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Differential equations of fractional order have been the focus of many stud-
ies due to their frequent appearance in various applications in fluid me-
chanics, biology, physics, and engineering. In general, it is not easy to
derive the analytical solutions to most of these equations. Therefore, it is
vital to develop some reliable and efficient techniques to solve fractional dif-
ferential equations. A numerical method for solving fractional differential
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Block-pulse and orthonormal Bernstein functions. Convergence analysis is
given, and numerical examples are introduced to illustrate the effectiveness
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1 Introduction

Fractional calculus is one of the most popular calculus types having a
vast range of applications in many different scientific and engineering dis-
ciplines. The order of the derivatives in the fractional calculus might
be any real number that separates the fractional calculus from the ordi-
nary calculus where the order of derivatives are allowed to be only nat-
ural numbers. Fractional calculus is a highly efficient and useful tool in
the modeling of many sorts of scientific phenomena including image pro-
cessing, earthquake engineering, biomedical engineering, computational fluid
mechanics, and physics. Fundamental concepts of fractional calculus and
its applications to different research areas can be seen in the references
[3, 4, 2, 7, 6, 5, 9, 12, 10, 16, 19, 20, 24, 29, 31, 32, 34], amongst many others.
In recent years, many different basis functions have been used for solving
fractional equations, such as operational matrix of Chebyshev polynomials,
Block-pulse functions (BPFs), hybrid Bernoulli and Block-pulse functions,
and hybrid Legendre [1, 8, 15, 23, 27, 26, 30, 33].

In this paper, we employ hybrid functions consisting of a combination of
BPFs with orthonormal Bernstein polynomials (OBPs) to find the numerical
solution of the fractional equation

F (x, y(x), Dα1y(x), . . . , Dαky(x)) = 0, x ∈ [0, X], αi ≥ 0, i = 1, . . . , k,
(1)

with boundary or supplementary conditions

Zi(y(ξi), y
′
(ξi), . . . , y

(p)(ξi)) = di, i = 0, 1, . . . , p, (2)

where 0 ≤ p < max{αi, i = 1, . . . , k} ≤ p + 1, ξi ∈ [0, X], i = 0, . . . , p and
Zi, i = 0, . . . , p, are independent linear combinations of y(ξi), y

′
(ξi), . . . , y

(p)(ξi)
and y ∈ L2[0, X]. It should be noted that F can be nonlinear in general.

The fractional equations are used in a variety of fields including con-
tinuum mechanics, potential theory, geophysics, electricity and magnetism,
antenna synthesis, communication theory, mathematical economics, popu-
lation genetics, the particle transport problem in astrophysics, and reactor
theory. For the most part, it can be challenging to deduce the analytical
solutions to most of these equations. As a result, it is crucial to develop
some reliable and efficient ways to solve fractional differential equations. In
this paper, we introduce a new method based on a hybrid of Block-pulse
and orthonormal Bernstein functions. The present study’s primary goal is
to present and analyze a new stable algorithm for the numerical solution of
the fractional differential equation based upon the hybrid of Block-pulse and
orthonormal Bernstein functions (HBB method). To solve this problem, we
propose a mathematical formulation that takes advantage of the orthogo-
nality of BPFs and the OBPs properties to reduce the fractional differential
equation to an algebraic system. Convergence analysis of the method is
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discussed theoretically and numerically. Moreover, the applicability of the
method is examined by solving some fractional differential equations and the
Basset equation, which describes the unsteady motion of a sphere immersed
in a Stokes fluid.

The outline of this paper is as follows: In section 2, we briefly overview
some basic definitions for fractional calculus. In section 3, hybrid functions
are introduced; therefore we approximate functions by using hybrid func-
tions. In section 4, we present useful properties of hybrid functions such
as coefficient matrix and operational matrix of derivative to solve fractional
differential equations. In section 7, we present estimates for the error of the
best approximation of smooth functions by hybrid functions. In section 6,
we apply the proposed method to find an approximate solution to fractional
differential equations. Finally, numerical examples are presented to show the
effectiveness of the proposed method in section 7.

2 Fractional calculus

We give some basic definitions and properties of the fractional calculus theory,
which are used further in this paper.

Definition 1 (see [32]). The Riemann–Liouville fractional integral operator
of order α ≥ 0 is defined as

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt =
1

Γ(α)
xα−1 ∗ f(x), α > 0, x > 0,(3)

J0f(x) = f(x). (4)

It has the following property:

Jαxγ =
Γ(γ + 1)

Γ(γ + 1 + α)
xγ+α, γ > −1.

Definition 2 (see [32]). The Caputo definition of fractional derivative oper-
ator is given by

Dαf(x) = Jm−αDmf(x) =
1

Γ(m− α)

∫ x

0

(x− t)m−α−1f (m)(t)dt,

where m− 1 < α ≤ m, m ∈ N, x > 0. For the Caputo derivative, we have

DαC = 0 (C is a constant),

Dαxj =

{
0 for j ∈ N ∪ 0 and j < ⌈α⌉,
Γ(j+1)

Γ(j+1−α)x
j−α for j ∈ N ∪ 0 and j ≥ ⌈α⌉ or j ∈ N.

(5)
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3 Hybrid of Block-pulse and orthonormal Bernstein
functions

The orthonormal set of hybrids hji(x), j = 1, 2, . . . ,m and i = 0, 1, . . . , n,
where j is the order for BPFs, i is the order for OBPs, and x is the normalized
time, is defined on the interval [0, X) as

hji(x) =

{√
m bin(mx− γj) if X(j−1)

m ≤ x < Xj
m ,

0 otherwise,
(6)

where γj = X(1− j) and bin, i = 0, . . . , n are OBPs defined on [0, X]. Then

H(x) = [h10(x), . . . , h1n(x), . . . , hj0(x), . . . , hjn(x), . . . , hm0(x), . . . , hmn(x)]
T

= [H1(x), . . . , Hj(x), . . . , Hm(x)]T ,

is the m(n + 1) hybrid function vector. Here, the Bernstein polynomials
(BPs) of the nth degree are defined on the interval [0, X] as

Bin(x) =
1

Xn

(
n
i

)
xi(X − x)n−i, i = 0, 1, 2, . . . , n,

by using expansion of (X − x)n−i, we have

Bin(x) =

n∑
j=i

(−1)j−i(
1

Xj
)

(
n
i

)(
n− i
j − i

)
xj , i = 0, 1, 2, . . . , n,

where (
n
i

)
=

n!

i!(n− i)!
.

According to [25], BPs form a complete basis over the interval [0, X].

The explicit representation of the OBPs, denoted by bin(x) here, was
recently discovered by analyzing the resulting orthonormal polynomials after
applying the Gram–Schmidt process; see [13]

bin(x) = (
√

2(n− i) + 1)(X−x)n−i
i∑

k=0

(−1)k
1

Xn−k

(
2n+ 1− k

i− k

)(
i
k

)
xi−k.

In addition, it can be written in terms of the non-orthonormal Bernstein basis
functions as
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bin(x) = (
√
2(n− i) + 1)

i∑
k=0

(−1)k

(
2n+ 1− k

i− k

)(
i
k

)
(
n− k
i− k

) Bi−kn−k(x),

for i = 0, 1, . . . , n. By using the Taylor expansion, bin(x) can be represented
as [21]

bin = ZiTn(x), i = 0, . . . , n,

where Tn(x) = [1, x, x2, . . . , xn]T , Zi is a row vector of Taylor coefficients as

(Zi)j =
√
2(n− i) + 1

min{i,j}∑
k=max{0,j−n+i}

ρij−kβik, j = 0, . . . , n,

where
ρir = (−1)r

(
n− i

r

)
, r = 0, . . . , n− i,

βij = (−1)i−j

(
2n+ 1− i+ j

j

)(
i

i− j

)
, j = 0, . . . , i.

Thus b(x) = [b0n(x), b1n(x), . . . , bnn(x)]
T can be defined by

b(x) = ZTn(x), (7)

where Z is an (n+ 1)× (n+ 1) matrix whose ith row is Zi, i = 0, . . . , n.

Now, from (7) and (4), we have

Hj(x) =
√
mZTn(mx− γj), (8)

where

Tn(mx− γj) = [1,mx− γj , (mx− γj)
2, . . . , (mx− γj)

n]T ,

by using the binomial expansion of (mx− γj)
k, (8) can be expressed as

Hj(x) = ZΛjTn(x),

where

Λj =
√
m


1 0 0 0 · · · 0 0
γj m 0 0 · · · 0 0(

2
0

)
(γj)

2
(
2
1

)
(γj)m

(
2
2

)
m2 0 · · · 0 0

...
...

... . . . · · ·
...

...(
n
0

)
(γj)

n
(
n
1

)
(γj)

n−1m
(
n
2

)
(γj)

n−2m2
(
n
3

)
(γj)

n−3m3 · · ·
(

n
n−1

)
(γj)m

n−1
(
n
n

)
mn

 .

Therefore the hybrid function vector H(x) can be defined by
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H(x) = Γ̃T̃ (x), (9)

where T̃ (x) = [Tn(x), Tn(x), . . . , Tn(x)]
T is an m(n + 1) vector, and Γ̃ =

diag[Γ1,Γ2, . . . ,Γm] is an m(n+1)×m(n+1) coefficient matrix of the (n+
1)× (n+ 1) coefficient submatrix Γj = ZΛj .

3.1 Function approximation

Suppose that Ω = L2[0, X] and

{h10, . . . , h1n, . . . , hj0, . . . , hjn, . . . , hm0, . . . , hmn} ⊂ Ω

are the set of hybrid functions and that

Ωmn = span{h10, . . . , h1n, . . . , hj0, . . . , hjn, . . . , hm0, . . . , hmn}.

Let fmn be the best approximation of an arbitrary function f ∈ L2(Ω)
out of Ωmn, that is,

∥f − fmn∥2 ≤∥ f − g ∥2 for all g ∈ Ωmn.

Moreover, since fmn ∈ Ωmn, there exist unique coefficients c10, c11, . . . , cmn

such that

f(x) ≃ fmn(x) =

m∑
j=1

n∑
i=0

cjihji(x) =

m∑
j=1

CjHj(x) = CTH(x) = HT (x)C,

where C and H(x) are m(n+ 1) vectors as

C = [c10, . . . , c1n, . . . , cj0, . . . , cjn, . . . , cm0, . . . , cmn]
T = [C1, . . . , Cj , . . . , Cm]T ,

H = [h10, . . . , h1n, . . . , hj0, . . . , hjn, . . . , hm0, . . . , hmn]
T = [H1, . . . , Hj , . . . , Hm]T ,

and the hybrid function coefficients cji are obtained by

cji =
⟨f, hji⟩
∥hji∥22

.

Since the set of hybrid functions is a complete orthonormal system in Ω, then

∥hji∥2 =

∫ X

0

hji(x)hji(x)dx = 1.

Therefore
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cji = ⟨f, hji⟩ =
∫ X

0

f(x)hji(x)dx. (10)

4 Operational matrix of differentiation

We construct the operational matrices of differentiation for H(x). First, we
consider integer order derivatives of H(x). Hence

dH(x)

dx
= D(1)H(x),

where D(1) is the m(n+ 1)×m(n+ 1) operational matrix of first derivative
of Hybrid function. From (9), we have

dH(x)

dx
= Γ̃

dT̃ (x)

dx
= Γ̃Q̃T̃ (x) = Γ̃Q̃Γ̃−1H(x),

where Q̃ = diag[Q,Q, . . . , Q] is an m(n+1)×m(n+1) matrix that consists
the m submatrix Q(n+1)×(n+1) as

Q =


0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 2 0 · · · 0 0
...
...
... · · ·

...
...

0 0 0 · · · n 0


(n+1)×(n+1)

.

Therefore we have
D(1) = Γ̃Q̃Γ̃−1. (11)

In general, we obtain
dnH(x)

dxn
= (D(1))nH(x),

where n ∈ N and the superscript, in D(1), denotes the matrix powers. Thus

D(n) = (D(1))n, n = 1, 2, . . . .

For the Caputo fractional derivative introduced in section 2, we denote frac-
tional order derivative of H(x) by

dαH(x)

dxα
= D(α)H(x),

where D(α) is an m(n+1)×m(n+1) operational matrix of fractional order
derivative of Hybrid function. From (9), we have
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dαH(x)

dxα
= Γ̃

dαT̃ (x)

dxα
,

where
dαT̃ (x)

dxα
= [

dαT (x)

dxα
,
dαT (x)

dxα
, . . . ,

dαT (x)

dxα
]T ,

and by using (3), we can specify the elements of dαT (x)
dxα as

dαxk

dxα
=

{
0, 0 ≤ k < ⌈α⌉,
Γ(k+1)

Γ(k+1−α)x
k−α, ⌈α⌉ ≤ k < n.

We can also approximate xk−α for k = ⌈α⌉, . . . , n by hybrid functions as

xk−α ≃
m∑
j=1

n∑
i=0

pkjihji(x) = PT
k H(x),

where Pk is an m(n+ 1) vector that we can obtain by (10) and (9) as

Pkji =

∫ X

0

xk−αhji(x)dx = Γ̃ji

∫ Xj
m

X(j−1)
m

xk−α+idx.

Therefore
D(α) = Γ̃Ψ̃P̃, (12)

where Ψ̃ = diag[Ψ,Ψ, . . . ,Ψ] is an m(n + 1) × m(n + 1) matrix with m
submatrix Ψ(n+1)×(n+1) as

Ψ = diag[0, . . . , 0,
Γ(⌈α⌉+ 1)

Γ(⌈α⌉+ 1− α)
, . . . ,

Γ(n+ 1)

Γ(n+ 1− α)
],

and P̃ = [P, P, . . . , P ]T is the m(n+1)×m(n+1) matrix with the (n+1)×
m(n+ 1) submatrix P , defined as

P =

p⌈α⌉10 p⌈α⌉11 p⌈α⌉12 · · · p⌈α⌉m(n−1) p⌈α⌉mn

...
...

... · · ·
...

...
pn10 pn11 pn12 · · · pnm(n−1) pnmn

 .

5 Convergence analysis

The purpose of this section is to obtain an estimate of the error norm of
the best approximation of a smooth function of two variables, on a certain
domain [0, X], by a bivariate polynomial. This estimate will be used for
comparisons in section 6, when analyzing the error of the numerical results.
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We assume that f =
∑m

j=1 fj is a sufficiently smooth function on [0, X]

and that p ≃
∑m

j=1 pj is the interpolating polynomial to f at points
xi, i = 0, 1, . . . , n, which are the roots of the (n+1)-degree shifted Chebyshev
polynomial on [0, X]. Then we have [17]

f(x)− P (x) =

m∑
j=1

(fj − Pj) =

m∑
j=1

(
f
(n+1)
j (ξ)

(n+ 1)!

n∏
i=0

(x− xi)),

where ξ ∈ Ij = [ (j−1)X
m , jX

m ]. Therefore

| f(x)− P (x) |≤
m∑
j=1

max
x∈Ij

| f (n+1)
j (x) |

∏n
i=0(x− xi)

(n+ 1)!
. (13)

We assume that there is a real number γ such that

max
x∈Ij

| f (n+1)
j (x) |≤ γ. (14)

By replacing (14) in (13) and taking into account the estimates for Chebyshev
interpolation nodes [28], we obtain

| f(x)− P (x) |≤ γ
Xn+1

22n+1mn(n+ 1)!
. (15)

With the help of (15) we obtain the following result.

Theorem 1. Let fmn(x) = CTH(x) be the hybrid functions expansion of
the sufficiently smooth real function f in Ω, where

C = [c10(x), . . . , c1n(x), . . . , cj0(x), . . . , cjn(x), . . . , cm0(x), . . . , cmn(x)]
T ,

and
cji =

∫ X

0

f(x)hji(x)dx.

Then, there exists a real number γ′ such that

∥f − fmn∥2 ≤ γ′ Xn+1

22n+1mn(n+ 1)!
. (16)

Proof. Let Ωmn be the space of bivariate polynomials of degree ≤ n. As
shown in section 3, fmn is the best approximation of f in Ωmn, that is,

∥f − fmn∥2 ≤∥ f − g ∥2,

where g is any arbitrary polynomial in Ωmn. In particular, we have
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∥f − fmn∥22dx ≤
∫ X

0

| f(x)− pmn(x) |2 dx, (17)

where pmn is the interpolating polynomial of f . From (15) and (17), we
obtain

∥f − fmn∥22 ≤
∫ X

0

[γ
Xn+1

22n+1mn(n+ 1)!
]2dx = X[γ

Xn+1

22n+1mn(n+ 1)!
]2. (18)

From (18), we conclude that (16) is valid with

γ′ = γ
√
X.

Theorem 2. Suppose f ∈ L2[0, 1], n− 1 < α ≤ n. Then

∥ Dαf −Dαfmn ∥≤ 1

Γ(n− α+ 1)
γ′ Xn+1

22n+1mn(n+ 1)!
. (19)

Proof. By using (18) and [11], we have

∥ Dαf −Dαfmn ∥2 =∥ In−α(Dnf −Dnfmn) ∥2

=∥ 1

x1+α−nΓ(n− α)
(Dnf −Dnfmn) ∥2

≤ (
1

(n− α)Γ(n− α)
)2 ∥ Dnf −Dnfmn ∥2

≤ (
1

Γ(n− α+ 1)
)2 ∥ f − fmn ∥2 .

From (18), we get (19).

6 Solving fractional differential equations

In this section, in order to show the high importance of the proposed method,
we apply it to solve fractional differential equation (1) and (2). In order to
use hybrid functions for this problem, we approximate by hybrid functions
as

y(x) ≃
m∑
j=1

n∑
i=0

cjihji(x) = CTH(x), (20)

where C = [c10, . . . , c1n, . . . , cm0, . . . , cmn]
T is an unknown vector. Using (11)

and (12), we have

Dαjy(x) ≃ CTDαjH(x) ≃ CTD(αj)H(x), j = 1, . . . , k.
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By substituting these equations in (1) and (2), we get

F (x,CTH(x), CTD(α1)H(x), . . . , CTD(αk)H(x)) = 0, (21)

Zi(C
TH(ξi), C

TD(1)H(ξi), . . . , C
TD(p)H(ξi)) = di, i = 0, 1, . . . , p. (22)

To find the solution y, we first collocate (21) at m(n + 1) − (p + 1) points.
For suitable collocation points, we use

xi =
2i− 1

2m(n+ 1)
, i = 1, . . . ,m(n+ 1)− (p+ 1).

These equations together with (22) generate m(n + 1) algebraic equations,
which can be solved to find cji, j = 1, . . . ,m, i = 0, . . . , n. Consequently,
the approximate solution of the unknown function y, given in (20), can be
calculated.

7 Numerical examples

In this section, numerical results of some examples are presented. The abso-
lute errors of this method are compared with those of the existing methods
reported in [35, 14, 22]. The computations associated with these examples
were performed using Mathematica 9.0.

Example 1. Consider the fractional equation

√
xD

1
2 y(x) + exy(x) = x(

2√
π
+ ex), 0 < x ≤ 1, (23)

with the following initial conditions y(0) = 0. The exact solution of this
problem is y(x) = x. The numerical method developed in section 6 is applied
to (23) for m = n = 2, we approximate solution as

y(x) ≃ c10h10 + c11h11 + c12h12 + c20h20 + c21h21 + c22h22 = CTH(x).

Here, we have

Γ̃ =


3.16228 −12.6491 12.6491 0 0 0

−2.44949 29.3939 −48.9898 0 0 0
1.41421 −22.6274 56.5685 0 0 0

0 0 0 12.6491 −25.2982 12.6491
0 0 0 −29.3939 78.3837 −48.9898

0 0 0 26.8701 −79.196 56.5685

 ,
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Ψ̃ =


0 0 0 0 0 0
0 1.12838 0 0 0 0

0 0 1.50451 0 0 0
0 0 0 0 0 0
0 0 0 0 1.12838 0

0 0 0 0 0 1.50451

 ,

P̃ =


2.38514 0. 0.666667 0.672262 0.430222 0.236893
0.170367 0.263932 0.161905 0.415476 0.383286 0.235524

0.0283945 0.0879772 0.084127 0.262718 0.331263 0.235838

2.38514 0. 0.666667 0.672262 0.430222 0.236893
0.170367 0.263932 0.161905 0.415476 0.383286 0.235524

0.0283945 0.0879772 0.084127 0.262718 0.331263 0.235838

 ,

D
1
2 =


−1.89128 −2.09283 −0.709874 −0.930387 0.8335 1.12652

3.55781 2.26954 −0.830648 −5.58347 −11.7032 −9.57079
−1.93327 0.748753 3.02605 11.7513 18.4068 14.0581

−4.32293 −5.85992 −3.02074 −6.86047 −4.63714 −2.23512
12.9755 16.8594 8.1193 17.3836 9.48449 3.44875
−12.8079 −16.0982 −7.30845 −14.7689 −6.05866 −0.975538

 .

Finally, the obtained results are reported in Table 1. It shows that our
method has better accuracy with the piecewise constant orthogonal function
developed in [35].

Example 2. Consider the following fractional differential equation:

D
1
3 y(x) + x

1
3 y(x) =

3

2Γ(2.3)
x

2
3 + x

4
3 , 0 < x ≤ 1,

with the following initial conditions

y(0) = 0.

We know that the exact solution is y(x) = x. The maximum errors for
different values of x are listed in Table 1. It is shown that, we obtain the
error of order 10−16 for m = 2, n = 2. In the Haar wavelets method [14], the
error is 0.0014 obtained for m = 64, where m is the order of Haar wavelets.
Clearly, the results obtained by our method are better than those in [14] in
terms of accuracy if the exact solution is sufficiently smooth. Therefore, the
HBB method is a valid method in solving fractional differential equations.

Table 1: Numerical results for Examples 1 and 2 for m = 2 and n = 2.
x 0.1 0.3 0.5 0.7 0.9

Example 1 3.46945× 10−17 5.55112× 10−17 3.21965× 10−15 2.33147× 10−15 1.77636× 10−15

Example 2 1.38778× 10−17 5.55112× 10−17 1.5099× 10−14 1.55431× 10−15 1.27676× 10−15

Example 3. Consider the fractional equation

Dαy(x) = −y(x) + x2 +
2x2−α

Γ(3− α)
, 0 < x ≤ 1, (24)
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with the following initial conditions y(0) = 0. The accurate solution, in
this case, is given by y(x) = x2. For α = 0.25, 0.75 and m = n = 2, the
approximation solution for (24) is obtained by using the HBB method. The
absolute error of HBB method and fast wavelet collocation method (FWCM)
reported in [22] is shown in Table 2 when α = 0.25, α = 0.75, and m = n = 2.

The logarithm of absolute error for different values of m and n is shown in
Figures 1 and 2. Table 2 and Figures 1 and 2 confirm that the HBB method
approximates the solution of fractional differential equation uniformly.

Figure 1: The curves of the logarithm of the absolute errors of Example 3 for α = 0.25
and different value of m and n.
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Figure 2: The curves of the logarithm of the absolute errors of Example 3 for α = 0.75

and different value of m and n.

Table 2: The errors of Example 3 compared to [22]
x α = 0.25 α = 0.75

Current Method FWC method in [22] Current Method FWC method in [22]
0.03125 3.46945× 10−18 0.05958× 10−12 3.95517× 10−16 0.33012× 10−13

0.09375 2.77556× 10−17 0.04301× 10−12 4.02456× 10−16 0.34730× 10−13

0.18750 8.32667× 10−17 0.05390× 10−12 3.88578× 10−16 0.02296× 10−13

0.28125 1.38778× 10−17 0.02446× 10−12 3.88578× 10−16 0.19817× 10−13

0.37500 2.22045× 10−16 0.00394× 10−12 4.16334× 10−16 0.29393× 10−13

0.46875 6.15064× 10−14 0.06483× 10−12 5.55112× 10−16 0.22148× 10−13

0.56250 5.77316× 10−14 0.05401× 10−12 6.66134× 10−15 0.19428× 10−13

0.65625 5.54001× 10−14 0.00982× 10−12 8.88178× 10−15 0.17097× 10−13

0.75000 5.42899× 10−14 0.01798× 10−12 1.33227× 10−15 0.09103× 10−13

0.84375 5.45127× 10−14 0.03186× 10−12 1.77636× 10−15 0.11990× 10−13

0.93750 6.25614× 10−14 0.20128× 10−12 2.47315× 10−15 0.27533× 10−13

CPU time 3.65s 2.57s
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Example 4 (see [18]). Consider the following fractional Relaxation problem:

D
1
2 y(x) = −y(x), 0 < x ≤ 1, (25)

with initial condition y(0) = 1.
The exact solution of this equation is y(x) = Eα(−xα). Here Eα(x) is

called the Mittag–Lefler function,

Eα(x) =

∞∑
k=0

xk

Γ(αk + 1)
.

Table 3 shows a comparison of our method and the Taylor matrix method
presented in [18]. Clearly, the results obtained by the HBB method are in
agreement with other mentioned numerical method and in total this approach
has high accuracy.

Table 3: Comparison of our method for m = 3 and n = 8, and the Taylor matrix
method in [18] of Example 4

x Current Method Ref.[18]
0.0 3.4685× 10−16 0.0000
0.1 1.7745× 10−10 0.1000× 10−9

0.2 6.3421× 10−10 0.9000× 10−9

0.3 5.3461× 10−9 0.4000× 10−9

0.4 6.4326× 10−10 0.2000× 10−9

0.5 7.4902× 10−9 0.1000× 10−8

0.6 4.3721× 10−8 0.6000× 10−8

0.7 3.5684× 10−7 0.2400× 10−7

0.8 9.2341× 10−7 0.8400× 10−7

0.9 8.4563× 10−7 0.2480× 10−6

1.0 5.3475× 10−7 0.6740× 10−6

8 Conclusion

In this paper, we obtained operational matrices of the fractional derivatives
of a combination of OBPs and BPFs. Then by using these matrices, we
reduced the multi-order fractional differential equations to a system of alge-
braic equations that can be solved easily. The convergence analysis of the
HBB bases is given in section 7. The numerical solutions obtained using
the suggested method showed that numerical solutions are in very good co-
incidence with the exact solution. For future research, we will apply this
numerical method for solving nonlinear fractional integro-differential equa-
tions, nonlinear Volterra–Fredholm–Hammerstein integral equations, and so
on.
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