [7, 17]. We have also approximated these problems by an upwind finite
difference scheme on the Shishkin mesh. The complete working principle of
the parameter uniform numerical scheme, MMAE, and SCEM, along with the
use of SCEM over MMAE, has been described in section 3. In the support
of the above-said methods, some numerical examples with their results are
discussed in section 4. The complete discussion with the conclusion is given
in the final section.

2 Description of the problem

Consider the following SPDDE with mixed shifts terms:



εy′′(x) + a(x)y′(x) + b(x)y(x− δ)

+c(x)y(x) + d(x)y(x+ η) = f(x), 0 < x < 1,

y(x) = ϕ(x), on − δ ≤ x ≤ 0,

y(x) = γ(x), on 1 ≤ x ≤ 1 + η,

(1)

where a(x), b(x), c(x), d(x), f(x),ϕ(x),γ(x) are bounded and continuously dif-
ferentiable functions on (0, 1). Here, ε is the singular perturbation parameter
with 0 < ε ≪ 1. The parameters δ and η are the delay and advance terms,
respectively, with 0 < δ = o(ε); 0 < η = o(ε). Now for the terms of (1) con-
taining the delay and the advance operators, we shall use the Taylor’s series
approximation in the neighborhood of the point x, that is,{

y(x− δ) ≈ y(x)− δy′(x),

y(x+ η) ≈ y(x) + ηy′(x).
(2)

The application of (2) converts (1) to the following form:{
εy′′(x) + α(x)y′(x) + β(x)y(x) = f(x), 0 < x < 1,

y(0) = ϕ(0), y(1) = γ(1),
(3)
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where α(x) = a(x) − δb(x) + ηd(x) and β(x) = b(x) + c(x) + d(x). Assume
α(x) ≥ λ > 0 and β(x) > 0 for some constant λ. Since the parameters δ and
η are of o(ε), so the use of Taylor’s series approximation and the conversion
of (1) to (3) is valid.

3 Description of the methods

3.1 Asymptotic approximation

Any two functions ψ(x, ε) and ξ(x, ε) are said to be asymptotically identical
to ρ(ε) if their difference is less than ρ(ε) in the domain Ω,

ψ(x, ε)− ξ(x, ε) = o(ρ(ε)). (4)

Here, ρ(ε) is an order function and ξ(x, ε) is the asymptotic approximation
of ψ(x, ε). The general form of asymptotic expansion is

ψ(x, ε) =

n∑
i=0

δi(ε)ψi(x, ε), (5)

where δi(ε), i = 0, 1, . . ., is an asymptotic sequence and ψi(x, ε) is of o(ρ(ε)).
If δi(ε) satisfies δi+1(ε)= o(δi(ε)), then the expansion is called generalized
asymptotic expansion. If the expansion is of the form

ψ(x, ε) = E0ψ =

n∑
i=0

δ
(0)
i (ε)ψ

(0)
i (x, ε), (6)

then it is said to be regular asymptotic expansion. Here, E0 is an outer
expansion operator. So, we conclude ψ(x, ε)− E0ψ(x, ε) = o(ρ(ε)).

3.2 Method of matched asymptotic expansion (MMAE)

In many cases, the functions are not regular in the domain of consideration Ω.
So, (6) is only valid upon one finite part of the region Ω. Let that restricted
region be named Ω0 ⊂ Ω. Now, the other part of the region (inner region),
that is, Ω1 is located near the boundary layer where the solution undergoes
a rapid change to satisfy the boundary conditions. For the inner region,
we need to introduce a new variable(stretching variable or boundary layer
variable) x=x− x0

ξ(ε)
. Here, x0 is the point where the rapid change of the

solution occurs and ξ(ε) is the order of the thickness of the boundary layer.
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Now, similarly as in (6), we can construct an asymptotic expansion for the
function in Ω1,

ψ(x, ε) = E1ψ =

n∑
i=0

δ
(1)
i (ε)ψ

(1)
i (x, ε). (7)

Both the expansion operators E0 and E1 have the same order, that is, o(ρ(ε)).
So, we have ψ(x, ε) − E1ψ(x, ε) = o(ρ(ε)). The valid approximation of the
solution thus can be written as

ψmmae(x, ε) = E0ψ(x, ε) + E1ψ(x, ε)− E0E1ψ(x, ε). (8)

In MMAE, we calculate two different results separately with two different
variables for both the inner and outer layers. Then, to obtain the uniformly
valid approximation for the entire domain, we need to subtract the region
where both the approximations overlap. For this purpose, we need to develop
a matching procedure by the limiting process [3].

3.3 Successive complementary expansion method
(SCEM)

As the functions that we consider are not regular in the entire domain Ω, after
calculating the solution for the outer region Ω0 through the expansion E0 as
in (6), we need to extend the solution through a complementary function for
the entire domain. This complementary function depends upon the variable
x. The general form of the asymptotic expansion in SCEM can be formulated
as

ψscem(x, x, ε) =

n∑
i=0

δi(ε)(ψ
out
i (x, ε) + ψin

i (x, ε)). (9)

Here, ψout
i (x, ε) is the same as the outer region solution that has been ob-

tained by MMAE before. The outer solution depends upon x but not upon
ε but the complementary function depends both upon x and ε. As in the
MMAE method, SCEM does not require any matching procedure.

3.4 Finite difference scheme

In this section, we first construct a piecewise uniform Shishkin mesh. The
Shishkin mesh is distinguished from other piecewise uniform meshes in terms
of its choice of the transition parameter τ defined as τ = min

(
1
2 ,

ε
α lnN

)
.
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Now, we divide each of the intervals [0, τ ] and [τ, 1] into N/2 equal sub-
intervals. The theory of Shishkin mesh demands as N → ∞ the number of
sub-intervals in each interval should be bounded below.

ΩN =

{
x(i) = hi, i ≤ N/2,
x(i) = Hi, i > N/2,

(10)

The coarse part of Shishkin mesh has spacing H =
2(1− τ)

N
and the fine

part has spacing h =
2τ

N
. Now, let us denote hi = xi − xi−1. The forward

and central difference operators are denoted as

D+ =
Yi+1 − Yi
hi+1

, D+D− =
2

hi + hi+1

[
Yi+1 − Yi
hi+1

− Yi − Yi−1

hi

]
.

Now (3) takes the form

εD+D−Yi + α(x)D+Yi − β(x)Yi = f(x),

y(0) = Y (0), y(1) = Y (1), (11)

for any mesh function Y (xi) = Yi. So, for the domain, in (10), we get the
following system of equations:

P−
i Yi−1 − P 0

i Yi + P+
i Yi+1 = PN

i , (12)

where

P−
i =

2ε

hi(hi + hi+1)
,

P 0
i =

2ε

hi(hi + hi+1)
+

2ε

hi+1(hi + hi+1)
+
α(x)

hi+1
+ β(xi), (13)

P−
i =

2ε

hi+1(hi + hi+1)
+
α(x)

hi+1
.

The matrix associated here is an M -matrix. For detailed analysis of the
proposed scheme one can refer [11].

4 Results and discussion

Even though much work has been done by the MMAE method, there is no
specific theory that can describe the method in a proper way. So, we need to
discuss the working principle of both MMAE and SCEM by some illustrative
examples. The proposed SCEM is found efficient in solving examples of the
type (1), which possess the left-end boundary layer. The approximated exact
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solution of SPDDE of the form (1) with constant coefficients is given by

y(x) = C1e
M1x + C2e

M2x, (14)

where
C1 =

1− eM2

eM1 − eM2
, C2 = 1− C1,

M1 =
−α(x) +

√
α(x)2 − 4β(x)

2ε
, M2 =

−α(x)−
√
α(x)2 − 4β(x)

2ε
.

Example 1. Consider the following problem with a delay term:{
εy′′(x) + y′(x) + 2y(x− δ)− 3y(x) = 0,
y(x) = 1, −δ ≤ x ≤ 0, y(1) = 1.

The solution of this problem possesses a rapid change near the point x = 0
when ε→ 0+. This region is said to be the boundary layer or the inner layer.
So, this possesses a left-end boundary layer. The other region, which is far
away from the boundary layer, is said to be the outer region. In case of
the outer region, there is no record of any unusual behavior of the solution.
We will solve this problem employing MMAE and SCEM and the proposed
numerical scheme. For the given example using Taylor’s series expansion of
the form (2) in the neighborhood of x, we have

ε∗y′′(x) + y′(x)− 1

1− 2δ
y(x) = 0, where ε∗ =

ε

1− 2δ
. (15)

Now, the equation has converted to a second order singularly perturbed prob-
lem, which can be solved by both MMAE and SCEM.

4.1 For MMAE

In MMAE, for the outer region solution, which is far away from x = 0, we
take x = 1. Now, the asymptotic approximation for the outer region can be
written as

y(x) ≈ y0(x) + ε∗y1(x) + (ε∗)2y2(x) + · · · . (16)

Substituting (16) in (15), we reach at

ε∗[y′′0 (x) + ε∗y′′1 (x) + (ε∗)2y′′2 (x) + · · · ] + [y′0(x) + ε∗y′1(x) + (17)

(ε∗)2y′2(x) + · · · ]−
(

1

1− 2δ

)
[y0(x) + ε∗y1(x) + (ε∗)2y2(x) + · · · ] = 0.

For ε = 0, model (17) is reduced to
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y′0(x)−
(

1

1− 2δ

)
y0(x) = 0. (18)

The solution of (18) is easily found to be y0(x)=A exp

(
x

1− 2δ

)
. Here,

A ∈ R and imposing the outer boundary layer condition (at x = 1) we get
our required outer solution as

y0(x) = exp

(
x− 1

1− 2δ

)
. (19)

To obtain the solution for the inner layer, we need to introduce the stretching
variable x = x

ε . The solution obtained in the inner region that depends upon
the variable x, is denoted by Y (x). By the use of this stretching variable, we
are able to stretch the thin layer near the boundary. Now by applying the
chain rule, we get

d

dx
=

1

ε

d

dx
. (20)

Using (20) in (15), we have

(ε∗)−1 d
2Y (x)

dx2
+ (ε∗)−1 dY (x)

dx
− 1

(1− 2δ)
Y (x) = 0. (21)

Now, multiplying (21) with ε∗, we have

d2Y (x)

dx2
+
dY (x)

dx
− ε∗

(1− 2δ)
Y (x) = 0. (22)

Equation (22) is a regularly perturbed differential equation, and to obtain the
solution for the inner region, we need to use the asymptotic approximation
of the form

Y (x) ≈ Y0(x) + ε∗Y1(x) + (ε∗)2Y2(x) + · · · . (23)

We are only doing the expansion for the first term. So, we can make our
calculations for ε = 0. Now, we have

Y ′′
0 (x) + Y ′

0(x) = 0. (24)

On solving (24) and using the boundary condition for the inner layer (at
x = 0), we arrive at

Y0(x) = 1 + C(e−x − 1). (25)

Clearly, there are no other conditions, so that we can obtain the value of the
constant C. Here is the situation where the matching procedure of MMAE
works. We have already found out two different solutions, that is, (19) and
(25) for two different regions, but, it is obvious that they belong to the same
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approximation. Followed by this matching idea [3], we conclude

lim
x→0

y0(x) = lim
x→∞

Y0(x). (26)

Thus, we get C = 1 − exp

(
1

2δ − 1

)
. So, the solution of our inner region

becomes

Y0(x) = exp

(
− x

)
− exp

(
1

2δ − 1
− x

)
+ exp

(
1

2δ − 1

)
. (27)

As we have calculated the solutions for both the outer and inner regions, now
we can find out the composite solution to our equation. For this, we need to
add the solutions of both the regions and subtract the common limit between
them. As per (8), we have

y ≈ y0(x) + Y0(x)− y0(0
+), (28)

y ≈ y0(x) + Y0(x)− Y0(∞).

Using (28), we obtain the composite MMAE solution as

ymmae ≈ exp

(
x− 1

1− 2δ

)
+ exp

(
−x
ε

)
− exp

(
1

2δ − 1

)
− x

ε
. (29)

4.2 For SCEM

The uniformly valid composite expansion in general form of SCEM can be
written as

yscem(x, x, ε) =

n∑
i=0

δi(ε)[yi(x) + Yi(x)]. (30)

As we are only interested in solving our problem for x = 0, so we get

y0scem(x, x, ε) = [y0(x) + Y0(x)]. (31)

Here, y0(x) is the same outer region solution that has been obtained for
MMAE in (20). The outer region solution remains the same as the solution
here showing no unusual behavior in accordance with the boundary condi-
tions. Using (20) in (31), we get

yscem = exp

(
x− 1

1− 2δ

)
+ Y0(x). (32)

Substituting value of yscem in (15), we have
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ε∗y′′0scem(x, x, ε) + y′0scem(x, x, ε)− 1

1− 2δ
y0scem(x, x, ε) = 0. (33)

This follows

ε∗
d2

dx2

[
exp

(
x− 1

1− 2δ

)
+ Y0(x)

]
+

d

dx

[
exp

(
x− 1

1− 2δ

)
(34)

+Y0(x)

]
− 1

1− 2δ

[
exp

(
x− 1

1− 2δ

)
+ Y0(x)

]
= 0.

Using the chain rule for the solution of Y0(x) in terms of x, we have

ε∗
[(

1

1− 2δ

)2

exp

(
x− 1

1− 2δ

)
+

1

(ε∗)2
Y ′′
0 (x)

]
+

[(
1

1− 2δ

)
(35)

exp

(
x− 1

1− 2δ

)
+

1

ε∗
Y ′
0(x)

]
− 1

1− 2δ

[
exp

(
x− 1

1− 2δ

)
+ Y0(x)

]
= 0.

Multiplying ε∗ in (35), the resulting equation will be

ε∗2
[

1

1− 2δ

]2
exp

(
x− 1

1− 2δ

)
+ Y ′′

0 (x) + ε∗
[

1

1− 2δ

]
exp

(
x− 1

1− 2δ

)
+Y ′

0(x)− ε∗
[

1

1− 2δ

][
exp

(
x− 1

1− 2δ

)
+ Y0(x)

]
= 0, (36)

which is regularly perturbed ordinary differential equation, and for ε∗ = 0,
it will be reduced to

Y ′′
0 (x) + Y ′

0(x) = 0. (37)

Now, the solution of the above equation is given by

Y0(x) = C1 + C2e
−x. (38)

For a uniformly valid SCEM solution, y0scem must satisfy the following
boundary conditions:

x = 0 ⇒ x =
x

ε
= 0 ⇒ y0scem(0, 0, ε) = y0(0, ε) + Y0(0, 0, ε) = 1 (39)

⇒ Y0(0, 0, ε) = 1− y0(0, ε),

x = 1 ⇒ x =
x

ε
= 1 ⇒ y0scem(1,

1

ε
, ε) = y0(1, ε) + Y0(1,

1

ε
, ε) = 1

⇒ Y0(1,
1

ε
, ε) = 1− y0(1, ε).

Using the boundary conditions in (38), we get
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Figure 1: Comparison of solutions with different values of ε for Example 1.

C2 =

exp

(
−1

1− 2δ

)
− 1

exp

(
−1

ε∗

)
− 1

, C1 = −C2 exp

(
−1

ε∗

)
. (40)

Now, using (40) and (39) in (32), we get the composite SCEM solution as

yscem =exp

(
x− 1

1− 2δ

)
−
[
exp( −1

1−2δ )− 1

exp(−1
ε∗ )− 1

]
exp

(
−1

ε∗

)
+

[
exp( −1

1−2δ )− 1

exp(−1
ε∗ )− 1

]
exp

(
−x
ε∗

)
. (41)

After getting the approximation to the exact solution by both SCEM and
MMAE, it is quite obvious that SCEM is more adaptable. The immense
advantage of SCEM is that it gives the uniformly valid approximation to the
exact solution without any matching procedure. The error in comparison
with the approximated exact solution for both SCEM and MMAE is given
in Table 1 for different values of ε. The result is proved to be valid for any
value of N . Here for the computational purposes, the nodal points and the
values of η and δ are kept fixed to N = 32 and η = 0.1ε = δ.

Example 2. Consider the following problem having an advance term:{
εy′′(x) + y′(x)− 3y(x) + 2y(x+ η) = 0,
y(0) = 1, y(x) = 1, 1 ≤ x ≤ 1 + η.

This problem has a rapid change near x = 0. Now using Taylor’s Series
expansion in the neighborhood of x, the above problem reduces to

ε∗y′′(x) + y′(x)− 1

1 + 2η
y(x) = 0, where ε∗ =

ε

1 + 2η
. (42)

IJNAO, Vol. 12, No. 1, (2022), pp 55-72



66 Priyadarshana, Sahu and Mohapatra

ε L∞error inMMAE L∞error inSCEM
0.0001 0.00003676 0.00003676
0.0005 0.00018374 0.00018374
0.0010 0.00036728 0.00036728
0.0050 0.00182533 0.00182533
0.0100 0.00361593 0.00361593
0.0500 0.01598307 0.01598307
0.1000 0.02552850 0.02556347
0.3000 0.02853413 0.03217078
0.4000 0.06644741 0.03539967
0.6000 0.15664433 0.04561360
0.8000 0.24352992 0.05726515
1.0000 0.32059406 0.06915099

Error in Upwind
0.04450943
0.04428418
0.04401059
0.04209958
0.04025378
0.03472166
0.03481582
0.03427254
0.03541439
0.03723168
0.03825982
0.03877738

Table 1: Numerical results with different values of ε for Example 1.
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Figure 2: Comparison of solutions with different values of ε for Example 2.

The one-term SCEM and MMAE approximations for (42) are given as follows:

ymmae =

[
1− exp

(
−1

1 + 2η

)]
exp

(
−x
ε∗

)
+ exp

(
x− 1

1 + 2η

)
,

yscem = −
[
exp( −1

1+2η )− 1

exp(−1
ε∗ )− 1

]
exp

(
−1

ε∗

)
+

[
exp( −1

1+2η )− 1

exp(−1
ε∗ )− 1

]
exp

(
−x
ε∗

)
+exp

(
x− 1

1 + 2η

)
.

Example 3. Consider the following problem having mixed shifts:

IJNAO, Vol. 12, No. 1, (2022), pp 55-72



Asymptotic and numerical methods for solving singularly perturbed ... 67

ε L∞error inMMAE L∞error inSCEM
0.0001 0.00003676 0.00003676
0.0005 0.00018367 0.00018367
0.0010 0.00036699 0.00036699
0.0050 0.00181786 0.00181786
0.0100 0.00358632 0.00358632
0.0500 0.01533655 0.01533655
0.1000 0.02377291 0.02379587
0.3000 0.01783685 0.02658575
0.4000 0.04058107 0.02660582
0.6000 0.09131635 0.02829255
0.8000 0.13551419 0.03009785
1.0000 0.17029574 0.03133850

Error in Upwind
0.04448748
0.04417452
0.04379147
0.04101098
0.03808839
0.02519028
0.01688285
0.01728136
0.02334674
0.03160623
0.03671486
0.04028387

Table 2: Numerical results with different values of ε for Example 2.

{
εy′′(x) + y′(x)− 2y(x− δ)− 5y(x) + y(x+ η) = 0,
y(x) = 1, −δ ≤ x ≤ 0 y(x) = 1, 1 ≤ x ≤ 1 + η.

This problem has a rapid change near x = 0. By the use of Taylor’s Series
expansion for both the delay and shift terms as in (2), we have

ε∗y′′(x) + y′(x)−
[

6

1 + 2δ + η

]
y(x) = 0, where ε∗ =

ε

1 + 2δ + η
.

The one-term SCEM and MMAE approximations are given by

ymmae =

[
1− exp

(
−6

1 + 2δ + η

)]
exp

(
−x
ε∗

)
+ exp

(
6(x− 1)

1 + 2δ + η

)
,

yscem = −
[
exp( −6

1+2δ+η )− 1

exp(−1
ε∗ )− 1

]
exp

(
−1

ε∗

)
+

[
exp( −6

1+2δ+η )− 1

exp(−1
ε∗ )− 1

]
exp

(
−x
ε∗

)
+exp

[
6(x− 1)

1 + 2δ + η

]
.

The comparison of errors of this example for both the proposed methods and
the method prescribed in [10] for N = 8 and N = 256 are given in Tables
4 and 5, respectively. These comparison results confirm the efficiency of the
proposed method.
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Figure 3: Comparison of solutions with different values of ε for Example 3.

ε L∞error inMMAE L∞error inSCEM
0.0001 0.00022006 0.00022006
0.0005 0.00109602 0.00109602
0.0010 0.00218145 0.00218145
0.0050 0.01050670 0.01050670
0.0100 0.02012147 0.02012147
0.0500 0.07770075 0.07770075
0.1000 0.12342561 0.12345914
0.3000 0.16404633 0.18962499
0.4000 0.16021248 0.19825547
0.6000 0.15178975 0.20931461
0.8000 0.21056755 0.21768491
1.0000 0.26983417 0.22335443

Error in Upwind
0.05991807
0.05951004
0.05900561
0.05517982
0.05086176
0.03679054
0.03402622
0.01593674
0.01255964
0.00894834
0.00694484
0.00562079

Table 3: Numerical results with different values of ε for Example 3.

ε L∞error inMMAE L∞error inSCEM
10−1 0.10596702 0.10597709
10−2 0.01882187 0.01882187
10−3 0.00209815 0.00209815
10−4 0.00021228 0.00021228
10−5 0.00002125 0.00002125
10−6 0.00000212 0.00000212

Error in [10]
0.12011566
0.18727108
0.20429729
0.20614146
0.20632746
0.20634608

Table 4: Comparison of maximum error with N = 8 for Example 3.

IJNAO, Vol. 12, No. 1, (2022), pp 55-72



Asymptotic and numerical methods for solving singularly perturbed ... 69

ε L∞error inMMAE L∞error inSCEM
10−1 0.10685019 0.10685019
10−2 0.01976044 0.01976044
10−3 0.00218116 0.00218116
10−4 0.00022045 0.00022045
10−5 0.00002206 0.00002206
10−6 0.00000220 0.00000220

Error in [10]
0.00775036
0.00799076
0.00963304
0.00984236
0.00986365
0.00986578

Table 5: Comparison of maximum error with N = 256 for Example 3.

5 Conclusion

In this work, the well-known MMAE and a parameter uniform numerical
scheme, that is, the upwind scheme in Shishkin mesh were compared with
the proposed relatively new method, that is, SCEM, for solving singularly
perturbed differential-difference equation with mixed shifts. It was observed
that both MMAE and SCEM provide highly accurate approximations to the
exact solution for comparatively small values ε. Similarly, comparison results
confirmed that the numerical scheme, which gives better results for higher
values of N , at the same time, MMAE and SCEM give higher-order accuracy
for comparatively smaller values of N . It is observed that we do not require
any matching procedure in SCEM as required for MMAE, and the boundary
conditions are satisfied exactly for all values of the perturbation parameters.
These properties make SCEM more flexible and a better alternative while
solving singularly perturbed differential equations.
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