
Journal of Computer and Knowledge Engineering, Vol. 5, No. 1, 2022. (37-46) 37
https://cke.um.ac.ir/ DOI: 10.22067/cke.2022.63265.0

Proximity-Aware Degree-Based Heuristics for Influence

Maximization Problem*
Research Article

Maryam Adineh1 Mostafa Nouri-Baygi2

Abstract: The problem of influence maximization is

selecting the most influential individuals in a social network.

With the popularity of social network sites and the

development of viral marketing, the importance of the

problem has increased. The influence maximization problem

is NP-hard, and therefore, there will not exist any

polynomial-time algorithm to solve the problem unless P =

NP. Many heuristics are proposed for finding a nearly good

solution in a shorter time. This study proposes two heuristic

algorithms for finding good solutions. The heuristics are

based on two ideas: 1) vertices of high degree have more

influence in the network, and 2) nearby vertices influence on

almost analogous sets of vertices. We evaluate our

algorithms on several well-known data sets and show that

our heuristics achieve better results (up to 15% in the

influence spread) for this problem in a shorter time (up to

85% improvement in the running time).
Keywords: Degree Centrality, Heuristic Algorithm,

Independent Cascade Model, Influence Maximization

1. Introduction

Interactions of people in a social network provides a lot of

information about their behavior and the structure of the

social graph. It has also made the social network a good

platform for spreading information, beliefs, innovations, and

so on. One of the most important applications of the spread

of influence in social networks is viral marketing.

Consider a company that wants to market its product in a

social network. A simple and low-cost approach is to select

a subset of individuals to offer the product, so they will

encourage their friends to buy it. This behavior is like

spreading a virus in a society. The important part of this type

of marketing is the initial selection of the most influential

individuals. This problem is known as influence

maximization problem.

Influence maximization problem was first introduced by

Domingos and Richardson [1, 2]. Kempe et al. [3] formally

defined the problem and proved that it is NP-hard. They also

introduced two monotone and submodular diffusion models

for the spread of influence, namely independent cascade

model and linear threshold model. An immediate result

proved by Kempe et al. [3] was that a greedy hill climbing

algorithm approximates the solution within 63% of the

optimal solution for these models.

Because the greedy algorithm runs a simulation several

thousand times to find the marginal influence of each vertex,

which is a time-consuming process, many heuristics are

proposed to improve its performance. Although the

* Manuscript received May 30 2020, Revised, November 29, 2021; Accepted: January, 17 2022.
1. Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
2. Corresponding author. Assistant Professor, Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

 Email: nouribaygi@um.ac.ir

heuristics have reduced the running time, they are still time-

consuming for large-scale networks, which is the case for

most social networks. On the other hand, degree-based

heuristics are very fast even on large-scale networks.

Although they do not guarantee the quality of the solution,

they still find good solutions for the problem.

This study proposes two degree-based heuristics with

very short running time which improve the results of

previous degree-based heuristics. As it will be illustrated by

the experiments, the quality of the results produced by our

algorithms are very close to the quality of the results

produced by the greedy algorithm, while their running time

is very small and close to other degree-based heuristics.

This paper is an extended version of the paper [4]

presented at the 8th International Conference on Computer

and Knowledge Engineering (ICCKE 2018). The current

version contains mathematical foundations of our techniques

and rigorous descriptions of the algorithms. Furthermore, in

this version we conduct a thorough evaluation and

comparison of our algorithms with the best and state of the

art algorithms for the problem.

The remainder of this paper is organized as follows. In

Section 2, related works are reviewed. A formal definition of

the problem is described in Section 3. Section 4 proposes

heuristics and presents the experimental results. Finally, we

conclude the paper in Section 6.

2. Review of related works

Influence maximization problem was formally defined by

Kempe et al. [3] and proved to be NP-hard. They proposed a

greedy hill climbing algorithm that yields a solution within

1−1/e−ε factor of the optimal solution for two models they

introduced for influence propagation. In the above

approximation ratio, e is the base of the natural logarithm,

and ε, which can be any positive real number, is the error of

the Monte Carlo simulations. Picking a small value for ε
increases the running time, while taking a large value for it

reduces the quality of the result. In the algorithm by Kempe

et al., the most influential vertices are selected by their

estimated marginal influence. Since estimated marginal

influence is computed by a large number of simulations, the

algorithm is not efficient.

In order to improve the efficiency of the computations,

many studies have been conducted. Leskovec et al. [5]

proposed Cost-Effective Lazy Forward (CELF) optimization

that reduces the computation cost of the influence spread

using the sub-modularity property of the objective function.

https://cke.um.ac.ir/
https://cke.um.ac.ir/article_41641.html

38 Mostafa Nouri-Baygi et. al.: Proximity-Aware Degree-Based…

Chen et al. [6] proposed new greedy algorithms for

independent cascade and weighted cascade models. They

made the greedy algorithm faster by combining their

algorithms with CELF. They also proposed a new heuristic,

named degree discount, which produces results of quality

close to the greedy algorithm while being much faster than

that and performing better than the traditional degree and

distance centrality heuristics.

In order to avoid running repeated influence propagation

simulations, Borgs et al. [7] generated a random hypergraph

according to the reverse reachability probability of vertices

in the original graph and selected k vertices that cover the

largest number of vertices in the hypergraph. They guarantee

1−1/e−ε approximation ratio of the solution with probability

at least 1 − 1/nl. Later, Tang et al. [8, 9] proposed TIM and

IMM to cover the drawbacks of Borgs et al.’s [7] algorithm

and improved its running time.

Bucur and Iacca [10] and Krömer and Nowaková [11]

used genetic algorithms for the influence maximization

problem. Weskida and Michalski [12] used GPU

acceleration in their genetic algorithm to improve its

efficiency.

There are some community-based algorithms for the

influence maximization problem that partition the graph into

small subgraphs and select the most influential vertices from

each subgraph. Chen et al. [13] used H-clustering algorithm

and Manaskasemsak et al. [14] used Markov clustering

algorithm for community detection. Song et al. [15] divided

the graph into communities, then selected the most

influential vertices using a dynamic programming algorithm.

3. Problem definition

In this section we formally define influence maximization

problem and the independent cascade diffusion model.

We consider a social network as an undirected graph G =
(V,E) where V is the set of individuals of size n, and E is the

set of relationships of size m. In this study we describe the

algorithms for undirected graphs, but it is trivial to extend

the results to directed graphs. We also assume that G is

unweighted, even though we can easily generalize the

methods to the weighted case, where the weight of an edge

(u,v) denotes the probability of the influence propagation

from u to v. Clearly, the edge weights must be a value in the

range [0,1].
For each vertex u and an integer h > 0, let N≼h(u) denote

the set of vertices of distance at most h from u in G. We call

N≼h(u) the set of multi-hop neighbors of u.

For a set S ⊆ V of vertices selected as the seed set to

initiate the influence prorogation, let I(S) denote the

influence spread by S, i.e., the expected number of the

influenced vertices, given S the initial seed set.

3.1. Diffusion Model

There are many diffusion models for the influence

propagation process [16]. In this paper we focus on the

Independent Cascade Model (ICM). In the independent

cascade model, for each edge (u,v), a newly activated vertex

u can activate v with probability pu,v ∈ [0,1].
The diffusion process is as follows. Let Si be the set of

newly activated vertices in timestamp i. In timestamp i + 1

each vertex u ∈ Si has a chance to activate each of its inactive

neighbors. Once u tried to activate its neighbor v, whether it

succeeds or not, u will not try to activate v in later steps.

Furthermore, each activated vertex remains active in all

subsequent timestamps. This process terminates when no

more activation is possible.

3.2. Influence maximization problem

In influence maximization problem, given a graph G, a

constant k and a diffusion model M, we are asked for a set S
of k vertices with the maximum influence spread, I(S). In this

paper, we focus on the independent cascade model as M, and

leave extending the algorithms to other models in future

studies.

4. Proposed algorithms

In this section we describe our heuristics for influence

maximization problem under the independent cascade

model.

As mentioned above, although the greedy algorithm and

its variants guarantee the solution in terms of the influence

spread, they are very time consuming, especially for large

scale social networks. On the other hand, degree centrality

heuristics do not guarantee the quality of the solution, but

may produce solutions of high quality in much smaller time.

As a result, we propose two novel heuristics based on degree

centrality which demonstrate more influence spread in

comparison to similar algorithms.

Degree centrality heuristics select k vertices with the

highest degrees as the most influential vertices, because

individuals with more relationships may have more influence

spread in the network. The pseudo code of the maximum

degree method is given in Algorithm 1.

A variant of this method, which is called single discount

and was proposed by Chen et al. [6], decreases the degree of

neighbors of each selected seed. For example, when u is

selected as a seed, the degree of each neighbor v is decreased

according to the number of edges they have in common.

Although these heuristics usually find suitable candidates as

seeds, they are not good enough. The reason is that in social

networks normally high degree vertices are close to each

other and influence on almost similar sets of vertices.

To select better seed sets, Chen et al. [6] proposed degree

discount which decreases degrees of vertices according to

the expected number of adjacent active vertices and the

amount of influence propagation probabilities they have.

Although the influence spread of degree discount is

improved, it does not work well since it considers only direct

Journal of Computer and Knowledge Engineering, Vol.5, No.1. 2022. 39

neighbors and multi-hop influence spreads are not

considered at all.

The main reason that degree centrality heuristics cannot

keep up with greedy algorithms is that in social networks,

vertices with high degrees are usually close to each other.

Suppose that two adjacent vertices u, v have the maximum

degrees in the input graph. When we select u as the first seed,

with a high probability v will also be activated by u.

Therefore, there will not be much benefit from selecting v as

another seed. This will be amplified when the propagation

probability, pu,v, is higher. A similar case can be explained

for multi-hop neighbors. In the following sections, we

propose two heuristics to handle these situations properly.

4.1. Removing neighbors

In the first heuristic, called NeighborsRemove, we iteratively

select k vertices with the highest degrees. But to avoid

selecting vertices with rather similar influence spread, in

each step, we remove multi-hop neighbors of the selected

seed from the list of candidates for subsequent steps. More

precisely, in the first iteration, we select the vertex u with the

maximum degree as the first seed. Since the multi-hop

neighbors of u will be directly influenced by u, even though

they may have high degrees, we remove them from the list

of candidates and select next seeds from the remaining

vertices. This process terminates when k seeds are selected.

In each step, when u is selected as a seed, we remove its

multi-hop neighbors at distance of most h, N≼h(u), with a

breadth-first search starting from u. An important parameter

here is h, the maximum level at which the visited vertices in

the breadth-first search is removed.

It is easy to see that when the distance between a seed

vertex u and another vertex v increases, the probability that

v is activated by u decreases dramatically. This amount is

equivalent to the product of the activation probabilities of the

edges in the path from u to v.

In our experiments, like most of the works in the

literature, we assume the activation probability of each edge

constant, and equal to p. Based on this assumption, the value

of h is dependent only on p. According to our experiments

on several data-set, which are reported in Appendix A, the

appropriate value for h is computed by ⌊ 12√𝑝⌉ . The

notation ⌊ x⌉ here means rounding x to the nearest integer.

The pseudocode of the method is given in Algorithm 2.

4.2. Decreasing degree

The second heuristic for the influence maximization problem

is called DegreeDecrease. Similar to the NeighborsRemove

heuristic, the main idea here is to select vertices with the

highest degrees. But to avoid selecting vertices with rather

similar sets of influenced vertices, in each step, we reduce

the priority of selecting vertices close to the selected seed. In

each step, when a vertex u is selected as the seed, the amount

of the reduction in the priority of each vertex v is calculated

according to the number of different paths from u to v, and

their lengths. In the following, a more detailed description of

the algorithm is given.

In the beginning, the priority of selecting each vertex u,

denoted by u.priority is equal to the degree of u. As the first

seed, we therefore select the vertex s0 with the maximum

degree. Then for each vertex v ∈ N≼h(s0), we decrease the

v.priority to reduce the chance of v being selected as

subsequent seeds. In the second step, the vertex with the

highest u.priority is selected as the second seed. This process

continues until k vertices are selected as the seed set.

The probability of activating v by u is decreased as the

length of the path from u to v increases. In addition, this

probability increases as the number of paths from u to v
increases. Therefore, the larger the number of paths or the

smaller the path length from a vertex u to a multi-hop

neighbor v, the more reduction is applied on v.priority when

u is selected as a seed. This is to reduce the chance of

selecting vertices close to u as subsequent seeds.

Figure 1 shows two different paths from u to v. In each

path, there is a possibility of v being activated by u. The

probability of activation of v from the lower path u → v1 → v
is greater than the upper path u → v2 → v3 → v. In the lower

path, v will be activated when both edges (u,v1) and (v1,v)
propagate the influence, which happens with probability p2,

while in the upper path, the probability is p3, since three

edges need to cooperate to propagate the influence.

Figure 1. Two different activation paths from u to v

Suppose when a vertex u is selected as a seed, for each

neighbor v of u, we decrease v.priority by a value that

depends on f(p), which is a function of p, the propagation

probability of edges. We call f(p) the path reduction

coefficient. In Figure 1. v may be activated by the lower path

only if both edges (u,v1) and (v1,v) propagate the influence.

Thus, we decrease v.priority for this path by a value that

depends on f2(p). Similarly for the upper path, we decrease

v.priority by a value that depends on f3(p), because the

length of the path is 3.

The influence propagation through the two paths in

Figure 1 are independent, so if we denote by A (respectively

u v

v 2 v 3

v 1

40 Mostafa Nouri-Baygi et. al.: Proximity-Aware Degree-Based…

B) the event of the influence propagation through the lower

(resp. upper) path, the probability of the influence

propagation through either of paths is equal to

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

Events A and B are independents, so for the probability of

the influence propagation through both paths we have P(A ∩
B) = p5. Given that p<1 is a small value, P(A∩B) is negligible

compared to P(A) and P(B). Therefore, to make

computations simple, we can find the required reduction

amount in v.priority for each path independently, and then

simply sum up those values.

Figure 2. There are 3·2·3 different paths from u to v.

In Figure 2 there are 3·2·3 different paths from u to v. The

length of each path is 3, and based on the above arguments,

each path reduces a value from v.priority that depends on

f3(p), which totally sum up to 3·2·3·f3(p). For ease of

processing, we introduce a recurrence relation. Let

v.decrease denote the value to be reduced from v.priority for

vertex v. The value of v.decrease for vertex v in Figure 2 can

be written as

v.decrease = v2.decrease · c(v2,v) · f(p).

In the above recurrence relation, c(v2,v) denotes the

number of edges in G from v2 to v. The intuition is that in

v2.decrease we take into account both the number of

different paths from u to v2 and the path reduction coefficient

for those paths, f2(p). Therefore, it is enough to multiply

v2.decrease to the number of edges from v2 to v and the path

reduction coefficient to determine v.decrease.

We need to characterize f(p) and the base case of the

recurrence relation to be able to update v.priority for each

vertex v. We choose two constant values α and β, whose

exact value will be determined by further experiments, and

define the functions based on these values. For the function

f(·), we opt a linear function as f(p) = β · p, and for the base

case of the recurrence relation, we write u.decrease = α,

where u is the current seed vertex.

Since the value of v.decrease reduces as the distance of

u to v grows, after enough hops, v.decrease gets close to 0

and we can stop further reduction process from v.priority.

Based on our experiments, which are reported in Appendix

A, we selected ε = 0.1 as the threshold value for priority

reduction. When the value of v.decrease falls below ε, we

stop further priority reduction propagation through v. If we

select a small value as the threshold, the number of levels at

which the breath-first search is performed is increased, and

then the running time. On the other hand, choosing a large

value reduces the number of levels of the breadth-first

search, degrades the algorithm to normal maximum degree

heuristic, and decreases the accuracy.

Since the vertices with high influence in social networks

usually have high degrees, choosing ε = 0.1 results in both

high accuracy and low running time. In addition, based on

the experiments which are reported in Appendix A, the

suitable value selected for α and β are 50 and 10,

respectively. The pseudocode of the method is given in

Algorithm 3.

5. Experiments

In this section, we analyze and report the results of the

experiments performed on the proposed heuristic algorithms

and some previous algorithms using several real-life data-

sets to evaluate the effectiveness of the new methods. We

show that our maximum degree heuristics outperform

previous degree-based heuristics in terms of the spread of the

influence, while output a solution of quality close to the

approximation algorithms.

5.1. Experimental settings

We evaluate our implementation on three data-sets which are

commonly used in related researches, including [6]. The first

data-set is NetHEPT with the number of vertices n = 15233

and the number of edges m = 58891. The second data-set is

u v v 2 v 1

Journal of Computer and Knowledge Engineering, Vol.5, No.1. 2022. 41

NetPHY with n = 37154 and m = 231584. These two

networks are collaboration graphs crawled from arXiv1

website, in High Energy Physics – Theory section and

Physics section, respectively. The third data-set is Epinions

from Stanford Large Network Dataset Collection website

[17], which is a who-trust-whom online social network of a

general consumer review site with n = 75879 and m =

508837. All the above data-sets can be downloaded from the

code repository of this paper2.

We compare our algorithms represented by

NeighborsRemove and DegreeDecrease with four

algorithms named SingleDiscount [6], DegreeDiscount [6],

TIM [8] and IMM [9] that are available by their authors. All

algorithms are implemented in C++ and compiled with GCC

6.2.1 and are run on a system with an Intel Core i7–3820 @

3.60GHz and 32GB memory.

5.2. Running times and influence spread analysis

Figure 3 and 4 show running times and influence spreads of

different algorithms under independent cascade model on

NetHEPT data-set for p = 0.01 and p = 0.1, respectively.

Similar results are shown for NetPHY and Epinions data-sets

in Figures 5, 6, 7, 8.

Figure 3. Running times (a) and influence spreads (b) of algorithms on NetHEPT

 under independent cascade model (p = 0.01, k = 50)

Figure 4. Running times (a) and influence spreads (b) of algorithms on NetHEPT

under independent cascade model (p = 0.1, k = 50)

1 https://arxiv.org
2 https://github.com/Maryam-Adineh/InfluenceMaximization

42 Mostafa Nouri-Baygi et. al.: Proximity-Aware Degree-Based…

Figure 5. Running times (a) and influence spreads (b) of algorithms on NetPHY

under independent cascade model (p = 0.01, k = 50)

As stated before, we see from the running times charts

that the degree centrality heuristics are much faster than TIM

and IMM. The running time of DegreeDecrease is usually

close to DegreeDiscount and SingleDiscount, while

NeighborsRemove is usually faster than all other algorithms.

Sometimes the running time of NeighborsRemove is about

15% of the running time of the next fastest algorithm.

It can be seen from the influence spread charts that

although the proposed algorithms show their superiority for

large values of p, compared to DegreeDiscount and

SingleDiscount heuristics, they still work well even for p =
0.01 and return solutions of quality close to the quality of

solutions of TIM and IMM.

The effectiveness of our algorithms especially for larger

values of p is because in those cases the influence of a seed

vertex increases on its multi-hop neighbors. Therefore, there

will be less advantage from selecting vertices close to the

previous seeds. This is exactly one of the main ideas we

follow in our proposed algorithms. Our strategy is to avoid

selecting vertices with high probability of being influenced.

As it can be seen from the charts, for example Figure

6(b), the influence propagated by the results of our

algorithms is sometimes about 15% more than the influence

propagated by the results of DegreeDiscount and

SingleDiscount, while the running times are less than or

almost equal to their running times.

Figure 9 shows the influence spreads of different

algorithms under independent cascade model for different

values of p. As it can be seen, from p = 0.12 on, the influence

spread of our algorithms significantly increases, compared to

all other algorithms, both degree centrality heuristics and

greedy algorithms.

Figure 6. Running times (a) and influence spreads (b) of algorithms on NetPHY

under independent cascade model (p = 0.1, k = 50)

Journal of Computer and Knowledge Engineering, Vol.5, No.1. 2022. 43

Figure 7. Running times (a) and influence spreads (b) of algorithms on Epinions

under independent cascade model (p = 0.01, k = 50)

Figure 8. Running times (a) and influence spreads (b) of algorithms on Epinions under independent cascade model (p = 0.1, k = 50)

Figure 9. Comparison of influence spreads of different algorithms on NetHEPT under independent cascade model for different

values of p

44 Mostafa Nouri-Baygi et. al.: Proximity-Aware Degree-Based…

5.3. Ranking Similarity Analysis

In this section, we evaluate different influence maximization

algorithms in terms of the similarity of the results to the

results of the algorithm in Kempe et al. [3]. The similarity

between two ranking methods, denoted by F(k), represents

the amount of similarity between the results of the methods

and is defined as

𝑓(𝑘) =
𝐿(𝑘) ∩ 𝐿′(𝑘)

𝑘

where L(k) and L′(k) are the set of top-k nodes in the two

ranking methods.

For the method of Kempe et al. [3], which we use as the

true ranking, we consider the result of 20,000 times Monte

Carlo simulations and compare the results of other

algorithms with this ranking based on the ranking similarity.

In Figure 10, we see the comparison of ranking

similarities on NetHEPT. Figure 10(a) shows that for p =
0.01, IMM and DegreeDiscount have the most ranking

similarity to the true ranking. It can also be seen that the

results of NeighborsRemove and DegreeDecrease have high

similarity to the true ranking in the beginning but as the value

of k increases the similarity decreases compared to other

methods. On the other hand, for p = 0.1, Figure 10(b) shows

that DegreeDecrease and especially NeighborsRemove have

greater ranking similarity to the true ranking than

SingleDiscount and DegreeDiscount, which proves the

effectiveness of our methods for larger values of p.

Figure 11 shows the comparison of ranking similarities

on NetPHY. In Figure 11(a) and 11(b), IMM has the closest

ranking to the true one among all methods in the beginning,

but as the result size increases, the difference between its

ranking and the true ranking tends to increase. However,

other methods show a different behavior. The ranking

similarities of all methods are zero at first, and then with the

growth in the result size the values tends to increase. As

Figure 11(b) shows, DegreeDecrease and NeighborsRemove

have better ranking in comparison with SingleDiscount and

DegreeDiscount for larger values of p.

Figure 10. Rank similarity comparison on NetHEPT for p = 0.01 (a) and p = 0.1 (b)

Figure 11. Rank similarity comparison on NetPHy for p = 0.01 (a) and p = 0.1 (b)

Journal of Computer and Knowledge Engineering, Vol.5, No.1. 2022. 45

6. Conclusion

In this study we proposed two maximum degrees based

heuristics for influence maximization problem under the

independent cascade model. These heuristics take into

account the idea that the vertices of high degree are close to

each other in social networks. Experiments show that our

heuristics outperform previous degree centrality heuristics in

terms of the spread of influence in the network.

Since the algorithms that guarantee the quality of the

outputs are very time-consuming on large-scale networks,

finding heuristics which have small running time and

producing solutions of good quality is so desirable. While the

influence spread of the results produced by our proposed

algorithms are close to the outputs generated by the

approximation algorithms, the algorithms run in a much

shorter time.

In future work, we will examine the maximum-degree

based heuristics for other cascade models. Moreover, we are

looking for more accurate strategies to improve the spread of

influence with small running time.

7. References

[1] P. Domingos and M. Richardson, "Mining the network

value of customers", in Proceedings of the seventh ACM

SIGKDD international conference on Knowledge

discovery and data mining, pp. 57–66, ACM, (2001).

[2] M. Richardson and P. Domingos, "Mining knowledge-

sharing sites for viral marketing", in Proceedings of the

eighth ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 61–70,

ACM, (2002).

[3] D. Kempe, J. Kleinberg, and É. Tardos, "Maximizing

the spread of influence through a social network", in

Proceedings of the ninth ACM SIGKDD international

conference on Knowledge discovery and data mining,

pp. 137–146, ACM, (2003).

[4] M. Adineh and M. Nouri-Baygi, "Maximum degree

based heuristics for influence maximization", in 2018

8th International Conference on Computer and

Knowledge Engineering (ICCKE), pp. 256–261, Oct

(2018).

[5] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J.

VanBriesen, and N. Glance, "Cost-effective outbreak

detection in networks", in Proceedings of the 13th ACM

SIGKDD international conference on Knowledge

discovery and data mining, pp. 420–429, ACM, (2007).

[6] W. Chen, Y. Wang, and S. Yang, "Efficient influence

maximization in social networks", in Proceedings of the

15th ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 199–208,

ACM, (2009).

[7] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier,

"Maximizing social influence in nearly optimal time",

in Proceedings of the Twenty-Fifth Annual ACM-SIAM

Symposium on Discrete Algorithms, pp. 946– 957,

SIAM, (2014).

[8] Y. Tang, X. Xiao, and Y. Shi, "Influence maximization:

Near-optimal time complexity meets practical

efficiency", in Proceedings of the 2014 ACM SIGMOD

international conference on Management of data, pp.

75–86, ACM, (2014).

[9] Y. Tang, Y. Shi, and X. Xiao, "Influence maximization

in near-linear time: A martingale approach", in

Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, pp. 1539– 1554,

ACM, (2015).

[10] D. Bucur and G. Iacca, "Influence maximization in

social networks with genetic algorithms", in European

Conference on the Applications of Evolutionary

Computation, pp. 379–392, Springer, (2016).

[11] P. Krömer and J. Nowaková, "Guided genetic algorithm

for the influence maximization problem", in

International Computing and Combinatorics

Conference, pp. 630–641, Springer, (2017).

[12] M. Weskida and R. Michalski, "Evolutionary algorithm

for seed selection in social influence process", in

Advances in Social Networks Analysis and Mining

(ASONAM), 2016 IEEE/ACM International Conference

on, pp. 1189–1196, IEEE, (2016).

[13] Y.-C. Chen, W.-Y. Zhu, W.-C. Peng, W.-C. Lee, and

S.-Y. Lee, "Cim: Community-based influence

maximization in social networks", ACM Transactions

on Intelligent Systems and Technology (TIST), vol. 5,

No. 2, p. 25, (2014).

[14] B. Manaskasemsak, N. Dejkajonwuth, and A.

Rungsawang, "Community centrality-based greedy

approach for identifying top-k influencers in social

networks", in International Conference on

ContextAware Systems and Applications, pp. 141–150,

Springer, (2015).

[15] G. Song, X. Zhou, Y. Wang, and K. Xie, "Influence

maximization on large-scale mobile social network: a

divide-and-conquer method", IEEE Transactions on

Parallel and Distributed Systems, vol. 26, No. 5, pp.

1379–1392, (2015).

[16] D. Kempe, J. Kleinberg, and E. Tardos, "Maximizing

the spread of influence through a social network",

Theory of Computing, vol. 11, no. 4, pp. 105–147, 2015.

[17] J. Leskovec and A. Krevl, "SNAP Datasets: Stanford

large network dataset collection", http://snap.

stanford.edu/data, (2014).

http://snap.stanford.edu/data
http://snap.stanford.edu/data

46 Mostafa Nouri-Baygi et. al.: Proximity-Aware Degree-Based…

Appendices

Appendix A: Parameter Selection

In this section, we show the results of our experiments to choose the value of parameters of the algorithms. All the experiments

are performed to select 50 seeds in the selected network. Three parameters in Degree Decrease are needed to be determined:

α, β and ε. We have run several experiments on NetPHY data-sets for p = 0.01 and p = 0.1 with different values for α and β
to find the best combination of values. The influence spreads are shown in Table 1 and 2. Based on the results of the

experiments, we find the best selection as α = 50 and β = 10.

The next parameter in Degree Decrease is ε. In Table 3 and 4 the influence spreads and the running time of Degree

Decrease for different values of ε are reported. From the results and taking into consideration the fact that selecting a large

value for ε may decrease the accuracy of the algorithm on other data-sets, we select the threshold value as ε = 0.1.

Table 5 represents the influence spread of NeighborsRemove for different values of h and p. The most influence in each

row, which has been written in bold, shows the best value for h. According to the results we suggest h = ⌊ 12√p⌉ , as stated

before.

Table 1. The inluence spread of Degree Decrease for different

values of α and β on NetPHY for p= 0.01

Table 2. The inluence spread of Degree Decrease for different

values of α and β on NetPHY for p= 0.01

Table 3. The inluence spread of Degree Decrease for different

values of ε

Table 4. The running time of Degree Decrease for different

values of ε.

Table 5. The influence spread of Neighbors Remove for different values of h and p

