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convergence analysis
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Abstract

We propose the preconditioned global generalized product-type method
based on the preconditioned global BiCG method to solve nonsymmet-
ric saddle point problems with multiple right-hand sides. We apply an
indefinite preconditioner to enhance the convergence rate of the method.
We also present some theoretical analysis and discuss the convergence of
the PGl-GPBiCG method. Some useful properties of the preconditioned
matrix are established. Moreover, we present the bounds for the residual
norm of the PGl-GPBiCG method according to the residual norm of the
global GMRES method that guarantees convergence. Finally, some nu-
merical examples are presented to show the efficiency of the new method
in comparison with the preconditioned global BiCGSTAB method, and a
comparison with another preconditioner is also provided.
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1 Introduction

Many problems in science and engineering applications such as mixed or
mixed-hybrid finite element discretization of partial differential equations in
computational fluid dynamics [13, 18, 31, 32, 41] and constrained optimiza-
tion [29, 42, 43] eventuate in systems with multiple right-hand sides as[

A B
ϵBT 0

] [
X
Y

]
=

[
F1

F2

]
, (1)

where A ∈ Rn×n is a symmetric positive definite matrix, B ∈ Rn×m has a
full column rank, X ∈ Rn×s, Y ∈ Rm×s, F1 ∈ Rn×s, and F2 ∈ Rm×s. To
convenience, we denote system (1) as follows:

AX = B, (2)

where X = [X (1), . . . ,X (s)] and B = [b(1), . . . , b(s)]. Under the assumptions
mentioned above, the coefficient matrix A is nonsingular.

Several efficient iterative methods have been proposed during the recent
decades to solve the saddle point problems, such as the Uzawa method
[11, 12, 45], the Hermitian and skew-Hermitian splitting (HSS) iteration
methods [3, 5, 9, 35, 37], SOR-type schemes [7, 19, 20, 26, 40, 47] and
Krylov subspace methods [1, 2, 10, 21, 33, 34], and so on. In order to im-
prove the efficiency of standard iterative solvers, many preconditioners have
been presented in the literature, for example, block diagonal preconditioners
[28, 38], constraint preconditioners [6, 25], block triangular preconditioners
[4, 14, 36, 44], parametrized block triangular preconditioners [24], and HSS
preconditioners [5, 9, 22, 30].

In this paper, we study the preconditioned global BiCG (PGl-BiCG)
method [23] and preconditioned global GPBiCG (PGl-GPBiCG) method [46]
for solving the linear systems with multiple right-hand sides (1). We concen-
trate on the use of the indefinite preconditioner

P =

[
I B

ϵBT 0

]
. (3)

This choice has been shown to be particularly effective on problems associated
with constrained nonlinear programming [25, 27, 31]. In addition, in [33],
the authors have shown that there is a tight connection between short term
recurrence methods such as BiCG and the indefinite CG method used in [27].
More precisely, they are equivalent for a special choice of auxiliary vector,
with which BiCG simplifies. In this paper, we discuss the convergence of the
PGl-GPBiCG method and present two bounds for the residual norm of the
method, which guarantee convergence.

The outline of the paper is as follows. In Section 2, we mention some
properties of indefinite preconditioner. In Section 3, we review the PGl-
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BiCG method. In Section 4, we describe the PGl-GPBiCG method to solve
the system (1). Section 5 is devoted to the convergence analysis of the global
GMRES method. In Section 6, we study some theoretical properties of the
convergence of the PGl-GPBiCG method. In Section 7, numerical experi-
ments confirm the described theoretical results. In Section 8, we present our
conclusions.

Throughout this paper, we use the following notations. Inner product
for two n × s matrices X and Y is defined as ⟨X,Y ⟩F = tr(XTY ), where
tr(Z) denotes the trace of the square matrix Z. The associated norm is the
Frobenius norm denoted by ∥ · ∥F . We will use the notation ⟨·, ·⟩2 for the
usual inner product in Rn, and the related norm will be denoted by ∥ · ∥2.
For a matrix V ∈ Rn×s, the block Krylov subspace Kk(A, V ) is defined by
Kk(A, V ) = span{V,AV,A2V, . . . , Ak−1V }. Moreover, Z ∈ Kj(A, V ) means
that Z =

∑j−1
i=0 ξiA

iV , where ξi ∈ R, for i = 0, . . . , j − 1. Finally, 0s, Is, and
0l×s will denote the zero, the identity, and zero matrices in Rs×s, Rs×s, and
Rl×s, respectively. For brevity, we use the MATLAB-like notation [v;w] to
represent the vector [vTwT ]T .

2 Properties of the indefinite preconditioner

In this work, we use the global version of GPBiCG (Gl-GPBiCG)[46] for the
solution of nonsymmetric saddle point problems with multiple right-hand
sides (2). This method without a good preconditioner converges very slowly
when applied to saddle point problems with multiple right-hand sides. In
order to accelerate the convergence, we use the indefinite matrix P (defined
in (3)) as a right preconditioner for the Gl-GPBiCG algorithm applied to the
problem (1):

AP−1

[
X̃

Ỹ

]
= B,

[
X
Y

]
= P−1

[
X̃

Ỹ

]
, (4)

where

P−1 =

[
I −Π 1

ϵB(BTB)−1

(BTB)−1BT − 1
ϵ (B

TB)−1

]
, AP−1 =

[
G S
0 I

]
,

with Π = B(BTB)−1BT , G = A(I − Π) + Π, and S = 1
ϵ (A− I)B(BTB)−1.

Once an approximate solution [X̃k; Ỹk] is determined, an approximate solu-
tion to the unpreconditioned problem is recovered as [Xk;Yk] = P−1[X̃k; Ỹk].
Choosing the vector [X̃0; Ỹ0] = [0;F2] as the starting approximate solution,
the initial residual is given by

R0 =

[
F1

F2

]
−AP−1

[
X̃0

Ỹ0

]
=

[
F1 − 1

ϵ (A− I)B(BTB)−1F2

0

]
=

[
R

(1)
0

0

]
,
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so that the second block component of R0 is identically zero. Problem (4)
can thus be reformulated as determining an approximation [X̄k; Ȳk] to the
solution [X̄; Ȳ ] of the system

AP−1

[
X̄
Ȳ

]
= R0, (5)

so that [X̃k; Ỹk] = [X̃0; Ỹ0] + [X̄k; Ȳk]. In addition, for every [U ; 0] ∈
R(m+n)×s, we have

AP−1

[
U
0

]
=

[
GU
0

]
and P−1

[
U
0

]
=

[
(I −Π)U

(BTB)−1BTU

]
. (6)

In [33], the authors proved the following proposition for showing that the
matrix G does have a full set of eigenvectors Z and for giving a bound for
condition number of Z.

Proposition 1. Let us assume that the matrix G = A(I − Π) + Π has
n − m nonunit eigenvalues λi, i = 1, . . . , n − m. Let Z2 be an orthonormal
basis of span{Π} and let the columns of Y1 ∈ Rn×(n−m) be eigenvectors of
(I − Π)A(I − Π) corresponding to all its nonzero eigenvalues. Then there
exists an eigenvector matrix in the form Z = [Z1, Z2] of A(I − Π) + Π such
that

κ(Z) ≤ (1 + ∥γ∥)2 with ∥γ∥ ≤ ∥A∥2
mini |λi − 1|

, (7)

where Λ = diag(λi) and γ = ZT
2 AY1(Λ− I)−1.

The following proposition shows that the eigenvalues of G = A(I−Π)+Π
belong to a real positive interval when A is a symmetric positive definite
matrix.

Proposition 2. Let τ be an eigenvalue of G = A(I − Π) + Π. Then either
τ = 1 or τ is a nonzero eigenvalue of (I −Π)A(I −Π).

Proof. The proof is similar to that of Proposition 5 in [31].

3 The preconditioned global BiCG method

In this section, we employ the PGl-BiCG method [23] to solve system (4).
Let X0 ∈ Rn×s be an initial guess with the residual R0 = B −A−1X0 and
let R̃0 be an arbitrary n × s matrix. At step k, the residual Rk generated
by this algorithm is such that, Rk − R0 lies in the right matrix Krylov sub-
space Kk(A,AR0) and Rk is F-orthogonal to the left matrix Krylov subspace
Kk(AT , R̃0) = span{R̃0,AT R̃0, . . . ,ATk−1

R̃0}.
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For solving (1) by preconditioned Global Biconjugate Gradient (PGl-
BiCG) algorithm by using the preconditioner P (defined in (3)) and equations
(4) and (5), we choose [X̃0; Ỹ0] = [0;F2] as an initial guess. So, R0 =

(
R

(1)
0
0

)
.

As in [33], we set R̃0 = P−1R0 =
( (I−Π)R

(1)
0

(BTB)−1BTR
(1)
0

)
, P0 = R0, P̃0 = R̃0, and we

obtain R̃k = P−1Rk =
( (I−Π)R

(1)
k

(BTB)−1BTR
(1)
k

)
and P̃k = P−1Pk =

( (I−Π)P
(1)
k

(BTB)−1BTP
(1)
k

)
.

Therefore, the iterates R̃k and P̃k can be computed explicitly from Rk and
Pk, and the auxiliary “tilde” recurrence can be omitted. Now, by using the
relations (6) and ignoring from the last m rows of the matrices that are
zero matrices, we can summarize the PGl-BiCG algorithm for solving (2) as
follows:

Algorithm 1: The right PGl-BiCG algorithm for solving (1)

1. Set
[
X̃0

Ỹ0

]
=

[
0

F2

]
and

[
X̄0

Ȳ0

]
=

[
0

0

]
.

2. Compute R
(1)
0 = F1− 1

ϵ
(A−I)B(BTB)−1F2 and set R0 =

[
R

(1)
0
0

]
and P0 =

[
P

(1)
0

P
(2)
0

]
=[

R
(1)
0
0

]
3. for k = 0, 1, 2, . . . until convergence
4. αk =

<R
(1)
k

,(I−Π)R
(1)
k

>F

<GP
(1)
k

,(I−Π)P
(1)
k

>F

5. X̄k+1 = X̄k + αkP
(1)
k , Ȳk+1 = Om×s

6. R
(1)
k+1 = R

(1)
k − αkGP

(1)
k , R

(2)
k+1 = 0

7. βk =
<R

(1)
k+1

,(I−Π)R
(1)
k+1

>F

<R
(1)
k

,(I−Π)R
(1)
k

>F

8. P
(1)
k+1 = R

(1)
k+1 + βkP

(1)
k , P

(2)
k+1 = 0

9. end
10. X̃k+1 = X̃0 + X̄k+1, Ỹk+1 = Ỹ0 + Ȳk+1,
11. Xk+1 = (I − Π)X̃k+1 + 1

ϵ
B(BTB)−1Ỹk+1, Yk+1 = (BTB)−1BT X̃k+1 −

1
ϵ
(BTB)−1Ỹk+1

In practical implementation of Algorithm 1, we can factorize B as B = QR
and use the relation (BTB)−1 = R−1R−T . We also note that the cost of
solving with R is very low due to the particular structure and sparsity of the
matrix.

From Algorithm 1, the first block of residuals and first block of matrix
directions can be expressed as follows:

R
(1)PGl−BiCG

k = Rk(G)R
(1)
0 , P

(1)PGl−BiCG

k = Pk(G)R
(1)
0 , (8)

where Rk(t), Pk(t) ∈ Pk,Pk is the set of polynomials pk(t) of degree k with
scalar coefficients satisfying pk(0) = 1. The polynomials Rk(t) and Pk(t) are
related together with the recurrence formulas as follows:
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Rk+1(t) = Rk(t)− αktPk(t), (9)
Pk+1(t) = Rk+1(t) + βkPk(t). (10)

4 The preconditioned global GPBiCG method

In the PGl-GPBiCG method [46], the matrix residual satisfies

Rk = Hk(A−1P )Rk(A−1P )R0, (11)

where Rk is defined as above and Hk is an accelerating scalar polynomial,
which is computed as the following recurrence:

H0(t) = 1, G0(t) = ζ0,

Hk(t) = Hk−1(t)− tGk−1(t), (12)
Gk(t) = ζkHk(t) + ηkGk−1(t), k = 1, 2, . . . .

If the PGl-GPBiCG algorithm is written for system (5) with R0 =

[
R

(1)
0

0

]
,

then the relation (11) can be written as

Rk =

[
Hk(G)Rk(G)R

(1)
0

0

]
, (13)

and for solving (1.2), the PGl-GPBiCG algorithm can be summarized as
Algorithm 2.

5 Convergence analysis of the global GMRES method

In this section, we consider the block linear system GY = C, where G ∈ Rn×n

and Y,C ∈ Rn×s, and we recall some convergence properties of the global
GMRES method, which is needed in what follows. We consider the case
where the matrix G is diagonalizable. Let G = ZDZ−1, where D is a diagonal
matrix whose elements are the eigenvalues λ1, . . . , λn and Z is the eigenvector
matrix. In [8], the following upper bounds for the Frobenius norm of the kth
residual Rk = C − GYk of the global GMRES method was given. Here
R0 = C −GY0 denotes the residual corresponding to the initial solution Y0.

Theorem 1. [8] Let Pk be the set of polynomials of degree less or equal than
k, and let κ2(Z) = ∥Z∥2∥Z−1∥2. Then we have the following results:

∥Rk∥F ≤ κ2(Z)∥R0∥F min
p∈Pk;p(0)=1

( max
λ∈Sp(G)

|p(λ)|), (14)
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Algorithm 2: The right PGl-GPBiCG algorithm

1. Set
[
X̃0

Ỹ0

]
=

[
0

F2

]
and

[
X̄0

Ȳ0

]
=

[
0

0

]
.

2. Compute R
(1)
0 = F1 − 1

ϵ
(A− I)B(BTB)−1F2 and set R0 =

[
R

(1)
0
0

]
,

3. Set P0 = R
(1)
0 , T−1 = W−1 = P−1 = U−1 = 0n×s, β−1 = 0

4. for k = 0, 1, 2, . . . until convergence
5. Pk = R

(1)
k + βk−1(Pk−1 − Uk−1)

6. αk =
<R

(1)
k

,(I−Π)R
(1)
0 >F

<GPk,(I−Π)R
(1)
0 >F

7. Yk = Tk−1 −R
(1)
k − αkWk−1 + αkGPk

8. Tk = R
(1)
k − αkGPk

9. ζk = <Yk,Yk>F<GTk,Tk>F−<Yk,Tk>F<GTk,Yk>F
<GTk,GTk>F<Yk,Yk>F−<Yk,GTk>F<GTk,Yk>F

10. ηk = <GTk,GTk>F<Yk,Tk>F−<Yk,GTk>F<GTk,Tk>F
<GTk,GTk>F<Yk,Yk>F−<Yk,GTk>F<GTk,Yk>F

(if k = 0, then ηk = 0, ζk = <GTk,Tk>F
<GTk,GTk>F

11. Uk = ζkGPk + ηk(Tk−1 −R
(1)
k + βk−1Uk−1)

12. Zk = ζkR
(1)
k + ηkZk−1 − αkUk

13. X̄k+1 = X̄k + αkPk + Zk, Ȳk+1 = Om×s

14. R
(1)
k+1 = Tk − ηkYk − ζkGTk R

(2)
k+1 = 0

15. βk = αk
ζk

<R
(1)
k+1

,(I−Π)R
(1)
0 >

<R
(1)
k

,(I−Π)R
(1)
0 >

16. Wk = GTk + βkGPk

17. end
18. X̃k+1 = X̃0 + X̄k+1, Ỹk+1 = Ỹ0 + Ȳk+1,
19. Xk+1 = (I − Π)X̃k+1 + 1

ϵ
B(BTB)−1Ỹk+1, Yk+1 = (BTB)−1BT X̃k+1 −

1
ϵ
(BTB)−1Ỹk+1

where Sp(G) is the set of eigenvalues of matrix G.

Theorem 2. [8] Let the initial residual R0 be decomposed as R0 = Zβ,
where β is an n × s matrix whose columns are denoted by β(1), . . . , β(s).
Then

∥Rk∥2F ≤ ∥Z∥22
eT1 (V

T
k+1D̃Vk+1)−1e1

,

where

D̃ = diag{
s∑

i=1

|β(i)
1 |2, . . . ,

s∑
i=1

|β(i)
n |2} and Vk+1 =

1 λ1 · · · λk
1

...
...

...
1 λn · · · λk

n

 .

The coefficients β
(i)
1 , . . . , β

(i)
n are the components of the vector β(i), and e1 is

the first unit vector of Rk+1.
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From the fact that the eigenvalues of the matrix G = A(I − Π) + Π are
positive, the min-max problem in the bound of Theorem 1 can be explicitly
solved. Denoting by λmin and λmax the (positive) extreme eigenvalues of the
matrix G, the following asymptotic bound holds:

∥Rk∥F ≤ κ2(Z)∥R0∥F (
√
κ− 1√
κ+ 1

)k, (15)

where κ = λmax

λmin
stands for the ratio of the extremal (real) eigenvalues of the

matrix G = A(I −Π) + Π (and so it is not its condition number!)[34].

6 Convergence behavior of PGl-GPBiCG

In this section, we propose an upper bound for the residual norm of the
PGl-GPBiCG method. First, we derive an upper bound for the Frobe-
nius norm of the kth residual RPGl−BiCG

k of the preconditioned global
BiCG method. Using the steps 6 and 8 of Algorithm 1 and defining
R̄

(1)
k+1 = [R

(1)
0 R

(1)
1 . . . R

(1)
k ], where R

(1)
i , i = 0, . . . , k, are the first block

of the PGl-BiCG residual matrices, we can easily show that

GR̄
(1)
k = R̄

(1)
k T̂k − 1

αk−1
R

(1)
k ĒT

k ,

with ĒT
k = [0s, . . . , 0s, Is] ∈ Rs×ks and T̂k = L̂kΛ̂

−1
k Ûk, where

L̂k =



Is
−Is Is

−Is
. . .
. . . Is

−Is Is

 , Ûk =



Is −β0Is
. . . . . .

. . . . . .
Is −βk−2Is

Is

 ,

Λ̂k = diag[α0Is, . . . , αk−1Is], and αi and βi, i = 0, 1, . . . , k, are scalars
obtained from the PGl-BiCG algorithm. In addition, T̂k is an invert-
ible tridiagonal block matrix such that ĒT

k T̂
−1
k Ē1 = αk−1Is, where ĒT

1 =
[Is, . . . , 0s, 0s] ∈ Rs×ks.

By assuming that the matrix R̄
(1)
k+1 is of full rank and (R̄

(1)
k+1)

+ =

((R̄
(1)
k+1)

T R̄
(1)
k+1)

−1(R̄
(1)
k+1)

T , as in [39], an upper bound for the norm of the
first block of the residual of PGl-GPBiCG can be stated in the following
theorem.

Theorem 3. Suppose that GR̄
(1)
k = R̄

(1)
k T̂k− 1

αk−1
R

(1)
k ĒT

k with ĒT
k T̂

−1
k Ē1 =

αk−1Is, and V̂ = [Iks 0ks×s](R̄
(1)
k+1)

+. If the matrix R̄
(1)
k+1 is of full rank,
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then for any polynomial p(t) of degree not exceeding k with p(0) = 1, we
have

∥R(1)PGl−BiCG

k ∥F ≤ ∥N̄k∥F ∥ p(G)R
(1)
0 ∥F , (16)

where N̄k = In − (R̄
(1)
k −R

(1)
k F̄T

k )V̂ with F̄T
k = [Is, Is, . . . , Is] ∈ Rs×ks.

Proof. The proof is similar to that of Theorem 1 in [39].

Now, we attempt to obtain an upper bound for the residual norm of
the PGl-GPBiCG method. As in [39], we define the parameters ζ̄j+1 = ζj ,
η̄j+1 = ηj , and matrices

Hj+1 = Hj(G)R
(1)PGl−BiCG

k , Gj+1 =
1

ζj
Gj(G)R

(1)PGl−BiCG

k , j = 0, . . . , k.

Using the relations (12), the iterates Hj and Gj can be computed by the
recurrence formulas:

H1 = R
(1)PGl−BiCG

k , G1 = R
(1)PGl−BiCG

k ,

Hj+1 = Hj − ζ̄jGGj , (17)

Gj+1 = Hj+1 +
η̄j+1

ζ̄j+1
ζ̄jGj , j = 1, 2, . . . , k.

By assuming that ζ̄j ̸= 0, j = 1, . . . , k + 1, we have
Hj+1, Gj+1 ∈ Kj+1(G,R

(1)PGl−BiCG

k ). Moreover, we obtain

Hk+1 = R
(1)PGl−GPBiCG

k . (18)

Under the assumption that all the generated coefficients ζj are not zero and
the grade µ of R(1)PGl−BiCG

k with respect to G is not less than k, the recurrence
formulas (17) determine the matrices

H̄k = [H1,H2, . . . , Hk] and Ḡk = [G1, G2, . . . , Gk],

whose matrix columns Hj and Gj , j = 1, . . . , k, are linear independent.

As in [39], by defining γj+1 = ζ̄j η̄j+1ζ̄
−1
j+1, for j = 1, 2, . . . , k, the relations

(17) can be written as follows:

GḠk = H̄kL̄kΛ̄
−1
k − ζ̄−1

k Hk+1Ē
T
k , H̄k = ḠkŪk, (19)

where Λ̄k = diag[ζ̄1Is, . . . , ζ̄kIs], ĒT
k = [0s, . . . , 0s, Is] ∈ Rs×ks,
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120 Taherian and Toutounian

L̄k = L̂k, and Ūk =



Is −γ2Is
Is

. . .

. . . −γkIs
Is

 . (20)

Combining two equations in (19), we get

GH̄k = H̄kS̄k − ζ̄−1
k Hk+1Ē

T
k , (21)

with S̄k = L̄kΛ̄
−1
k Ūk and ĒT

k S̄
−1
k Ē1 = ζ̄kIs, where ĒT

1 = [Is, 0s, . . . , 0s] ∈
Rs×ks.

By assuming that the matrix H̄k+1 is of full rank and that H̄+
k+1 =

(H̄T
k+1H̄k+1)

−1 H̄T
k+1, similar to Theorem 3, we can present the following

theorem for the PGl-GPBiCG method.

Theorem 4. Let GH̄k = H̄kS̄k − ζ̄−1
k Hk+1Ē

T
k with ĒT

k S̄
−1
k Ē1 = ζ̄kIs, and

let V̄ = [Iks 0ks×s]H̄
+
k+1. If the matrix H̄k+1 is of full rank, then for any

polynomial p(t) of degree not exceeding k with p(0) = 1, we have

∥R(1)PGl−GPBiCG

k ∥F ≤ ∥M̄k∥F ∥ p(G)R
(1)PGl−BiCG

k ∥F , (22)

where M̄k = In − (H̄k −Hk+1F̄
T
k )V̄ with F̄T

k = [Is, Is, . . . , Is] ∈ Rs×ks.

Proof. The proof is similar to that of Theorem 1 in [39].

Now, based on the above observations, we state the following theorem for
bounding the residual norm of the PGl-GPBiCG method.

Theorem 5. With the notation of Theorems 3 and 4 for R0 =

[
R

(1)
0

0

]
and

assuming that G = A(I −Π) + Π is diagonalizable, the right preconditioned
global GPBiCG residual satisfies

∥RPGl−GPBiCG
k ∥F ≤ (κ2(Z))2∥N̄k∥F ∥M̄k∥F ∥R0∥F (

√
κ− 1√
κ+ 1

)2k, (23)

where κ = λmax

λmin
stands for the ratio of the extremal (real) eigenvalues of

matrix G = A(I −Π) + Π.
In addition, with the notation of Theorem 2 and R

(1)
0 = βZ, we have

∥RPGl−GPBiCG
k ∥F ≤ κ2(Z)∥N̄k∥F ∥M̄k∥F

∥Z∥2√
(eT1 (V

T
k+1D̃Vk+1)−1e1)

(

√
κ− 1√
κ+ 1

)k,

(24)
where D̃ and Vk+1 are defined in Theorem 2.

So, the convergence is guaranteed.
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Proof. Since the inequality (22) holds for any polynomial p(t) of degree not
exceeding k with p(0) = 1, the use of the residual polynomial of the global
GMRES (pGl−GMRES

k (G)) method in (22) implies that

∥RPGl−GPBiCG
k ∥F ≤ ∥M̄k∥F ∥ pGl−GMRES

k (G)R
(1)PGl−BiCG

k ∥F
≤ κ2(Z)∥M̄k∥F ∥ R

(1)PGl−BiCG

k ∥F (
√
κ−1√
κ+1

)k,

The second inequality follows from (15). Now, from the fact that (16) also
holds for any polynomial p(t) of degree not exceeding k with p(0) = 1, we
get

∥R(1)PGl−GPBiCG

k ∥F ≤ κ2(Z)∥N̄k∥F ∥M̄k∥F ∥ pGl−GMRES
k (G)R

(1)
0 ∥F (

√
κ−1√
κ+1

)k.

(25)
This together with the inequality (15) implies that

∥R(1)PGl−GPBiCG

k ∥F ≤ (κ2(Z))2∥N̄k∥F ∥M̄k∥F ∥R(1)
0 ∥F (

√
κ−1√
κ+1

)2k. (26)

Since R
(2)
k = 0, so we have the inequality (23).

Finally, due to Theorem 2, the inequality (25) yields the inequality given
in (24).

7 Numerical results

In this section, we illustrate the efficiency of the PGl-GPBiCG method for
solving system (1). All the numerical experiments were performed in MAT-
LAB R2017b with PC-Intel(R) Core(TM) i7, CPU 3.60 GHz, 16.00 GB of
RAM. In all the examples, the starting guess was taken to be zero. The
stopping criterion

∥Rk∥F
∥R0∥F

≤ 10−9

was used.

Example 1. In this example, a set of 6 problems was taken from the Univer-
sity of Florida Sparse Matrix Collection[17] as the matrix A. These matrices
with their generic properties are given in Table 1. Also, we consider ϵ = 1,
B = rand(n,m), F1 = rand(n, s), and F2 = rand(m, s), where the func-
tion rand(l, k) creates an l × k random matrix with coefficients uniformly
distributed in [0, 1].

We compare the Frobenius norm of the residuals (RES), the number of
iterations (Iter), and the CPU time in seconds (CPU) required for conver-
gence of the PGl-GPBiCG and PGl-BiCGSTAB methods for s = 5, 10, 20.
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Matrix Property
order nnz spd

1 gr_30_30 900 7744 yes
2 nos3 960 15844 yes
3 1138_bus 1138 4054 yes
4 bcsstm11 1473 1473 yes
5 Dubcova1 16129 253009 yes
6 bodyy4 17546 121550 yes

Table 1: Test problems information

The results obtained by these algorithms are presented in Table 2. As can
be seen, the methods are similar in terms of the Frobenius norm of residu-
als (∥ Rk ∥F ), the number of iterations of the PGl-GPBiCG method is less
than that of the PGl-BiCGSTAB method and the CPU time required for
convergence in the PGl-GPBiCG method is similar or lower than that in the
PGl-BiCGSTAB method except, for examples, nos3 with s = 10, 20.

PGl-BiCGSTAB PGl-GPBiCG
Matrix \ s 5 10 20 5 10 20

Iter 47 49 49 38 38 38
gr_30_30 CPU 0.02 0.04 0.07 0.02 0.03 0.06

RES 1.1082e-07 3.4408e-07 6.3886e-07 2.6191e-07 4.2295e-07 6.1987e-07
Iter 192 183 193 167 180 172

nos3 CPU 0.16 0.17 0.23 0.16 0.24 0.30
RES 2.7939e-07 7.3530e-07 8.0708e-07 3.9410e-07 7.6350e-07 1.0669e-06
Iter 8364 4011 5393 2793 2677 2543

1138_bus CPU 9.61 6.02 10.72 4.23 4.84 6.33
RES 4.8730e-06 6.4503e-06 9.1015e-06 3.2011e-06 5.1722e-06 1.0123e-05
Iter 335 381 441 216 335 250

bcsstm11 CPU 0.98 1.20 1.72 0.59 1.05 1.11
RES 4.0741e-07 2.0770e-07 4.6741e-07 4.0252e-07 5.4683e-07 2.0180e-07
Iter 105 99 99 85 85 86

Dubcova1 CPU 30.48 35.21 40.87 24.62 31.08 37.33
RES 1.2814e-06 2.1262e-06 3.1051e-06 1.5025e-06 2.1308e-06 3.2268e-06
Iter 182 194 170 165 166 165

bodyy4 CPU 68.18 80.66 80.75 62.54 69.50 79.63
RES 1.5969e-06 2.1782e-06 3.2651e-06 1.6013e-06 2.3639e-06 3.1067e-06

Table 2: Numerical results for Example 1 with s = 5, 10, 20

Example 2. In this example, we consider the Stokes equation [16, 15] as

−ν∆u+▽p = f̃, in Ω (27)
▽ · u = g̃, in Ω

u = 0, on ∂Ω∫
Ω

p(x)dx = 0,
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where Ω = (0, 1) × (0, 1) ⊂ R2, ∂Ω is the boundary of Ω, ν is the viscosity
scalar, and u and p denote the velocity and the pressure, respectively. By
discretizing (27), we obtain the system of linear equations as[

A B
−BT 0

] [
U
P

]
=

[
F1

−F2

]
,

in which

A =

[
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

]
∈ R2q2×2q2 , B =

[
I ⊗ F
F ⊗ I

]
∈ R2q2×q2 ,

where T and F are tridiagonal matrices given by

T =
ν

h2
· tridiag(−1, 2,−1) ∈ Rq×q, F =

1

h
· tridiag(−1, 1, 0) ∈ Rq×q,

and ⊗ denotes the Kronecker product. Also, h = 1
q+1 is the discretization

mesh size. We set n = 2q2 and m = q2. Hence, the total number of variables
is n +m = 3q2. We choose the right-hand side such that the exact solution
of saddle point problem is a matrix of ones. For this example, we test three
different ν’s, that is, ν = 0.01, 0.1, 1 and q = 16, 32.

In Table 3, we list the Frobenius norm of the residuals (RES), the number
of iterations (Iter), and the CPU time in seconds (CPU) required for the
convergence of the PGl-GPBiCG and PGl-BiCGSTAB methods with ν =
1, 0.1, 0.01, q = 16, 32, and s = 5. As expected, the number of iterations of
PGl-GPBiCG is less than that of PGl-BiCGSTAB. The CPU time obtained
for PGl-GPBiCG is smaller than the one for PGl-BiCGSTAB except for
ν = 0.01 and q = 16.

PGl-BiCGSTAB PGl-GPBiCG
ν \ q 16 32 16 32

Iter 38 74 23 47
0.01 CPU 0.03 2.16 0.03 1.97

RES 1.7694e-06 6.4937e-06 2.3360e-06 6.6436e-06
Iter 70 222 44 80

0.1 CPU 0.04 3.10 0.03 2.20
RES 9.3235e-07 1.8710e-05 4.2220e-06 2.3113e-05
Iter 83 828 37 82

1 CPU 0.05 6.70 0.04 2.21
RES 5.5359e-05 2.7881e-04 3.5071e-05 2.3870e-04

Table 3: Numerical results for Example 2 with ν = 0.01, 0.1, 1

In Figure 1, we display the convergence history of the PGl-GPBiCG and
PGl-BiCGSTAB algorithms for Stokes problem with s = 5, q = 16, 32, and
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ν = 0.01, 0.1, 1, respectively. In these figures, the horizontal axis is the
number of iterations (iters) and the vertical axis is the logarithm of the
Frobenius norm of residuals (log10 ∥ Rk ∥F ). The results show that whatever
v becomes lower, the methods are smoother. Moreover, the PGl-GPBiCG
method is more effective and smoother than the PGl-BiCGSTAB method.

(a) ν = 1, q = 16 (b) ν = 1, q = 32

(c) ν = 0.1, q = 16 (d) ν = 0.1, q = 32

(e) ν = 0.01 q = 16 (f) ν = 0.01, q = 32

Figure 1: Convergence history of the PGl-GPBiCG algorithm for Stokes problem with
s = 5 and different values of ν and q.

Finally, we compare the numerical results obtained by the Gl-GPBiCG
method with the preconditioner (3) and the preconditioner given in [1],
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Pϵ,α,Q =

[
A B
ϵBT αQ

]
with Q = I. For q = 16, 32, 64, ν = 1, α = 0.05, 0.1, 0.5, 1, 10, and s = 5
the numerical results are given in Table 4. As expected, the preconditioner
discussed in this paper needs less CPU time than the preconditioner given in
[1] except for q = 64 and α = 0.5, 1, 10.

PGl-GPBiCG PGl-GPBiCG
(pre. in [1]) (pre. (3))

q \ α 0.05 0.1 0.5 1 10
Iter 196 88 25 22 35 37

16 CPU 0.66 0.35 0.11 0.10 0.14 0.04
RES 2.7200e-04 6.6880e-05 4.2144e-05 7.7757e-05 6.2674e-05 3.5071e-05

Iter 276 109 38 35 53 82
32 CPU 17.10 6.87 2.50 2.35 3.53 2.21

RES 0.0013 6.1728e-04 1.5556e-4 2.5773e-04 1.3334e-04 2.3870e-04

Iter 318 162 56 56 91 201
64 CPU 315.67 162.91 60.20 60.15 94.10 128.57

RES 0.0060 0.0017 0.0021 0.0014 2.5978e-04 0.0015

Table 4: Numerical results for Example 2 with α = 0.05, 0.1, 0.5, 1, 10

8 Conclusion

In this paper, we applied the Gl-GPBiCG method to solve the nonsymmetric
saddle point problems with multiple right-hand sides. By using the indefinite
preconditioner (3), we accelerated the convergence rate of the method. Also,
we studied some theoretical properties of the PGl-GPBiCG method and pre-
sented two bounds for the residual norm of the method, which guarantee the
convergence. As expected, the experimental results showed that the number
of iterations (Iter) of the PGl-GPBiCG method is less than that of the PGl-
BiCGSTAB method. The CPU time (CPU) of the PGl-GPBiCG method
is sometimes more than that of the PGl-BiCGSTAB method because of the
existence of parameters ζj and ηj . In addition, the PGl-GPBiCG method is
more effective and smoother than the PGl-BiCGSTAB method.
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