تعداد نشریات | 49 |
تعداد شمارهها | 1,777 |
تعداد مقالات | 18,924 |
تعداد مشاهده مقاله | 7,754,702 |
تعداد دریافت فایل اصل مقاله | 5,023,626 |
بررسی شواهد کانی شناسی و ژئوشیمیایی برای ارزیابی پتانسیل اقتصادی باطله های برجا در معدن روی و سرب انگوران | ||
زمین شناسی اقتصادی | ||
دوره 13، شماره 2 - شماره پیاپی 29، 1400، صفحه 295-325 اصل مقاله (6.61 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/econg.v13i2.81335 | ||
نویسندگان | ||
محمد فلاح1؛ قاسم نباتیان ![]() ![]() | ||
1گروه زمینشناسی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران | ||
2معدن انگوران، زنجان، ایران | ||
چکیده | ||
معدن روی-سرب انگوران در غرب استان زنجان و شمال غربی پهنه ماگمایی-دگرگونی سنندج-سیرجان قرارگرفته است. در این پژوهش از کانی پلی مورف ورتزیت، بهعنوان کانی معرف و ردیاب برای شناسایی مکانهای مستعد غنی شده از عناصر فلزی کمیاب استفاده شد. بر اساس این پژوهش، تمرکز اقتصادی عناصر فلزی در معدن انگوران را میتوان به دو بخش سولفیدی دارای غنی شدگی از عناصر نقره، کادمیم و سلنیوم (بالاتر از عیار حد خود) و باطلههای کربناته دارای غنی شدگی از عنصر آرسنیک تقسیم کرد. تمرکز برخی از عناصر در فرودیواره شیست این معدن (مانند آهن و به مقادیر کم آرسنیک، کبالت، مس و آنتیموان) در ارتباط با کانیزایی سولفیدی در آنهاست. نتایج بهدست آمده از تجزیه ژئوشیمیایی در این پژوهش نشاندهنده آن است که تمرکز بالای عناصر فلزی (نقره، کادمیم، سلنیوم، قلع، ایندیم، کبالت و غیره) در بخش سولفیدی معدن انگوران است که تأییدی در ارتباط با تشکیل کانیهای اسفالریت و ورتزیت به صورت همزیست در نتیجه غنی شدگی از عناصر فلزی کمیاب است. انباشت اصولی عناصر فلزی موجود در باطلهها و سایر بخشهای معدنی بر اساس نوع و میزان غنیشدگی، نه تنها موجب به حداقل رساندن مخاطرات زیستمحیطی میشود؛ بلکه میتواند قدمی برای استخراج و بهرهبرداری این عناصر به صورت محصول جانبی باشد. | ||
کلیدواژهها | ||
باطلههای معدنی؛ ورتزیت؛ عناصر کمیاب؛ پهنه سنندج-سیرجان؛ انگوران؛ زنجان | ||
مراجع | ||
Adriano, D.C., 2001. Trace elements in terrestrial environments, Biogeochemistry, Bioavailability, and Risks of Metals. Springer, New York, 867 pp. https://doi.org/10.1007/978-0-387-21510-5 Ahrabian Fard, P., 2019. Geology, geochemistry and genesis of Chromite mineralization in the Alamkandi area, west of Zanjan. M.sc. Thesis, Zanjan University, Zanjan, Iran, 145 pp. (in Persian with English abstract) Allen, E.T., Crenshaw, J.L. and Merwin, H.E., 1912. The slphides of zinc, cadmium, and mercury; their crystalline forms and genetic conditions; microscopic study by HE Merwin. American Journal of Science, 34(202): 341–396. https://doi.org/10.2475/ajs.s4-34.202.341 Babakhani, A.R. and Ghalamghash, J., 1990. Geological map of Iran, 1: 100,000 series sheet Takht-e-Soleiman. Geological Survey of Iran, Tehran. (in Persian) Bauer, M.E., Burisch, M., Ostendorf, J., Krause, J., Frenzel, M., Seifert, T. and Gutzmer, J., 2018. Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry. Mineralium Deposita, 54(2): 237–262. https://doi.org/10.1007/s00126-018-0850-0 Beaudoin, G., 2000. Acicular sphalerite enriched in Ag, Sb, and Cu embedded within color-banded sphalerite from the Kokanee Range, British Columbia, Canada. The Canadian Mineralogist, 38(6): 1387–1398. https://doi.org/10.2113/gscanmin.38.6.1387 Belissont, R., Boiron, M.C., Luais, B. and Cathelineau, M., 2014. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac–Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes. Geochimica et Cosmochimica Acta, 126(1): 518–540. https://doi.org/10.1016/j.gca.2013.10.052 Bhappu, R.B., 1962. Recovering Selenium from Sandstone Ores of New Mexico. JOM (The Journal of the Minerals, Metals & Materials Society (TMS)), 14(6): 429–431. https://doi.org/10.1007/BF03378161 Boni, M., Gilg, H.A., Balassone, G., Schneider, J., Allen, C.R. and Moore, F., 2007. Hypogene Zn carbonate ores in the Angouran deposit, NW Iran. Mineralium Deposita, 42(8): 799–820. https://doi.org/10.1007/s00126-007-0144-4 Bonnet, J., Mosser-Ruck, R., Caumon, M.C., Rouer, O., Andre-Mayer, A.S., Cauzid, J. and Peiffert, C., 2016. Trace Element Distribution (Cu, Ga, Ge, Cd, and Fe) in Sphalerite from the Tennessee MVT Deposits, USA, By Combined EMPA, LA-ICP-MS, Raman Spectroscopy, and Crystallography. The Canadian Mineralogist, 54(5): 1261–1284. https://doi.org/10.3749/canmin.1500104 Butterman, W.C. and Brown Jr, R.D., 2004a. Mineral Commodity Profiles: Selenium. U.S. Geological Survey, United States, Report 03–18, 20 pp. https://doi.org/10.3133/ofr0318 Butterman, W.C. and Carlin Jr, J.F., 2004b. Mineral commodity profiles: Antimony. U.S. Geological Survey, United States, Report 03–19, 35 pp. https://doi.org/10.3133/ofr0319 Butterman, W.C. and Plachy, J., 2004c. Mineral commodity profiles: Cadmium. U.S. Geological Survey, United States, Report 02–238, 25 pp. https://doi.org/10.3133/ofr02238 Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B. and Melcher, F., 2009. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica et Cosmochimica Acta, 73(16): 4761–4791. https://doi.org/10.1016/j.gca.2009.05.045 Daliran, F., Pride, K., Walther, J., Berner, Z.A. and Bakker, R.J., 2013. The Angouran Zn (Pb) deposit, NW Iran: evidence for a two stage, hypogene zinc sulfide–zinc carbonate mineralization. Ore Geology Reviews, 53: 373–402. https://doi.org/10.1016/j.oregeorev.2013.02.002 Fallah, M., Nabatian, Gh. and Ghadimi, S., 2019. Introduction of wurtzite mineral as trace metal elements potential in the Angouran Zn-Pb mine. 26th Symposium of Crystallography and Mineralogy of Iran (SCMI), Imam Khomeini International University, Qazvin, Iran. (in Persian with English abstract) Retrieved March 30, 2019 from http://www.cmsi.ir/UI/ArticleDetails?Lang=fa&ArticleID=2043 George, L., Cook, N.J., Ciobanu, C.L. and Wade, B.P., 2015. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. American Mineralogist, 100(2–3): 548–569. https://doi.org/10.2138/am-2015-4862 Ghorbani, M., 2008. Economic geology of natural and mineral resources of Iran. Pars Arian Zamin Publication, Tehran, 570 pp. (in Persian) Gilg, H.A., Boni, M., Balassone, G., Allen, C.R., Banks, D. and Moore, F., 2006. Marble-hosted sulfide ores in the Angouran Zn-(Pb–Ag) deposit, NW Iran: interaction of sedimentary brines with a metamorphic core complex. Mineralium Deposita, 41(1): 1–16. https://doi.org/10.1007/s00126-005-0035-5 Gocht, W.R., Eggert, R.G. and Zantop, H., 1988. International mineral economics: mineral exploration, mine valuation, mineral markets, international mineral policies. Springer, Verlag Berlin Heidelberg, 279 pp. https://doi.org/10.1007/978-3-642-73321-5 Kritikos, A., 2016. Compositional Systematics of Sphalerites from Western Bergslagen, Sweden. M.Sc. Thesis, Uppsala University, Uppsala, Sweden, 111 pp. Retrieved March 03, 2019 from https://www.semanticscholar.org/paper/Compositional-Systematics-of-Sphalerites-from-Kritikos/e4d52db4fcea6b3e6657bbbcd5e655fc8e870aae Maanijou, M. and Khodaei, L., 2018. Mineralogy and electron microprobe studies of magnetite in the Sarab-3 iron Ore deposit, southwest of the Shahrak mining region (east Takab). Journal of Economic Geology, 10(1): 267–293. (in Persian with English abstract) https://doi.org/10.22067/econg.v10i1.56522 Maanijou, M. and Salemi, R., 2015. Mineralogy, chemistry of magnetite and genesis of Korkora-1 iron deposit, east of Takab, NW Iran. Journal of Economic Geology, 6(2): 355–374. (in Persian with English abstract) https://doi.org/10.22067/econg.v6i2.22650 Marangi, H., 2017. Mineralogy and geochemistry of prone ore and minerals to concentration of trace and rare earth elements in zinc and lead Angouran mine - southwest of Zanjan. M.Sc. Thesis, Zanjan University, Zanjan, Iran, 145 pp. (in Persian with English abstract) Marshall, C.P. and Fairbridge, R.W., 2006. Encyclopedia of Geochemistry. Springer Netherlands, 747 pp. Moradi, S. and Monhemius, A.J., 2011. Mixed sulphide-oxide lead and zinc ores: Problems and solutions. Minerals Engineering, 24(10): 1062–1076. https://doi.org/10.1016/j.mineng.2011.05.014 Pirkharrati, H. and Farhadi, Kh., 2014. Investigating the potential of water and soil pollution in the Angouran lead and zinc mine area and providing solutions for crisis management. IMPASCO, Iran, Yazd, Report 1, pp. 55–76. (in Persian) Rahimi, H., 2016. Geological Map of Angouran Mine, scale 1: 2000. Iran's minerals producer and supplier co. (IMPASCO), Zanjan. Ridley, J., 2014. Ore deposit geology. Cambridge University Press, New York, 411 pp. https://doi.org/10.2138/am-2014-651 Sadeghi, N., Moghaddam, J. and Ilkhchi, M.O., 2017. Determination of effective parameters in pilot plant scale direct leaching of a zinc sulfide concentrate. Physicochemical Problems of Mineral Processing, 53(1): 601–616. https://doi.org/10.5277/ppmp170147 Sadeghi Bojd, M. and Moore, F., 2005. From fluid inclusion study to genesis of the Angouran ore deposit NW Iran. The 15th Annual Goldschmidt Conference: A voyage of discovery, University of Idaho, Idaho, Moscow. Retrieved February 28, 2018 from https://goldschmidt.info/conferencesView Scott, S.D. and Barnes, H.L., 1972. Sphalerite-wurtzite equilibria and stoichiometry. Geochimica et Cosmochimica Acta, 36(11): 1275–1295. . https://doi.org/10.1016/0016-7037(72)90049-X Ueno, T., Scott, S.D. and Kojima, S., 1996. Inversion between sphalerite and wurtzite-type structures in the system Zn-Fe-Ga-S. The Canadian Mineralogist, 34(5): 949–958. . Retrieved March 18, 2018 from https://pubs.geoscienceworld.org/canmin/article/34/5/949/12799/Inversion-between-sphalerite-and-wurtzite-type Wang, Y., Han, X., Petersen, S., Frische, M., Qiu, Z., Cai, Y. and Zhou, P., 2018. Trace Metal Distribution in Sulfide Minerals from Ultramafic-Hosted Hydrothermal Systems: Examples from the Kairei Vent Field, Central Indian Ridge. Minerals, 8(11): 1–21. https://doi.org/10.3390/min8110526 Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371 | ||
آمار تعداد مشاهده مقاله: 558 تعداد دریافت فایل اصل مقاله: 382 |