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Applying the meshless Fragile Points
method to solve the two-dimensional

linear Schrödinger equation on arbitrary
domains
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Abstract

The meshless Fragile Points method (FPM) is applied to find the numerical
solutions of the Schrödinger equation on arbitrary domains. This method
is based on Galerkin’s weak-form formulation, and the generalized finite
difference method has been used to obtain the test and trial functions. For
partitioning the problem domain into subdomains, Voronoi diagram has
been applied. These functions are simple, local, and discontinuous poly-
nomials. Because of the discontinuity of test and trial functions, FPM
may be inconsistent. To deal with these inconsistencies, we use numerical
flux corrections. Finally, numerical results are presented for some exam-
ples of domains with different geometric shapes to demonstrate accuracy,
reliability, and efficiency.
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1 Introduction

Numerical methods are mainly used to solve partial differential equations
and have been studied, for example, the finite element method [1], finite vol-
ume method [4], and boundary element method [13] to discretize the spatial
dimension can be mentioned. In these methods, the accuracy of the method
may be affected by deforming the elements or meshes. Therefore, meshless
methods such as element free Galerkin [3] and meshless local Petrov–Galerkin
[2] were considered. In these methods, the trial and test functions must be
continuous, and usually, the trial functions in these methods are compli-
cated. Dong et al. [6] introduced a new meshless method in which test and
trial functions are considered as simple, local, and discontinuous polynomials.
Very recently, this method has been used to solve the two-dimensional hy-
perbolic telegraph equation [8]. This new method is called the Fragile points
method (FPM), which we will study in this article. This method is also used
for complex and irregular domains, which are discussed in this study.

Solving the Schrödinger equation is very important in quantum dynamic
calculations, and it has received a lot of attention as a model that describes
several important chemical and physical phenomena [11]. This equation is
derived from the vector wave equation for the electric field, which governs
the propagation of electromagnetic waves in an inhomogeneous medium [10].
Schrödinger equations are also applicable in underwater acoustics, optics,
and the design of optoelectronic devices [5].

We consider the two-dimensional time-dependent Schrödinger equation
with the form

−i
∂u

∂t
(x, t) = ∇2u(x, t) + w(x)u(x, t), x ∈ Ω, (1)

with initial conditions

u(x, 0) = g(x), (2)

and the boundary conditions

u(x, t) = h1(x, t), x ∈ ΓD, ∇u.n(x, t) = h2(x, t), x ∈ ΓN . (3)

In the above equation, w(x) is an arbitrary potential function.

In the rest of this paper, in Section 2, the process of obtaining test and
trial functions is described. In Section 3, the implementation of numerical
flux corrections is given. Some numerical results and examples are provided
in Section 4. Finally, the conclusions reached from using the FPM for the
two-dimensional linear Schrödinger equation are expressed in Section 5.
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2 Polynomial discontinuous trial and test functions

In this section, we describe the process of obtaining local, simple, discontin-
uous, polynomial, point-based trial and test functions. In order to divide the
domain into subdomains, we consider several scattered points in the domain
Ω and its boundary ∂Ω. This subdivision should be such that each subdo-
main contains only one point. Domain partitioning can be done in several
ways, for example, the Voronoi diagram partition, quadrilateral and trian-
gular partition (in 2D), tetrahedron and hexahedron partition (in 3D), and
so on. In this study, the Voronoi diagram method has been selected. In the
present FPM, only nonuniform or uniform points inside and on the domain
boundary are applied, and it is a meshless method.

The trial function uh in the subdomain E0 that includes the point P0,
can be written as

uh(x, t) = u0(x, t) + (x − x0)∇u(x, t)|P0 , x ∈ E0. (4)

In the above equation, u0 is the value of uh at P0 and x0 denotes the coor-
dinate of the point P0.

The gradient of ∇u at P0 is yet unknown. We employ the generalized
finite difference method to calculate ∇u at P0 in terms of the values of uh

at several neighboring points of P0. We name these neighboring points as
q1, q2, . . . , qm. In the following, to calculate the amount of the gradient of
∇u at P0, we minimize a weighted discrete L2 norm J so that

J =

m∑
i=0

(
∇u|P0

. (xi − x0)
T − (ui − u0)

)2

wi, (5)

where wi denotes the value of weight function at qi, xi is the coordinate
vector of qi, and ui is the value of uh at qi (i = 1, 2, . . . ,m). For convenience,
we assume that w is constant. Due to the stationarity of J, we have

∇u =
(
ATA

)−1
AT (um − u0Im) , (6)

where

A =


x1 − x0 y1 − y0
x2 − x0 y2 − y0

...
...

xm − x0 ym − y0

 , um =


u1

u2

...
um

 , Im =


1
1
...
1


m×1

.

Also equation (6) can be expressed at point P0 as follows:

∇u = BuE , (7)
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where

B =
(
ATA

)−1
AT


−1 1 0 . . . 0

−1 0 1
. . . ...

...
... . . . . . . 0

−1 0 · · · 0 1


m×(m+1)

, uE =


u0

u1

...
um

 .

Also by substituting (7) into (4), the relation between uh and uE will be
obtained as

uh = NuE , for all x ∈ E0, N = [x − x0]B + [1, 0, . . . , 0]1×(m+1). (8)

3 Numerical flux corrections

We can rewrite Schrödinger equation (1)–(3) using mixed form as follows:
σ(x, t) = ∇u(x, t), in Ω,

−∇.σ(x, t) = i
∂u

∂t
(x, t) + w(x)u(x, t), in Ω,

u(x, t) = h1(x, t), in ΓD,
σ.n(x, t) = h2(x, t), in ΓN .

(9)

By multiplying the first and second equations in (9) by the test functions τ
and ν, respectively, and integrating it on the subdomain E,∫

E

σh · τdΩ =

∫
E

∇uh(x, t) · τdΩ, (10)∫
E

−∇ · σνdΩ = i

∫
E

∂u

∂t
(x, t)νdΩ+

∫
E

w(x)u(x, t)νdΩ, (11)

using the Green formula and by summing these equations over all subdo-
mains, we have∫

Ω

σh.τdΩ = −
∫
Ω

uh∇.τdΩ+
∑
E∈Ω

∫
∂E

ûhn.τdΓ, (12)

∫
Ω

σh.∇νdΩ =
∑
E∈Ω

∫
∂E

σ̂h.nνdΓ + i

∫
Ω

∂u

∂t
(x, t)νdΩ+

∫
Ω

w(x)u(x, t)νdΩ.

(13)

In the above equations, values σ̂h and ûh represent approximations σh and
uh on ∂E. These values are named numerical fluxes. To simplify (12) and
(13), we define the operators average and jump, where by these operators,
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we can manage the numerical fluxes. As regards, Γ = Γh + ΓD + ΓN (Γh is
the set of all internal boundaries of subdomains), using [6, Table 3.1 ], and
substituting the interior penalty numerical fluxes, we have∑

E∈Ω

∫
E

∇uh.∇νdΩ−
∑

e∈Γh∪ΓD

∫
e

({∇uh} [ν] + {∇ν} [uh]) dΓ

+
∑

e∈Γh∪ΓD

η

he

∫
e

[ν] [uh] dΓ =
∑
e∈ΓD

∫
e

(
η

he
ν −∇ν.n

)
h1(x, t)dΓ

+

∫
Ω

w(x)u(x, t)νdΩ+
∑
e∈ΓN

∫
e

νh2(x, t)dΓ

+ i

∫
Ω

∂u

∂t
(x, t)νdΩ.

The above equation is the formula of FPM, which is called FPM-primal
method.

The method (matrix form) can be expressed as follows:

(K − W)u − iCu̇ = F. (14)

Using θ-weighted scheme [12], the above equation can be written as follows:

(K − W)(θun+1 + (1− θ)un)− iC(
un+1 − un

∆t
) = Fn. (15)

In (15), uk(x) = u(x, k∆t), where ∆t is the time step and 0 ≤ θ ≤ 1. By
substituting values B instead of ∇ν and ∇u, N instead of uh and ν in the
formula of FPM-primal, the point stiffness matrices K, C, W and also the
right vector F will be achieved as follows:

W =

∫
E

NT Nw(x)dΩ, C =

∫
E

NT NdΩ, KE =

∫
E

BT B dΩ, E ∈ Ω,

(16)

Kh =
−1

2

∫
e

(BT
1 nT

1 N1 + NT
1 n1B1)dΓ +

η

he

∫
e

NT
1 N1dΓ

+
−1

2

∫
e

(BT
2 nT

2 N2 + NT
2 n2B2)dΓ +

η

he

∫
e

NT
2 N2dΓ

+
−1

2

∫
e

(BT
2 nT

1 N1 + NT
2 n2B1)dΓ +

η

he

∫
e

NT
1 N2dΓ

+
−1

2

∫
e

(BT
1 nT

2 N2 + NT
1 n1B2)dΓ +

η

he

∫
e

NT
2 N1dΓ, e ∈ ∂E1 ∩ ∂E2,
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KD = −
∫
e

(BT nT N + NT nB)dΓ +
η

he

∫
e

NT NdΓ, e ∈ ΓD, (17)

and it can also be written

FN =

∫
e

NTh2(x, t)dΓ, e ∈ ΓN ,

FD =

∫
e

(
η

he
NT − BT n)h1(x, t)dΓ, e ∈ ΓD.

(18)

4 Numerical results

In this section, we will study some numerical examples, and using the results
obtained from the application of FPM on these examples, the accuracy and
stability of the method are investigated. All examples were done in MATLAB
software on a Core i5, 2.67 GHz CPU machine with 4 GB of memory. The
relative errors used in this section are defined as follows:

r0 =
∥uh − u∥L2

∥u∥L2

, r1 =
∥∇uh −∇u∥L2

∥∇u∥L2

.

Also we calculate the convergence orders in space and time via

C − order(space) =

log 10
(
e1
e2

)
log 10

(
h1

h2

) , C − order(time) =

log 10
(
e1
e2

)
log 10

(
∆t1
∆t2

) ,

such that h1 and ∆t1 correspond to e1 and also h2 and ∆t2 correspond to
error e2. In numerical examples, we consider errors e1 and e2 as relative error
r0.

Example 1. (a) We first consider (1) with potential function w(x, y) = 1−
2

x2
− 2

y2
and exact solution u(x, y, t) = eitx2y2 in the region Ω = [0, 1]× [0, 1].

Boundary and initial conditions are obtained using the exact solution [7, 11].
In Table 1 relative errors are shown for the number of different points of
the domain that are uniformly distributed and all boundary conditions are
considered Dirichlet. This table shows the good accuracy and stability of the
method, and as the number of points increases, the accuracy of the method
improves. In addition, as shown in Figure 1, the relative errors decrease as
the number of points increases.

(b) Next, we consider the boundary conditions as follows:

u(0, y, t) = u(x, 0, t) = 0, ∇u.n(1, y, t) = 2eity2, u(x, 1, t) = eitx2.

Iran. j. numer. anal. optim., Vol. 13, No. 1, pp 1–18
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Table 1: Relative errors of the method for example 1(a) at T = 1 and ∆t = 0.05 with
θ = 0.6 and uniform points.

h Number of parameters Errors CPU time (s) C-order
point

0.25 N = 25 he = 0.1 3.942832× 10−2 0.31 -
η = 2.5 2.523913× 10−1

0.1 N = 121 he = 0.1 5.73321× 10−3 0.63 2.1044
η = 4 3.52258× 10−2

0.04 N = 676 he = 0.1 9.91802× 10−4 9.34 1.9148
η = 9 9.26574× 10−3

0.02 N = 2601 he = 0.1 4.30894× 10−4 163s 1.2027
η = 9 4.27138× 10−3

In Table 2, relative errors have been reported for the number of different
points that are uniformly and nonuniformly distributed over the domain.
Comparing the results, we find that in this example, how the points are dis-
tributed does not have much effect on the accuracy of the method. Also
Figure 2 shows error plots for N = 676 uniform and nonuniform points. Fig-
ures 3 and 4 demonstrate the appropriate accuracy of the FPM for different
times for x = 0.6, θ = 0.51, ∆t = 0.01, N = 121,he = 0.1, and η = 4.
Therefore, according to these results, the method has appropriate accuracy
for different boundary conditions and is also convergent. In addition, as the
final time increases, accuracy is maintained and FPM is stable.

Compared to [15] and [16], the proposed method achieves almost the same
accuracy in much less time.

1 1.5 2 2.5 3 3.5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

log10(N)

log
10

(r)

 

 
r
0

r
1

Figure 1: Relative errors for Example 1 at T = 1 and ∆t = 0.05.
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Table 2: Relative errors of the method for Example 1(b) at T = 1, θ = 0.51 and∆t = 0.01
for points with uniform and nonuniform distribution.

uniform points

h Number of points Errors CPU time (s) C-order
0.25 N = 25 6.476626× 10−2 0.40 -

2.636926× 10−1

0.1 N = 121 5.763461× 10−3 1.08 2.1864
3.419285× 10−2

0.04 N = 676 2.552031× 10−3 27.9 0.8891
1.216389× 10−2

nonuniform points

Number of points Errors CPU time (s)
N = 25 4.273177× 10−2 0.33

1.484748× 10−1

N = 121 9.238729× 10−3 0.94
9.161839× 10−2

N = 676 2.423225× 10−3 27.7
1.216389× 10−2

Iran. j. numer. anal. optim., Vol. 13, No. 1, pp 1–18
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Figure 2: Comparison the absolute errors related to Example 1(b) for T = 1, ∆t = 0.01,
θ = 0.51, and N = 676 for uniform and nonuniform points.
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Figure 3: Comparison the imaginary parts of exact and numerical solutions related to
Example 1 for x = 0.6, ∆t = 0.01, and N = 121.

Example 2. In this example, we consider (1) with N = 676 uniform points
in the domain Ω = [0, 1]× [0, 1] such that

w(x, y) = −4x2 + 4y2 − 4x− 4y + β2 − 4β + 2

β2
,

u(x, y, t) = exp(− (x− 0.5)2

β
− (y − 0.5)2

β
− it).
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Figure 4: Comparison the real parts of exact and numerical solutions related to Example
1 for x = 0.6, ∆t = 0.01 and N = 121.

Table 3: Relative errors of the method for Example 2 with he = 0.1, θ = 0.52, η = 11,
and ∆t = 0.01.

Final time r0 r1 CPU time (s)
T = 1 1.85272× 10−4 1.18535× 10−2 28.3
T = 5 3.84086× 10−4 2.00094× 10−2 99.5
T = 10 5.48035× 10−4 2.10124× 10−2 201.3
T = 15 5.00376× 10−4 2.07114× 10−2 281.5

With Dirichlet boundary conditions for ∆t = 0.01, θ = 0.52, and β = 2,
relative errors related to different final times are shown in Table 3. This table
shows the stability of the method over time. In the following, Figures 5 and
6 show the plots of imaginary and real parts of numerical and exact solutions
for N = 2601 uniform points with he = 0.1 and η = 11. These figures indicate
that the method is also accurate for a large number of points. Also, the plot
of errors for N = 676 uniform and nonuniform points is provided in Figure
7. As this figure shows, under similar conditions, the error of the proposed
method is less for points with a uniform distribution.

Example 3. a) Now we solve the previous example in an L-shaped domain
that has the following boundaries:

Ω1 = {0} × [0, 1], Ω2 = {0.36} × [0.52, 1],

Iran. j. numer. anal. optim., Vol. 13, No. 1, pp 1–18



11 Applying the meshless Fragile Points method to solve the two-dimensional ...

0

0.5

1

0

0.5

1
−0.85

−0.8

−0.75

−0.7

−0.65

X

Imag(Numerical)

Y

U

0

0.5

1

0

0.5

1
−0.85

−0.8

−0.75

−0.7

−0.65

X

Imag(Exact)

Y

u

Figure 5: Comparison of imaginary parts of the numerical and exact solutions for Ex-
ample 2 with η = 11, he = 0.1, θ = 0.52, ∆t = 0.01, N = 2601, and T = 1.
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Figure 6: Comparison of real parts of the numerical and exact solutions for Example 2
with η = 11, he = 0.1, θ = 0.52, ∆t = 0.01, N = 2601, and T = 1.

Ω3 = [0, 1]× {0} , Ω4 = [0.36, 1]× {0.52} .

Figure 8 shows the uniform distribution of N = 484 points in this domain. If
we consider the boundary conditions completely Dirichlet, then we have Table
4 for the number of different points of the domain that are uniformly selected.
As this table shows, according to the number of points, the numerical results
have good accuracy that is obtained in a short time. Figure 9 shows the
relation between the distance between points with uniform distributions with
relative errors.

b) Next, we consider a circular domain as follows:

Ω =
{
(x, y) ∈ R2 :

√
x2 + y2 ≤ 1

}
,

Iran. j. numer. anal. optim., Vol. 13, No. 1, pp 1–18
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Figure 7: Plot of error for Example 2 based on uniform points for θ = 0.52 N = 676,
T = 1, and ∆t = 0.01.

and the equation is solved by FPM. Table 5 shows the relative error values
and convergence orders over time. According to this table, there is no need to
reduce the time step too much, because making it smaller does not have much
effect on accuracy, and we should improve the accuracy by changing other
parameters or the number of points. Also, due to the circular amplitude and
the number of points used, the relative errors obtained are acceptable and
are obtained in a short time.

Figure 8: L-shaped domain related to Example 3(a) with N = 484 uniform points.

Example 4. In this example, we consider the time-dependent Schrödinger
(1)–(3) in (x, y) ∈ Ω = [0, π] × [0, π] with initial condition u(x, y, 0) =

Iran. j. numer. anal. optim., Vol. 13, No. 1, pp 1–18
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Table 4: Relative errors of the method for Example 3(a) at T = 1 and ∆t = 0.01,
θ = 0.65.

Number of points parameters Errors CPU time(s)
N = 49 he = 1 r0 = 4.796603× 10−3 0.69

η = 75 r1 = 1.608921× 10−1

N = 121 he = 0.001 r0 = 3.516616× 10−3 1.20
η = 190 r1 = 1.044712× 10−1

N = 484 he = 0.1 r0 = 3.649402× 10−4 12.60
η = 75 r1 = 2.631145× 10−2

N = 1849 he = 0.01 r0 = 3.196693× 10−4 280.72
η = 27 r1 = 1.131135× 10−2

−1.7 −1.6 −1.5 −1.4 −1.3 −1.2 −1.1 −1 −0.9 −0.8
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

log10(h)

log
10

(r)

 

 

r
0

r
1

Figure 9: Error curves with respect to the distance of selected points from the domain
to each other for example 3(a) with ∆t = 0.01 and T = 1s.

Table 5: Relative error values and convergence orders over time for example 3(b) with
N = 529 uniform points, T = 1, θ = 0.65, he = 0.01, and η = 16.

Time step r0 r1 CPU time(s) C-order
∆t = 0.08 1.261254× 10−2 6.019296× 10−2 6.88 -
∆t = 0.04 7.115889× 10−3 4.330438× 10−2 9.04 0.8257
∆t = 0.02 3.882812× 10−3 3.440278× 10−2 13.67 0.8739
∆t = 0.01 3.042351× 10−3 3.105425× 10−2 23.26 0.3519

sin(x) sin(y) and Dirichlet boundary conditions that are zero on all sides,
with the given potential function as w(x, y) = 3, (x, y) ∈ Ω. The analytical
solution is as u(x, y, t) = eit sin(x) sin(y).

Iran. j. numer. anal. optim., Vol. 13, No. 1, pp 1–18
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As you can see in Table 6, for a number of different points, the method
has the appropriate accuracy to solve this example. Also, Figures 10 and 11
demonstrate the plots for he = 0, 1, η = 3.8, and N = 676 nonuniform points
for T = 1s and T = 3s, respectively. These figures show the accuracy of
FPM for the case where the points are considered nonuniform. Compared to
[9], the proposed method reports better computational times and accuracy.

Table 6: Relative errors of the method for Example 4 at T = 1, θ = 0.52, and ∆t = 0.01.

h Number of parameters Errors CPU time (s) C-order
points

0.25 N = 25 he = 0.1 1.797325× 10−2 0.41 -
η = 1 1.185351× 10−1

0.1 N = 121 he = 0.1 1.89251× 10−3 0.97 2.4566
η = 2.7 1.92942× 10−2

0.04 N = 676 he = 0.1 6.002710× 10−4 9.47 1.2532
η = 3.8 4.150509× 10−3

0.02 N = 2601 he = 0.1 4.561287× 10−4 107 0.3962
η = 2 6.729947× 10−3
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Figure 10: Plots for real parts of the numerical and exact solutions related to Example
4 for dt = 0.01, N = 676, T = 1, θ = 0.54, η = 38, and he = 1

Example 5. For the last example, we consider Schrödinger equation with
the following exact solution and initial conditions:

u(x, y, t) = e(−it) (sin(x) + cos(y)) , u(x, y, 0) = (sin(x) + cos(y)) .

This equation is solved using the proposed method on the connected amoeba-
like domain according to Figure 12 with N = 100 points that are nonuni-
formly distributed in the domain. Table 7 shows relative errors and CPU
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Figure 11: Plots for imaginary parts of the numerical and exact solutions related to
Example 4 for ∆t = 0.01, N = 676, T = 5s, θ = 0.54, η = 38, and he = 1.

time related to different final times. Due to the nonuniform points and the
domain of the problem in this example, the accuracy of the method is ac-
ceptable. Also, plots related to numerical and exact solutions for T = 2s
are presented in Figure 13, which confirms the suitability of the method for
irregular domains.

Figure 12: Domain of the problem in Example 5 with N = 100 selected points that are
nonuniformly distributed.

Table 7: Relative errors of the method for Example 5 for T = 1, 5, 10, 15, 20, ∆t = 0.0097,
and θ = 0.5.

T Parameters r0 r1 CPU time (s)
1 he = 0.001 , η = 215 5.697623× 10−3 9.610123× 10−2 1.06
5 he = 0.001 , η = 600 6.276758× 10−3 9.613064× 10−2 3.22
10 he = 0.001 , η = 500 6.286391× 10−3 9.620433× 10−2 6.05
15 he = 0.001 , η = 550 6.282664× 10−3 9.618269× 10−2 8.69
20 he = 0.001 , η = 600 6.279557× 10−3 9.616465× 10−2 11.33
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Figure 13: Plots related to numerical and exact solutions for Example 5 with θ = 0.5,
he = 0.001, η = 50,T = 2s and ∆t = 0.0097.

5 Conclusion

In this paper, the meshless Fragile Points Method (FPM) is used to obtain
numerical solutions to the two-dimensional linear Schrödinger equation. This
method is based on Galerkin’s weak form, and the test and trial functions
are considered simple, local, and discontinuous polynomials. Numerical flux
corrections have been used to deal with inconsistencies due to the discon-
tinuity of trial functions. Finally, the efficiency, stability, and accuracy of
the method were evaluated with several numerical examples. In these nu-
merical examples, the accuracy and stability of the method were evaluated
both for a large number of points and for the case where the points were
selected nonuniformly. We also got good solutions for larger final times and
the problems with irregular domains.

According to the results of the tables and comparison of the curves ob-
tained by FPM with the exact curves, it can be seen that the method is stable
and has good accuracy. Also, the method does not have much computational
cost and depending on the number of points used, it will achieve numerical
solutions with good accuracy in a short time, which is an advantage over
the finite element. Other advantages of this method over other numerical
methods are described in detail in [14, Table 1 ].
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