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Abstract
In this paper, we use a novel technique to solve the nonlinear fractional
Volterra-Fredholm integro-differential equations (FVFIDEs). To this end,
the Legendre wavelets are used in conjunction with the quadrature rule for
converting the problem into a linear or nonlinear system of algebraic equa-
tions, which can be easily solved by applying mathematical programming
techniques. Only a small number of Legendre wavelets are needed to obtain
a satisfactory result. Better accuracies are also achieved within the method
by increasing the number of polynomials. Furthermore, the existence and
uniqueness of the solution are proved by preparing some theorems and
lemmas. Also, error estimation and convergence analyses are given for the
considered problem and the method. Moreover, some examples are pre-
sented and their results are compared to the results of Chebyshev wavelet,
Nyström, and Newton–Kantorovitch methods to show the capability and
validity of this scheme.
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1 Introduction

Fractional calculus has been applied in physics in recent years, although it has
a long history in mathematics. Most of the physical phenomenon can be mod-
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eled by using fractional calculus [34, 10]. Applications of fractional differen-
tial equations and fractional integral equations create a wide area of research
for many researchers [3, 4, 12, 11]. It has been applied to model the non-
linear oscillation of earthquakes, fluid-dynamic traffic, frequency-dependent
damping behavior of many viscoelastic materials, continuum and statistical
mechanics, solid mechanics, economics, signal processing, and control theory.
To better analyze these systems, it is required to obtain the solution of these
equations. However, mostly, finding the analytical solution of these equa-
tions cannot be possible, so considering more accurate numerical solutions
can be helpful. In the literature, there are various techniques for solving
fractional ordinary differential equations (FODEs), fractional partial differ-
ential equations (FPDEs), fractional integro-differential equations (FIDEs),
and dynamic systems with fractional derivatives, such as analytical and semi-
analytical methods (homotopy analysis method, Adomian’s decomposition
method, etc.) [1, 13, 14, 15, 17, 39, 35] and numerical methods (finite differ-
ence schemes, collocation method, Tau method, etc.) [6, 36, 16, 19, 30, 5, 22].

We can find some other famous methods for the numerical solutions of
these kinds of equations. For example, spline collocation [29], analytical
Lie group approach [28], fractional differential transform [25], least-squares
[20], rationalized Haar function [27], exp-function method [8], and many oth-
ers. In [32], a novel Legendre wavelet Petrov–Galerkin method was pre-
sented for fractional Volterra integro-differential equations. The Chebyshev
wavelet method [23] has been used to nonlinear fractional Volterra-Fredholm
integro-differential equations (FVFIDEs) with mixed boundary conditions.
Approximate solutions of Volterra-Fredholm integro-differential equations of
fractional order based on the Sinc-collocation method have been discussed
in [2]. In [24], the Nyström and Newton–Kantorovitch methods were de-
scribed for solving FVFIDEs with mixed boundary conditions. Systems
of integro-differential equations [37] have been solved by using the spectral
second kind Chebyshev wavelets scheme. Also, nonlinear Volterra integro-
differential equations of fractional order have been solved numerically using
the Euler wavelet method [38]. The reliable modification of the Laplace Ado-
mian decomposition method [9] has been applied to solve nonlinear Volterra-
Fredholm integral equations. Haar wavelet bases have been employed for solv-
ing the integro-differential equation [7]. In [18], hybrid Bernstein block-pulse
functions have been used for solving systems of fractional integro-differential
equations.

Orthogonal polynomials and functions apply to different problems be-
cause of their appropriate attributes. These functions and methods such as
collocation, Galerkin, and Tau, are applied to reduce the solutions of different
problems to the solutions of a system of algebraic equations. In this work,
the Legendre wavelets are implemented to obtain an approximate solution
for nonlinear FVFIDEs. We consider the fractional FVFIDEs in a Banach
space as follows:
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C
0 D

α
xy
)
(x) + V y(x) + Fy(x) = g(x), m− 1 < α ≤ m, m ∈ N, (1)

where C
0 D

α
x is in the Caputo sense fractional derivative, g(x) is a given con-

tinuous function, x ∈ J = [a, b], y(x) is unknown function, and

V y(x) =

∫ x

a

k1(x, ξ)N1(y(ξ)) dξ, Fy(x) =

∫ b

a

k2(x, ξ)N2(y(ξ)) dξ,

in which ki : J×J → R, i = 1, 2, are continuous functions andNi : J×R → R,
i = 1, 2 are Lipschitz nonlinear continuous functions. Equation (1) is subject
to the following mixed boundary conditions:

m∑
j=1

[
λijy

(j−1)(a) + ηijy
(j−1)(b)

]
= γi, i = 1, 2, . . . ,m. (2)

The main characteristic of this technique is that it reduces these prob-
lems to a system of algebraic equations. This approach is based on converting
the FVFIDEs into mixed Volterra-Fredholm integral equations through inte-
gration, approximating various terms involved in the equation by truncated
Legendre wavelet series and using the operational matrices to eliminate the
integral, derivation, and product operations.

The rest of the paper is organized as follows: In section 2, some es-
sential mathematical preliminaries and definitions of fractional calculus are
introduced. In section 3, the properties of Legendre wavelets and function
approximations are discussed. In the next section, the Gauss quadrature
Legendre wavelet method (GQLWM) is constructed for solving FVFIDEs.
In section 5, we study the convergence and error analysis of our algorithm.
The existence and uniqueness of the solution are investigated in section 6. In
section 7, the proposed method is applied on two examples to demonstrate
the efficiency and accuracy of the present method. At last, a brief conclusion
is given in section 8.

2 Basic definitions and notations of the fractional
calculus

In this section, some definitions and properties of the fractional calculus,
which will be used, are presented. For more details, see [21, 26, 31, 33].

Definition 1. The Gamma function is intrinsically tied with fractional cal-
culus. The definition of the gamma function is given by

Γ(α) =

∫ ∞

0

e−ξξα−1dξ, Re(α) > 0.
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Definition 2. A real function g(x), x > 0, is said to be in the space Cθ,
θ ∈ R if there exists a real number p > θ such that g(x) = xpg1(x), where
g1(x) ∈ C [0,∞) and it is said to be in the space Ck

θ , k ∈ N
⋃
{0} if and only

if g(k) ∈ Cθ.
Definition 3. The Riemann-Liouville fractional integral operator of order
α > 0 of a function g ∈ Cθ, θ ≥ −1, is defined as

0I
α
x g(x) =

1

Γ(α)

∫ x

0

(x− ξ)
α−1

g(ξ)dξ.

Some properties of the Riemann-Liouville fractional integral are as fol-
lows:

1. 0I
0
xg(x) = g(x),

2.
(
0I

α
x 0I

β
x g
)
(x) =

(
0I

β
x 0I

α
x g
)
(x) =

(
0I

α+β
x g

)
(x),

3. 0I
α
x (x− µ)

λ
= Γ(λ+1)

Γ(α+λ+1) (x− µ)
α+λ, α ≥ 0, λ > −1.

Similar to the integer-order integration, the Riemann-Liouville fractional in-
tegral is a linear operator, which means that

0I
α
x

(
m∑
i=1

cifi(x)

)
=

(
m∑
i=1

ci

)
0I

α
x fi(x),

where {ci}mi=1 are constants.
Definition 4. The fractional derivative of g(x) in the Caputo sense is defined
as

C
0 D

α
x g(x) = 0I

n−α
x g(n)(x),

for n− 1 < α ≤ n, n ∈ N, x > 0, and g ∈ Cn
−1.

The relation between the Riemann-Liouville operator and Caputo opera-
tor is given by the following lemma.
Lemma 1. If n− 1 < α ≤ n, n ∈ N, then C

0 D
α
x 0I

n−α
x g(x) = g(x) and

0I
n−α
x

C
0 D

α
x g(x) = g(x)−

n−1∑
k=0

g(k)(0+)
xk

k!
, x > 0.

3 Legendre wavelets and functions approximation

3.1 Properties of Legendre wavelets

Wavelets are a family of functions constructed from the dilation and trans-
lation of a single function called the mother wavelet. When the dilation
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parameter a and the translation parameter b vary continuously, we have the
following family of continuous wavelets as

Ψa,b(x) = |a|− 1
2Ψ

(
x

a
− b

a

)
, a, b ∈ R, a ̸= 0.

If we restrict the parameters a and b to discrete values as a = a−k
0 , b =

nb0a
−k
0 , a0 > 0, b0 > 0 and n and k are positive integers, then the following

family of discrete wavelets will be obtained

ψk,n(x) = |a0|
k
2ψ(ak0x− nb0),

where ψk,n(x) form a wavelet basis for L2(R). In particular, with a0 = 2 and
b0 = 1, ψk,n(x) form an orthonormal basis.
Legendre wavelets ψn,m(x) = ψ(k, n̂,m, x) have four arguments; n̂ = 2n− 1
for n = 1, 2, . . . , 2k−1, k ∈ Z+, m as the order of Legendre polynomials and
x, which is the normalized time. They are defined on the interval [0, 1) by

ψn,m(x) = ψ(k, n̂,m, x) =

{
2

k−1
2 (2m+ 1)

1
2L∗

m(x), n̂−1
2k

≤ x < n̂+1
2k
,

0, otherwise,
(3)

where m = 0, 1, . . . ,M − 1, n = 1, 2, . . . , 2k−1, the dilation and translation
parameters are a = 2−k and b = n̂2−k, respectively. Moreover, L∗

m(x) =
Lm(2kx − n̂) are shifted Legendre polynomials on interval [0, 1), which are
orthogonal with respect to the weight function w(x) = 1. Also, Lm’s can be
determined by the following recurrence formulas:

L0(x) = 1, L1(x) = x,

Lm+1(x) =

(
2m+ 1

m+ 1

)
xLm(x)−

(
m

m+ 1

)
Lm−1(x), m = 1, 2, . . . .

3.2 Function approximation by Legendre wavelets

A function y(x), which is square integrable in [0, 1), may be expressed in
terms of the Legendre wavelet as

y(x) =
∑
n∈N

∑
m∈N

∪
{0}

yn,mψn,m(x), (4)

where yn,m = ⟨y(x), ψn,m(x)⟩ and < ·, · > denotes the inner product. If the
infinite series in (4) is truncated, then one obtains
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y(x) ≃
2k−1∑
n=1

M−1∑
m=0

yn,mψn,m(x) = Y TΨ(x), (5)

where the coefficient vector Y and the Legendre wavelet function vector Ψ(x)
are given by

Y = [y1,0, y1,1, . . . , y1,M−1, y2,0, y2,1, . . . , y2,M−1, . . . , y2k−1,0, y2k−1,1, . . . , y2k−1,M−1]
T ,

(6)
Ψ(x) = [ψ1,0(x), ψ1,1(x), . . . , ψ1,M−1(x), . . . , ψ2k−1,0(x), ψ2k−1,1(x), . . . , ψ2k−1,M−1(x)]

T .

(7)

Similarly, we can approximate the functions ki(x, ξ) ∈ L2([0, 1]× [0, 1]) as

ki(x, ξ) = Ψ(x)
T
KiΨ(ξ), (8)

where Ki, i = 1, 2 are 2k−1M × 2k−1M matrices.

4 GQLWM for solving FVFIDEs

Let us consider the nonlinear FVFIDE with mixed boundary conditions given
by (1)–(2). To approximate the functions y(x) and g(x) by y(x) = Y TΨ(x)
and g(x) = GTΨ(x), assume that

N1(y(ξ)) = u(ξ), N2(y(ξ)) = v(ξ), (9)

where u(ξ) and v(ξ) are as follows:

u(ξ) = UTΨ(ξ), v(ξ) = V TΨ(ξ), (10)

in which UT and V T are defined similarly as in (6). Applying the operator
0I

α
x on both sides of (1), results in

y(x)−
n−1∑
k=0

y(k)(0+)
xk

k!
=

1

Γ(α)

∫ x

0

(x− τ)
α−1

g(τ)dτ

− 1

Γ(α)

∫ x

0

(x− τ)
α−1

∫ τ

0

k1(τ, ξ)u(ξ)dτdξ

− 1

Γ(α)

∫ x

0

(x− τ)
α−1

∫ 1

0

k2(τ, ξ)v(ξ)dτdξ.

Replacing the exact solution y(x) by Y TΨ(x) and using their approximations
by (5), (8)–(10), one gets
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Y TΨ(x)−
n−1∑
k=0

Y TΨ(k)(0+)
xk

k!

=
1

Γ(α)

∫ x

0

(x− τ)
α−1

GTΨ(τ)dτ

− 1

Γ(α)

∫ x

0

(x− τ)
α−1

∫ τ

0

Ψ(τ)
T
K1Ψ(ξ)UTΨ(ξ)dτdξ

− 1

Γ(α)

∫ x

0

(x− τ)
α−1

∫ 1

0

Ψ(τ)
T
K2Ψ(ξ)V TΨ(ξ)dτdξ. (11)

Collocating (11) in M2k−1 Legendre wavelet-Gauss collocation points xj ,
j = 1, 2, . . ., M2k−1, on interval [0, 1], we arrive at the following system:

Y TΨ(xj)−
n−1∑
k=0

Y TΨ(k)(0+)
xkj

k!

=
1

Γ(α)

∫ xj

0

(xj − τ)α−1GTΨ(τ)dτ

−
1

Γ(α)

∫ xj

0

(xj − τ)α−1

∫ τ

0

Ψ(τ)TK1Ψ(ξ)UTΨ(ξ)dτdξ

−
1

Γ(α)

∫ xj

0

(xj − τ)α−1

∫ 1

0

Ψ(τ)TK2Ψ(ξ)V TΨ(ξ)dτdξ. (12)

In a similar way, the mixed boundary conditions (2) are approximated as
follows:

m∑
j=1

[
λijY

TΨ(j−1)(0) + ηijY
TΨ(j−1)(1)

]
= γi, i = 1, 2, . . . ,m. (13)

Now, we use the quadrature rule to approximate the integral involved in
this equation, which has zero error integration for polynomial integrands of
degree less than or equal to 1 +M2k with M2k−1 Legendre-Gauss nodes.
To do this, M2k−1 intervals [0, xj ] are transferred to a fixed interval [−1, 1]
through the transformations τ = (xj/2 )(s + 1). Applying the Gaussian
quadrature, system (12) is converted to

Y TΨ(xj)−
n−1∑
k=0

Y TΨ(k)(0+)
xkj

k!

=
1

Γ(α)

∫ xj

0

(xj − τ)α−1GTΨ(τ)dτ

−
1

Γ(α)

xj

2

M2k−1∑
l=1

wl

(xj
2
(1− sl)

)α−1
∫ σ

0

[Ψ(σ)]TK1Ψ(ξ)UTΨ(ξ)dξ

−
1

Γ(α)

xj

2

M2k−1∑
l=1

wl

(xj
2
(1− sl)

)α−1
∫ 1

0

[Ψ(σ)]TK2Ψ(ξ)V TΨ(ξ)dξ, (14)
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where σ =
xj

2 (sl+1)) and wl for l = 1, 2, . . . ,M2k−1 are the weight functions
on [−1, 1]. Taking into account (9)–(10) and using collocation points xj ,
j = 1, 2, . . . ,M2k−1, one obtains

N1(Y
TΨ(xj)) = UTΨ(xj), N2(Y

TΨ(xj)) = V TΨ(xj). (15)

Combining (13)–(15), the main problem is reduced to a system of nonlinear
algebraic equations. By solving this system, the unknown values Y T will be
obtained, and by relation (5), the approximate solution of system (1) will be
determined.

5 Convergence and error analysis

In this section, we will obtain an estimation for the error bound of our numeri-
cal method. Also, its convergence analysis will be discussed. For this purpose,
assume that L∗

m(x) = Lm(2x−1) and that Λ(x) = [L∗
0(x), L

∗
1(x), . . . , L

∗
N (x)]

T .
So, the function y(x) ∈ L2[0, 1] can be expressed in terms of the Legendre
polynomials basis Λ(x) as

y(x) =

N∑
n=0

lnL
∗
n(x) = LTΛ(x),

where L = [l0, l1, . . . , lN ]
T .

Lemma 2. Suppose that y ∈ Cm+1[0, 1] and that S = span {L∗
0, L

∗
1, . . . , L

∗
N}

is a vector space. If LTΛ(x) is the best approximation of y(x) out of S, then
the error bound of presented method is as follows:

∥∥y − LTΛ
∥∥
2
≤
√
2χ2m+3Mm+1

(m+ 1)!
√
2m+ 3

,

in which Mm+1 = max
{∣∣fm+1(x)

∣∣ : 0 ≤ x ≤ 1
}

and χ = max{1− ξ, ξ}.

Proof. The Taylor polynomials, implies that

Ty(x) = y0(ξ) + (x− ξ)y′(ξ) +
(x− ξ)

2

2!
y′′(ξ) + · · ·+ (x− ξ)

m

m!
y(m)(ξ),

where ξ ∈ (0, 1). Therefore, there exists λ ∈ (0, 1) such that

|y(x)− Ty(x)| ≤

∣∣∣∣∣ (x− ξ)
m+1

(m+ 1)!
y(m+1)(λ)

∣∣∣∣∣ .
Since LTΛ(x) is the best approximation of y(x), one obtains
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∥∥y − LTΛ
∥∥2
2
≤ ∥y − Ty∥22 =

∫ 1

0

|y(x)− Ty(x)|2dx

≤
∫ 1

0

∣∣∣∣∣ (x− ξ)
m+1

(m+ 1)!
y(m+1)(λ)

∣∣∣∣∣
2

dx

≤
M2

m+1

[(m+ 1)!]
2

∫ 1

0

(x− ξ)
2m+2

dx ≤
2χ2m+3M2

m+1

(2m+ 3)[(m+ 1)!]
2 ,

and the proof is completed.

Theorem 1. Assume that y ∈ Cm+1[0, 1] and that its approximation by
the Legendre wavelets is ỹ(x) = Y TΨ(x). Then, its mean error bound is as
follows:

∥y − ỹ∥2 ≤ 2(m+1)(1−k)
√
2Mm+1

(m+ 1)!
√
2m+ 3

.

Proof. Dividing [0, 1] to 2k−1 subintervals Ik,n = [(n− 1)/2k−1 , n/2k−1 ],
n = 1, 2, . . . , 2k−1 with the restriction that ỹ is a polynomial of degree less
than m+ 1 and also using Lemma 2, we get

∥y − ỹ∥22 ≤
∫ 1

0

|y(x)− ỹ(x)|2dx

=

2k−1∑
n=1

∫ n

2k−1

n−1

2k−1

|y(x)− ỹ(x)|2dx

≤
2k−1∑
n=1

[√
2M̄n2

(1−k)(2m+3)
2

(m+ 1)!
√
2m+ 3

]2
=

2(1−k)(2m+3)+1

[(m+ 1)!]
2
(2m+ 3)

2k−1∑
n=1

M̄2
n

≤
2(1−k)(2m+2)+1M2

m+1

[(m+ 1)!]
2
(2m+ 3)

,

where M̄n = max
{∣∣y(m+1)(x)

∣∣ , x ∈ Ik,n
}

, which completes the proof.

Lemma 3. Suppose that for y(x) ∈ [0, 1), there exists βy ∈ R such that
|y(x)| ≤ βy. Then, the sum of Legendre coefficients of y(x) defined in (5) is
absolutely convergent if |yn,m| ≤

√
21−kβy.

Proof. The function y(x) ∈ L2[0, 1] can be expressed as the Legendre wavelet
basis as defined in (5). For m ≥ 0, we have
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|yn,m| = | < y, ψn,m > | =
∣∣∣∣∫ 1

0

y(x)ψn,m(x)dx

∣∣∣∣ ≤ ∫ 1

0

|y(x)||ψn,m(x)|dx

≤ βy

∫ 1

0

|ψn,m(x)|dx = βy

∫
In,k

|ψn,m(x)|dx

= βy2
k−1
2 (2m+ 1)

1
2

∫
In,k

|Lm(2kx− 2n+ 1)| dx.

Setting s = 2kx− 2n+ 1, one obtains

|yn,m| ≤ βy2
−k−1

2 (2m+ 1)
1
2

∫ 1

−1

|Lm(s)|ds.

The Hölder’s inequality implies that

|yn,m| ≤ βy2
−k−1

2 (2m+ 1)
1
2

2√
2m+ 1

=
√
21−kβy.

This means that the series
2k−1∑
n=1

M−1∑
m=0

yn,m is absolutely convergent as k →

∞.

Theorem 2. The series solution ỹ(x) =
∑2k−1

n=1

∑M−1
m=0 yn,mψn,m(x) defined

by (5) is convergent with respect to L2-norm on [0, 1] if the sum of absolute
values of the Legendre coefficients

∑2k−1

n=1

∑M−1
m=0 |ynm| for continuous function

y(x) forms a convergent series.

Proof. Let L2(R) be a Hilbert space and let ψn,m defined in (3) form an
orthogonal basis with ψn,m(x) = ∆j(x) and δj =< ỹ(x),∆j(x) >. Define a
sequence of partial sums {Sn} as

Sn(x) =

n∑
j=0

δj∆j(x).

Now, for every ϵ > 0, there exists Nϵ > 0 such that for every n > m > Nϵ,

∥Sn(x)− Sm(x)∥22 =

∫ 1

0

∣∣∣∣∣
n∑

l=m+1

δl∆l(x)

∣∣∣∣∣
2

dx ≤
n∑

l=m+1

|δl|2
∫ 1

0

|∆l(x)|2dx

=

n∑
l=m+1

|δl|2.

Using Lemma 3,
∑∞

l=0 |δl|2 is absolutely convergent. Hence, according to the
Cauchy criterion, we have
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n∑
l=m+1

|δl|2 < ϵ2.

So, ∥Sn(x)− Sm(x)∥2 ≤
√
ϵ2 = ϵ. Thus, the sequence of partial sum of the

series is a Cauchy sequence. Therefore, it convergent with respect to L2-norm
and this completes the proof.

6 Existence and uniqueness

In order to study the uniqueness of the solution, we consider the FVFIDEs
(1) in an operator form as(

C
0 D

α
xy
)
(x) = g(x)−K1N1y −K2N2y, (16)

where

K1N1y =

∫ x

a

k1(x, ξ)N1(y(ξ)) dξ, K2N2y =

∫ b

a

k2(x, ξ)N2(y(ξ)) dξ.

Applying the operator 0I
α
x on both sides of (16), one obtains

y(x) = f(x) + 0I
α
x [g(x)−K1N1y −K2N2y] ,

where f(x) =
∑n−1

k=0 y
(k)(0+)xk/k! . This equation can be written as T y = y,

where T is as follows:

T y(x) = f(x) + 0I
α
x [g(x)−K1N1y −K2N2y] .

Let (C [0, 1], ||∞||) be a Banach space of all continuous functions with the
norm ||h||∞ = maxx|h(x)|. Also, the operators N1 and N2 satisfy the Lips-
chitz condition on [0, 1] with Lipschitz constants J1 and J2 as

|N1ỹ(x)−N1y(x)| ≤ J1 |ỹ(x)− y(x)| , |N2ỹ(x)−N2y(x)| ≤ J2 |ỹ(x)− y(x)| .

In the following theorem with these assumptions, we show that the FV-
FIDEs (1) have a unique solution.

Theorem 3. Suppose that the nonlinear operators N1 and N2 satisfy the
following relation

J1∥N1∥∞ + J2∥N2∥∞ < Γ(α+ 1).

Then the FVFIDE (1) has a unique solution.

Proof. Let T : C [0, 1] → C [0, 1] be defined as
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T y(x) = f(x) +
1

Γ(α)

∫ x

0

(x− ξ)
α−1

[g(ξ)−K1N1y(ξ)−K2N2y(ξ)] dξ.

Suppose that ỹ, y ∈ C [0, 1]. Then for every positive x, we have

T ỹ(x)− T y(x)

=
1

Γ(α)

∫ x

0

(x− ξ)
α−1

[K1N1y(ξ)−K1N1ỹ(ξ) +K2N2y(ξ)−K2N2ỹ(ξ)] dξ.

Therefore, one obtain

|T ỹ(x)− T y(x)|

≤ 1

Γ(α)

∫ x

0

|x− ξ|α−1 [|K1| |N1y(ξ)−N1ỹ(ξ)|+ |K2| |N2y(ξ)−N2ỹ(ξ)|] dξ

≤ 1

Γ(α)

∫ x

0

|x− ξ|α−1 [|K1| J1 |ỹ(ξ)− y(ξ)|+ |K2| J2 |ỹ(ξ)− y(ξ)|] dξ

≤ 1

Γ(α)

∫ x

0

|x− ξ|α−1 [∥K1∥∞J1 + ∥K2∥∞J2]∥ỹ(ξ)− y(ξ)∥∞ dξ

≤ |x|α

Γ(α+ 1)
(∥K1∥∞J1 + ∥K2∥∞J2) ∥ỹ(ξ)− y(ξ)∥∞

≤ 1

Γ(α+ 1)
(∥K1∥∞J1 + ∥K2∥∞J2) ∥ỹ(ξ)− y(ξ)∥∞.

Hence,
∥T ỹ(x)− T y(x)∥∞ ≤ L∥ỹ(ξ)− y(ξ)∥∞,

where L = [1/Γ(α+ 1) ] (∥K1∥∞J1 + ∥K2∥∞J2). Since L < 1, by the con-
traction mapping theorem, this problem has a unique solution in C [0, 1].

7 Numerical examples

In this section, to demonstrate the capability and accuracy of our method, we
apply it to some examples and compare the quality of the computed solutions
with some other well-known methods. In order to demonstrate the error, we
will calculate the maximum absolute error (MAE) by the following formula:

MAE = max
0≤x<1

{|y(x)− ỹ(x)|} .

Also for comparison, in Example 2, the root-mean-square error (RMSE) is
calculated. This error is as follows:

RMSE =

√∫ 1

0

[y(x)− ỹ(x)]
2
dx.
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Example 1. Consider the following nonlinear FVFIDEs:(
C
0 D

√
7

2
x y

)
(x)−

∫ x

0

1 + 2ξ

1 + y(ξ)
dξ−

∫ 1

0

(1 + 2ξ)y(ξ)dξ = g(x),

subject to the boundary conditions y(0) = 0 and y(1) = 2 in which

g(x) =
2x2−

√
7

2

Γ
(
3−

√
7
2

) − ln(x2 + x+ 1) + 1− e2.

The exact solution of this problem is y(x) = x2+x. Numerical results for
Example 1 are indicated in Table 1, which show that the results of our method
are better than the results obtained in [24, 23] by the Chebyshev wavelet
method (CWM), Nyström and Newton–Kantorovitch methods, respectively.
Table 2 analyzes the exact solution y and the approximate solutions of this
algorithm by CWM and GQLWM. One can see that the present method has
excellent accuracy with respect to CWM. Table 3 shows the maximum ab-
solute error between the exact and approximate solutions for various choices
of M and k. The outcomes reveal that the results of GQLWM by using
only a small number of bases are very promising and superior to CWM and
Nyström and Newton–Kantorovitch methods. Furthermore, we compare the
absolute error functions for different values of k and M in Figure 1. These
results confirm that with increasing the amounts of k and M , the error will
be decreased.

(a) k = 1 (b) k = 2

Figure 1: Error history of the presented method for various values for M and k of
Example 1.
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Table 1: Comparison between our method, CWM [23] and method in [24] for Example
1.

x 0.1 0.3 0.5 0.7 0.9

k = 3, n = 160 7.81E − 06 1.55E − 05 1.65E − 05 1.27E − 05 5.07E − 06
Error [24] k = 3, n = 320 1.92E − 06 3.84E − 06 4.10E − 06 3.15E − 06 1.25E − 06

k = 3, n = 640 4.65E − 07 9.31E − 07 9.92E − 07 7.65E − 07 3.04E − 07

Error [23] for k = 1, M = 19 3.47E − 12 6.08E − 12 6.21E − 12 4.68E − 12 1.84E − 12

k = 2, M = 4 2.93− 06 1.01E − 05 1.99E − 06 1.08E − 05 4.27E − 06
k = 3, M = 5 8.17E − 09 5.11E − 10 5.05E − 11 6.78E − 10 9.48E − 09

GQLWM k = 4, M = 6 1.69E − 23 4.22E − 20 9.91E − 21 7.06E − 20 4.45E − 23

k = 1, M = 10 1.01E − 12 4.67E − 13 1.00E − 12 4.71E − 13 1.02E − 12
k = 1, M = 19 1.16E − 28 2.11E − 30 8.86E − 29 3.35E − 30 1.30E − 28

Table 2: The numerical solution of Example 1.

x y(exact) y(CWM) y(GQLWM)

0.0 0.00 0.00000000000000000001 0.00000000000000000000
0.1 0.11 0.11000000000347509219 0.10999999999999999999
0.2 0.24 0.24000000000518991700 0.23999999999999999999
0.3 0.39 0.39000000000608906284 0.38999999999999999999
0.4 0.56 0.56000000000639391977 0.55999999999999999999
0.5 0.75 0.75000000000621724965 0.74999999999999999999
0.6 0.96 0.96000000000562994250 0.95999999999999999999
0.7 1.19 1.19000000000468149700 1.18999999999999999999
0.8 1.44 1.44000000000340880150 1.43999999999999999999
0.9 1.77 1.71000000000184060200 1.70999999999999999999
1 2.00 1.99999999999999999990 2.00000000000000000000

Table 3: Maximum absolute error between the exact and approximate solutions for
various choices of M and k for Example 1.

M 4 7 10 13 16 19

k = 1 4.41E − 04 4.06E − 08 1.03E − 12 4.02E − 16 3.01E − 23 1.57E − 28
MAE k = 2 7.68E − 05 9.41E − 10 3.05E − 15 3.96E − 21 2.55E − 27 1.61E − 34

k = 3 5.46E − 06 8.23E − 12 3.39E − 18 5.49E − 25 4.42E − 32 2.02E − 39

Example 2. Consider the following nonlinear fractional integro-differential
equation: (

C
0 D

α
xy
)
(x) = g(x) +

∫ 1

0

xξ[y(ξ)]
2
dξ, y(0) = 0,

where 0 < α ≤ 1 and g(x) is as follows:

Case 1. [23] g(x) = 4
3Γ
(
3
4

)−1
x

3
4 − 1

4x with α = 1
4 and exact the solution is

y(x) = x.

IJNAO, Vol. 12, No. 1, (2022), pp 229-249



Legendre wavelet method combined with the Gauss quadrature rule for ... 243

Case 2. [23] g(x) = 64
15Γ

(
3
4

) √
2

π x
9
4 − 1

8x with α = 3
4 and the exact solution is

y(x) = x3.

Case 3. [40] g(x) = 1− 1
4x with α = 1 and the exact solution is y(x) = x.

We apply our method to this example with various values of M and k,
and the results are presented in Tables 4 and 5. The maximum absolute error
of y(x) by GQLWM for k = 1 with different values of M has been compared
to the error of CWM [23] for cases 1 and 2. These results demonstrate the
validity and capability of GQLWM with respect to CWM. The graphs of
absolute error functions for different values of M and k with α = 1/4, α = 1,
and α = 3/4 are given in Figures 2, 3, and 4, respectively. These figures reveal
that the error will be decreased when M is increased. Table 5 compares the
RMSE of GQLWM with the results in [40] for different values of k and M
when α = 1. This table reveals that, for a certain value of k, as M increases,
the accuracy increases. Also, for a certain value of M , as k increases, the
accuracy increases as well. Therefore, GQLWM for solving this problem is
very effective and more accurate with respect to CWM and the method in
[40].

Table 5: RMSE for some k and M of GQLWM and the second kind Chebyshev wavelet
method [40] for Example 2 (case 3).

Method in [40] GQLWM
M 2 2 6 10 14

k = 3 2.970E − 07 2.348E − 09 4.236E − 11 1.003E − 12 1.320E − 13
k = 4 1.861E − 08 7.391E − 10 9.863E − 13 4.002E − 15 7.5691E − 17
k = 5 1.164E − 09 8.541E − 12 8.786E − 16 9.251E − 18 2.015E − 20

(a) k = 1 (b) k = 2

Figure 2: Error history of the presented method for various values for M and k of
Example 2 with α = 1

4
.
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Table
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=
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=

14
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G
Q

LW
M

x
M

=
1
9

M
=

1
3

M
=

16
M

=
19

M
=

1
9

M
=

1
3

M
=

16
M

=
19

0.0
1
.6
8
E

−
20

0
0

0
7.9

2E
−
2
1

0
0

0
0.1

9
.0
6
E

−
13

1
.7
5
E

−
13

1
.85E

−
16

1.27
E

−
20

6.5
7E

−
1
8

6
.5
3
E

−
1
6

4
.0
0
E

−
19

2.51E
−
24

0
.2

3
.9
9
E

−
12

4
.0
5
E

−
12

7
.53E

−
17

3.92
E

−
23

3.6
2E

−
1
8

5
.8
9
E

−
1
5

1
.6
3
E

−
19

2.91E
−
25

0
.3

1
.0
3
E

−
11

3
.7
6
E

−
12

1
.47E

−
16

1.49
E

−
20

2.6
5E

−
1
8

5
.4
4
E

−
1
5

3
.8
0
E

−
19

6.18E
−
24

0
.4

2
.1
0
E

−
11

2
.2
1
E

−
12

1
.53E

−
16

1.06
E

−
20

2.1
1E

−
1
8

3
.4
1
E

−
1
5

4
.1
9
E

−
19

4.08E
−
24

0
.5

3
.7
3
E

−
11

8
.3
5
E

−
14

1
.48E

−
16

1.83
E

−
22

1.8
5E

−
1
8

4
.0
7
E

−
1
6

4
.2
5
E

−
19

2.29E
−
25

0
.6

6
.0
5
E

−
11

2
.3
8
E

−
12

1
.42E

−
16

1.04
E

−
20

1.6
5E

−
1
8

2
.6
1
E

−
1
5

4
.2
8
E

−
19

4.33E
−
24

0
.7

9
.1
6
E

−
11

3
.9
2
E

−
12

1
.23E

−
16

1.51
E

−
20

1.4
9E

−
1
8

4
.6
3
E

−
1
5

3
.9
4
E

−
19

5.92E
−
24

0
.8

1
.3
1
E

−
10

4
.2
3
E

−
12

1
.48E

−
16

3.71
E

−
22

1.4
0E

−
1
8

7
1.8

1
E

−
19

1.23E
−
25

0
.9

1
.8
2
E

−
10

3
.1
1
E

−
13

1
.67E

−
17

1.32
E

−
20

1.0
7E

−
1
8

4
.9
8
E

−
1
5

5
.1
0
E

−
19

4.92E
−
24

1
2
.4
5
E

−
10

0
0

0
5.4

2E
−
1
7

0
0

0

IJNAO, Vol. 12, No. 1, (2022), pp 229-249



Legendre wavelet method combined with the Gauss quadrature rule for ... 245

(a) k = 1 (b) k = 2

Figure 3: Error history of the presented method for various values for M and k of
Example 2 with α = 3

4
.

(a) k = 1 (b) k = 2

Figure 4: Error history of the presented method for various values for M and k of
Example 2 with α = 1.

8 Conclusion

In this paper, the GQLWM, which is an efficient technique for the numerical
solution of nonlinear FVFIDEs, has been proposed. Using this method, the
system of nonlinear FVFIDEs was reduced to a system of algebraic equa-
tions. The numerical solution of the resulted system was approximated by
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the Gauss quadrature formula with respect to the Legendre weight func-
tion. By solving this nonlinear system, the numerical solution was obtained.
Moreover, the convergence, error analysis, existence, and uniqueness of the
proposed method were discussed. It was evident that, for a certain value of
k, as M increases, the accuracy of the GQLWM is increased. Also, for a
certain value of M , as k increases, the accuracy is increased, as well. The
method was applied to two examples, and the obtained results were com-
pared to some other well-known methods. This comparison showed that the
GQLWM is a suitable and powerful technique for solving the nonlinear FV-
FIDEs. In the end, we note that the method can be easily extended and
applied to multi-dimensional integral equations or systems of FVFIDEs eas-
ily with some modifications. We also believe that it shall not be difficult to
extend this approach to nonlinear equations of general form, which will be
the subject of future researches.
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