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Abstract

As known, outliers and multicollinearity in the data set are among the
important difficulties in regression models, which badly affect the least-
squares estimators. Under multicollinearity and outliers’ existence in the
data set, the prediction performance of the least-squares regression method
is decreased dramatically. Here, proposing an approximation for the con-
dition number, we suggest a nonlinear mixed-integer programming model
to simultaneously control inappropriate effects of the mentioned problems.
The model can be effectively solved by popular metaheuristic algorithms.
To shed light on importance of our optimization approach, we make some
numerical experiments on a classic real data set as well as a simulated data
set.
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1 Introduction

As an effective statistical tool, multiple regression is widely and increasingly
used in econometrics, engineering, social sciences, and so on. Generally, in
a multiple regression model, the relationship between several independent
(predictor) variables with a dependent (response) variable is investigated.
The model is formulated by

y = Xβ + ϵ, (1)

where y = (y1, . . . , yn)
⊤ ∈ Rn is a vector of observations on the response

variable, X = (x1, . . . ,xn)
⊤ ∈ Rn×p is a matrix of observations on the

predictor variables, β = (β1, . . . , βp)
⊤ is a vector of unknown regression co-

efficients, and ϵ = (ϵ1, . . . , ϵn)
⊤ is a vector of error terms with E(ϵ) = 0 and

E(ϵϵ⊤) = σ2In, where In is the unit matrix of order n and σ2 is an unknown
constant. The ordinary least-squares estimator (OLSE) of β is given by

β̂ = argmin
β

(y −Xβ)⊤(y −Xβ)

= S−1X⊤y,

where S = X⊤X. In regression models with intercept β0, we can simply
rewrite (1) by considering β = (β0, β1, . . . , βp)

⊤ and X = (1,X).

Some difficulties often appear in the regression analysis, such as collinear-
ity between explanatory variables as well as outliers’ existence in the data
set. Generally, in the regression modeling an outlier is an observation point
that fails to track the linear pattern of the data [10]. Outliers corrupt the
OLSE; this fact motivated the researchers to investigate robust estimations
[9]. As another problem in regression analysis, one may encounter with mul-
ticollinearity in the data set that is defined as the existence of nearly linear
dependency among columns of the design matrix X [7]. In this situation,
the matrix S = X⊤X has one or more small eigenvalues which causes the
OLSE to perform poorly [8]. One effective approach to detect the outliers in
a data set is the least trimmed squares (LTS) [9] in which the sum of smallest
h-squared residuals is minimized rather than the complete sum of squares.
Here, h is a prespecified threshold value and denotes the number of normal
or good observations that are not outliers. If zi ∈ {0, 1} is the indicator
demonstrating whether the ith observation is ordinary (nonoutlier) or not,
then the model can be formulated by

min
β,z

ψ(β, z) = (y −Xβ)⊤X(y −Xβ)

s.t. z⊤e = h,
zi ∈ {0, 1}, i = 1, 2, . . . , n,

(2)
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where Z is a diagonal matrix with the diagonal elements z = (z1, z2, . . . , zn)
⊤,

and e = (1, . . . , 1)⊤ ∈ Rn.
Let A be an arbitrary nonsingular matrix. Denoted by Kp(A), the p-

norm condition number of A defined by κp(A) = ∥A∥p∥A−1∥p [12]. When
A is positive definite and p = 2, then we get the spectral condition number,
which can be determined as the ratio of the largest eigenvalue to the smallest
eigenvalue of the matrix A [12]. As known, the condition number is an
important factor to check the existence of the multicollinearity [12]. Based
on this fact, Roozbeh, Babaie-Kafaki, and Naeimi Sadigh [8] developed an
extension of the optimization model (2) to simultaneously control presence
of the outliers and the multicollinearity in the data set; that is,

min
β,z

ψ(β, z) = (y −Xβ)⊤Z(y −Xβ) + µκ(X⊤ZX)

s.t. z⊤e = h,
zi ∈ {0, 1}, i = 1, 2, . . . , n,

(3)

in which κ(·) stands for the spectral condition number and µ > 0 is called the
penalty parameter. Here, the corresponding estimator is called the modified
LTS counter multicollinearity (MLTSCM) estimator. In model (3), the addi-
tional term κ(X⊤ZX) > 0 has been embedded as a penalty for generating
inappropriate values for z1, z2, . . . , zn and decreases the condition number of
the final model to combat multicollinearity problem.

Here, we deal with a modified version of the regression model (3) with
less computational cost in the objective function. This work is organized
as follows. In Section 2, we introduce a penalized regression method. The
method is then combined with the LTS method in Section 3, to combat the
sparsity of the model. In Section 4, we deal with our approximate version of
the mixed-integer nonlinear programming model (6) using a simple estimation
of the spectral condition number. In Section 5, we provide some numerical
experiments to show effectiveness of our model. Finally, concluding remarks
are presented in Section 6.

2 Least absolute shrinkage and selection operator
methodology

The amount of data we are faced with keeps growing. From around the late
1990s, wide data sets emerged, in which the number of variables far exceeds
the number of observations. This was mainly due to our increasing ability to
measure a large amount of information automatically [6].

Penalized regression can perform variable selection and prediction in a
“Big Data” environment more effectively and efficiently in contrast to the
other methods. Initially proposed by Tibshirani [11], the LASSO (least ab-
solute shrinkage and selection operator) is based on minimizing mean squared
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error, which is based on balancing the opposing factors of bias and variance
to build the most predictive model. In fact, LASSO shrinks the regression
coefficients toward zero by penalizing the regression model with an ℓ1-norm
penalty term, that is, the sum of the absolute value of the coefficients. LASSO
regression is a simple technique to reduce model complexity and usually pre-
vent over-fitting which may result from simple linear regression.

In the case of LASSO regression, the penalty term is embedded to force
the coefficient estimates with minor contributions to the model to be exactly
set to zero. This means that, LASSO can be also seen as an alternative to the
subset selection methods for performing variable selection in order to reduce
complexity of the model.

Ordinary least squares (OLS) regression chooses the coefficients by mini-
mizing the residual sum of squares (RSS) as follows:

min
β
RSS = min

β
(y − ŷ)⊤(y − ŷ) = min

β


n∑

i=1

yi − p∑
j=1

xijβj

2
 ,

where (xi1, . . . , xip) can be called x⊤
i . LASSO is an extension of the OLS,

which adds a penalty to the RSS, being equal to sum of the absolute values of
the nonintercept beta coefficients multiplied by the parameter λ that slows
(when λ < 1) or accelerates (when λ > 1) the penalty. Therefore, the
following optimization problem should be solved in LASSO problem:

min
β


n∑

i=1

yi − p∑
j=1

xijβj

2

+ λ

p∑
j=1

|βj |

 .

Figure 1 shows the constraint area of the LASSO method for p = 2, in
which elliptical contours of the function are shown by the full. They are
centered at the OLSE. The constraint region is the rotated square. LASSO
solution is the first place that the contours touch the square, and this will
sometimes occur at a corner, corresponding to a zero coefficient. LASSO
is frequently used in practice since the ℓ1 penalty allows us to shrink some
coefficients to zero, that is, to produce sparse estimation models that are
highly interpretable.

It is notable that increasing λ will increase bias and decrease variance.
Likewise, decreasing λ reduces bias and increases variance. A big part of
the building, the best models in LASSO deal with the bias-variance tradeoff.
Bias refers to how correct (or incorrect) the model is. A very simple model
that makes a lot of mistakes is said to have a high bias. A very complicated
model that does well on its training data is said to have a low bias. There are
several ways to choose the optimal λ, such as AIC, BIC, Cp, and so on [10].
For this purpose, one of the most popular methods is the cross validation
(CV) method.
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Figure 1: Constraint region of LASSO.

In order to find the optimal value of λ, a range of λ values is tested and
the optimal value is chosen using CV, which involves

• separating the data into a training set and a test set;

• building the model in the training set;

• estimating the outcome in the test set using the model from the training
set;

• calculating mean squared error (MSE) in the test set.

There are different types of cross validation method like Leave-P-Out,
Leave-one-out, k-fold, standard k-fold, Monte Carlo, and so on [2]. One of
the most important methods is the k-fold CV, which is one way to improve
over the holdout method. The data set is divided into k subsets, and the
holdout method is repeated k times. Each time, one of the k subsets is used
as the test set and the other k−1 subsets are put together to form a training
set. Then, the average error across all k trials is computed. The advantage
of this method is that it matters less how the data gets divided. Every data
point gets to be in a test set exactly once, and gets to be in a training set k−1
times. The variance of the resulting estimate is reduced as k is increased. The
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disadvantage of this method is that the training algorithm has to be rerun
from scratch k times, which means it takes k times as much computation to
make an evaluation. A variant of this method is to randomly divide the data
into the test and the training set k different times. The advantage of doing
this is that you can independently choose how large each test set is and how
many trials you average over.

3 Sparse least trimmed squares method

As discussed, LASSO offers interpretable models but is not robust with re-
spect to the outliers. The breakdown point of LASSO is 1

n (see [1] for more
details); that is, only one single outlier can make the LASSO estimator com-
pletely unreliable. Therefore, robust alternatives are needed. In this situa-
tion, Alfons, Croux, and Gelper [1] suggested the sparse LTS estimator as
follows:

min
β,z

ψ(β, z) =
{
(y −Xβ)⊤Z(y −Xβ) + hλ

∑p
j=1 |βj |

}
s.t. z⊤e = h,

zi ∈ {0, 1}, i = 1, 2, . . . , n,

where λ is a penalty parameter. They showed that the breakdown point of
this estimator is n−h+1

n .

4 A penalized nonlinear mixed-integer programming
model in linear regression

As known, the condition number is an effective tool to check the existence
of multicollinearity [12]. The OLSE performs poorly in the presence of mul-
ticollinearity. Also, the existence of multicollinearity may lead to wide con-
fidence intervals for the individual parameters or their linear combinations,
and can produce estimators with wrong signs.

As known, if ai, i = 1, . . . , n denotes the ith column of A, then, for any i
and j, it can be seen that

κp(A) ≥
∥ai∥p
∥aj∥p

(4)

(see [12, Theorem 2.2.25]). Hence, we can write

κp(A) ≥
max

i=1,...,n
∥ai∥p

min
j=1,...,n

∥aj∥p
=def Ψp(A). (5)
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Now, based on the above inequality, it is reasonable to select a set of h ap-
propriate observations of the data that makes the computationally low cost
term Ψp(X

⊤ZX) as small as possible. Hence, we propose the computation-
ally low cost approximation κp(A) ≈ Ψp(A) and then, propose the following
approximation of model (3):

min
β,z

ψ(β, z) = (y −Xβ)⊤Z(y −Xβ) + µΨ(X⊤ZX)

s.t. z⊤e = h,
zi ∈ {0, 1}, i = 1, 2, . . . , n.

(6)

Here, the corresponding estimator is called the approximate LTS counter
multicollinearity (ALTSCM) estimator. As seen, the given optimization
model illustrates an NP-hard mixed-integer (having both continuous (β) and
(discrete) integer (z) variables) nonlinear programming problem for which the
classical methods are not practically efficient [4]. Note that in complexity
theory, NP-hardness is viewed as strong evidence that a problem is not poly-
nomially solvable [4]. As known, metaheuristic algorithms have attracted
special attention in developing efficiently robust computational procedures
for solving a vast variety of such problems. Among them there is the sim-
ulated annealing (SA) algorithm [4]. SA is a local search algorithm capable
of escaping from local optima by use of random hill-climbing moves in the
search process. It is very efficient in practice and well-developed in theory.
Motivated by these, here we use the SA algorithm to approximately compute
ALTSCM.

5 Numerical experiments

In this section, we investigate computational efficiency of the given estimator
firstly on a real data set and then, on a simulated data set.

5.1 A real data set related to the riboflavin vitamin B2
production in Bacillus subtilis

To illustrate usefulness of the suggested strategies, we consider the data set
about riboflavin vitamin B2 production in Bacillus subtilis, which can be
found in R package “hdi” [5]. Riboflavin is one of the B vitamins, which are
all water soluble. Riboflavin is naturally present in some foods, added to some
food products, and available as a dietary supplement. This vitamin is an es-
sential component of two major coenzymes, flavin mononucleotide (FMN; also
known as riboflavin-5’-phosphate), and flavin adenine dinucleotide (FAD).
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Figure 2: LASSO plots for the riboflavin data set.

There is a single real valued response variable, which is the logarithm of
the riboflavin production rate. Furthermore, there are p = 4088 explanatory
variables measuring the logarithm of the expression level of 4088 genes. There
is also one rather homogeneous data set from n = 7 samples that were hy-
bridized repeatedly during a fed batch fermentation process, where different
engineered strains and strains grown under different fermentation conditions
were analyzed. There is one rather homogeneous data set from n = 71 sam-
ples that were hybridized repeatedly during a fed batch fermentation process,
where different engineered strains and strains grown under different fermen-
tation conditions were analyzed. In Figure 2, the 10-fold cross-validation and
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Figure 3: Outlier detection plots for the riboflavin data set.

the coefficients estimation diagrams for different values of the penalty param-
eter are depicted. We plotted Figure 2 to find the best value of the LASSO
parameter (λn), which minimizes the CV criterion. As seen in Figure 2, the
minimal mean squared error, estimated by CV, is achieved at λn = 0.01. The
LASSO method selects 53 variables. Figure 3 produces the diagnostic plots
for a sequence of regression models, such as submodels along a robust sparse
least trimmed squares regression models for a grid of values for the penalty
parameter. In the normal Q-Q plot of the standardized residuals, a reference
line is drawn through the first and third quartiles. The index number of ob-
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servations with the largest distances from that line are identified by a label
(the observation number). In the plots of the standardized residuals versus
their index or the fitted values, horizontal reference lines are drawn at 0 and
±2.5. The index number of observations with the largest absolute values of
the standardized residuals is identified by a label (the observation number).
For the regression diagnostic plot, the robust Mahalanobis distances of the
predictor variables are computed via the minimum covariance determinant
(MCD) based on only those predictors with nonzero coefficients. Horizontal
reference lines are drawn at ±2.5 and a vertical reference line is drawn at
the upper 97.5% quantile of the chi-squared distribution with p degrees of
freedom, where p denotes the number of predictors with nonzero coefficients.
The index number of observations with the largest absolute values of the
standardized residuals and/or largest robust Mahalanobis distances are iden-
tified by a label (the observation number). According to Figure 3, it is clear
that there exist some outliers in the data and so, it is necessary to use the
robust methods same as the sparse LTS and ALTSCM methods for modeling
the data.

We reported the results for the three methods listed in Table 1, in which
we numerically calculated RSS = (y − ŷ)⊤(y − ŷ) and R2 = 1 − SSE/Syy
with ŷ = Xβ̂ and Syy =

∑n
i=1 zi(yi − ȳ)2. They are measures for the error

and goodness of prediction, respectively. It is clear that the penalized mixed-
integer method performs better than the other methods according to the
goodness of fit criteria.

5.2 A simulated data analysis

To examine the performance of the proposed estimators, we perform a sim-
ulation data study. For this purpose, the following model is considered with
n = 55, p = 450, and h = 41 (see [3] for more details):

y = Xβ + ϵ,

where

β = (β1,β2)
⊤, β1 = (−1.5, 2, 2.5, 4,−3, 5)⊤, β2 (444×1) ∼

i.i.d.

N (0, 1),

x1, . . . ,x450 ∼ N450(1450, I450),

ϵ = (ϵ1, ϵ2)
⊤, ϵ1 (h×1) ∼ N (0, 1), ϵ2 ((n−h)×1) ∼

i.i.d.

t2(8),

where tm(δ) is the noncentral t-student distribution with m degrees of free-
dom and noncentrality parameter δ.

We produced the first h and the last n−h error terms as random variables
from dependent normal and independent noncentral t-student distributions,
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Method LASSO Sparse LTS ALTSCM

Effective genes Estimation Effective genes Estimation Effective genes Estimation

Intercept 0.6712 Intercept 0.3093 Intercept –
ARGF_at -0.1911 CHED_at -0.0895 ABH_at 0.0124
DNAJ_at -0.1364 CSBA_at 0.0546 ALD_at 0.0124
GAPB_at 0.0380 CTAA_at 0.0336 AMYC_at 0.0205
LY SC_at -0.2977 DEAD_at -0.1260 ARGB_at -0.0132
PKSA_at 0.0236 MREBH_at -0.0819 ARGF_at -0.0177
PRIA_at 0.0982 SPOIISB_at 0.0248 ARGG_at -0.0133
SPOIIAA_at 0.0224 THIK_at -0.2799 ARGH_at -0.0160
SPOV AA_at 0.2652 XKDI_at 0.0001 BIOB_at -0.0133
THIK_at -0.0051 XKDS_at 0.0988 CARA_at -0.0140
XHLB_at 0.1608 Y CDH_at -0.0018 CARB_at -0.0145
Y ACN_at -0.0404 Y CGM_at -0.0257 GAPB_at 0.0130
Y BFI_at 0.1329 Y CGP_at -0.0168 GSIB_at -0.0129
Y CDH_at -0.0067 Y CKJ_at -0.0761 NDK_at -0.0129
Y CGO_at -0.0057 Y DAR_at -0.0175 PAND_at -0.0128
Y CKE_at 0.0092 Y DBM_at -0.3054 PBUX_at 0.0140
Y CLB_at 0.1994 Y FLL_at -0.0542 PHRI_r_at -0.0128
Y CLF_at -0.0533 Y HCB_at -0.1021 PTSG_at -0.0120
Y DDH_at -0.0176 Y HCL_at -0.0850 SIGY _at -0.0155
Y DDK_at -0.1142 Y HDO_at -0.0762 SSPA_at -0.0122
Y EBC_at -0.5347 Y JBJ_at -0.1005 Y BGB_at -0.0139
Y FHE_r_at 0.1451 Y JCJ_at 0.2446 Y CDH_at -0.0307
Y FII_at 0.0100 Y KUH_at 0.2855 Y CGM_at -0.0183
Y FIO_at 0.1588 Y ORB_i_at 0.0519 Y CGN_at -0.0206
Y FIR_at 0.0441 Y QET_at -0.0217 Y CGO_at -0.0207
Y HDS_r_at 0.1452 Y RZI_r_at 0.0109 Y CIC_at -0.0229
Y KBA_at 0.1108 Y TGB_at -0.0203 Y DDH_at -0.0131
Y KV J_at 0.0237 Y UIA_at 0.0113 Y FMH_r_at -0.0164
Y LXW_at 0.0731 Y V BY _at 0.0420 Y HDS_r_at 0.0166
YMFE_at 0.0183 YWQD_at -0.0098 Y HFH_r_at 0.0178
Y OAB_at -0.8123 Y XEL_at -0.0442 Y HZA_at -0.0396
Y PGA_at -0.0102 Y XLD_at -0.0389 Y OEBat -0.0122
Y QJT_at 0.0415 Y XLE_at -0.1714 Y OPSat 0.0149
Y QJU_at 0.2320 Y OQX_i_at 0.0155
Y RV J_at -0.0547 Y PUD_at 0.0349
Y TGB_at -0.0390 Y PUF_at 0.0248
Y UID_at 0.0134 Y PUG_at 0.0208
Y URQ_at 0.0245 Y RPE_at -0.0150
Y XLD_at -0.2005 Y RZI_r_at 0.0173
Y XLE_at -0.1068 Y TGA_at -0.0168
Y Y BG_at -0.0781 Y TGB_at -0.0191
Y Y DA_at -0.1042 Y TGC_at -0.0129

Y TGD_at -0.0198
Y TIA_at -0.0290
Y USA_at -0.0126
Y XLC_at -0.0204
Y XLD_at -0.0270
Y XLE_at -0.0270
Y XLF_at -0.0194
Y XLG_at -0.0216

RSS 594.0313 25.6582 0.1487
R2 0.6519 0.9093 0.9458

Table 1: Results of the proposed estimators for the riboflavin data set
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respectively. Such data generating method makes the outliers to appear on
one side of the true regression hyperplane, corrupting the nonrobust estima-
tors by tending them to the outliers.

In Table 2, we have reported the results. To save space, the estimations of
nonzero coefficients are just reported in Table 2. Also, the outliers are shown
in Figure 4. As seen, ALTSCM is again preferable to the other methods.

 

  

Figure 4: Outlier detection plots for the simulated data set.
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Method LASSO Sparse LTS ALTSCM
Parameters

β1 0.00000 0.00000 -1.44790
β2 0.00000 0.00000 1.98652
β3 2.08386 2.69022 2.48500
β4 3.83184 3.47647 4.01102
β5 -3.01472 -2.03737 -2.99656
β6 2.27159 2.87485 4.94529
RSS 4203.47 2850.05 4.71450
R2 0.14287 0.41885 0.93325

Table 2: Results of the proposed estimators for the simulated data set

6 Conclusions

We dealt with a computationally low cost nonlinear mixed-integer optimiza-
tion model to combat both the outliers and multicollinearity effects in the
high dimensional regression. Suggesting an approximation for the condition
number, our model also has a simple (LTS-based) structure. We used the
simulated annealing algorithm to solve the model effectively. Computational
tests showed that the given estimator (ALTSCM) is practically promising.
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