
Iranian Journal of Numerical Analysis and Optimization
Vol. 12, No. 3 (Special Issue), 2022, pp 497–512
DOI:10.22067/ijnao.2022.73876.1079
https://ijnao.um.ac.ir/

How to cite this article
Research Article

Estimation of the regression function by
Legendre wavelets

M. Hamzehnejad* , M.M. Hosseini and A. Salemi

Abstract

We estimate a function f with N independent observations by using Leg-
endre wavelets operational matrices. The function f is approximated with
the solution of a special minimization problem. We introduce an explicit
expression for the penalty term by Legendre wavelets operational matri-
ces. Also, we obtain a new upper bound on the approximation error of a
differentiable function f using the partial sums of the Legendre wavelets.
The validity and ability of these operational matrices are shown by several
examples of real-world problems with some constraints. An accurate ap-
proximation of the regression function is obtained by the Legendre wavelets
estimator. Furthermore, the proposed estimation is compared with a non-
parametric regression algorithm and the capability of this estimation is
illustrated.
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1 Introduction

Let f : [a, b] −→ R with independent observations {(xi, yi), i = 1, . . . , N} .
Consider the following nonparametric regression model to provide an estimate
for f :

yi = f(xi) + ϵi, (1)

where xi ∈ [a, b] and ϵi have Gaussian noise. It is well known that the
following optimization problem approximate the regression function f [7, 13]:

min
f∈S

1

N

N∑
i=1

(yi − f(xi))
2 +

λ

N

∫ b

a

(f (r)(x))2dx, (2)

where S denotes the set of functions f satisfying the constraints and the
constant λ is called smoothing parameter. The first term measures close-
ness to the data, while the second term penalizes curvature in the function.
This optimization problem appears in many branches of applied mathematics
including economics, stochastic processes, statistics, machine learning, and
control theory, and several studies have been conducted to determine the
function f [7, 9, 18, 5, 13].

Using linear combinations of basis functions, such as orthogonal polyno-
mials, wavelets, and splines is a popular approach to estimating the function
f [7, 18, 5, 17, 11, 3, 6, 16]. This kind of method can be expressed as a matrix
equation that contains a penalty term. Although it is not possible to get a
clear and accurate answer to this problem, it is necessary to use approximate
methods to solve it. Calculating the penalty term is an important issue for
the authors. Wand and Ormerod [18] obtained an exact explicit expression
for each entry of the penalty matrix by solving numerical integrals.

It is well known that a single method cannot work for all functions without
any restrictions. Some of these restrictions include monotonicity, convexity,
unimodality, or combinations of several types of constraints. For example,
Mammen et al. [8] considered the regression function under the monotonicity
constraint and Meyer [9] considered the regression function under constraints
of convexity and monotone. Also in [1, 12], the authors considered the re-
gression function under combinations of several types of restrictions.

In this paper, by using properties of the Legendre wavelets, we provide an
exact explicit expression for the penalty term only by matrix multiplications,
which reduce the complexity of the problem. Also, an accurate approximation
of differentiable functions is obtained by Legendre wavelets. For this purpose,
we provide an upper bound for the first term of (2). Moreover, by using the
examples that have been mentioned in [9, 1, 4], we show that the Legendre
wavelets are a good candidate for the estimation of regression functions under
various constraints.

The rest of this paper is organized as follows. In Section 2, we state some
definitions and properties of the Legendre wavelets. Furthermore, we recall
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the operational matrix of derivatives, and by using this operational matrix,
we provide an exact explicit expression for the penalty matrix. In Section
2, a new upper bound on the approximation error of the partial sums of
the Legendre wavelets is presented. In Section 3, the performance of the
proposed estimation is compared with a nonparametric regression method,
by numerical examples.

2 Legendre polynomials and wavelets

In this section, we study Legendre polynomials and wavelets by presenting
some necessary definitions and theorems. The well-known Legendre poly-
nomials are defined on the interval [−1, 1] and can be determined by the
following recurrence formulas [15].

(m+ 1)Lm+1(x) = (2m+ 1)xLm(x)−mLm−1(x), m = 1, 2, 3, . . . ,

where L0(t) = 1 and L1(x) = x. The following relation is hold for Legendre
polynomials [15, eq. 3.176a]

Lm(x) =
1

2m+ 1

(
L′
m+1(x)− L′

m−1(x)
)
. (3)

Moreover, we have the following uniform bound for Legendre polynomials
[15]

|Lm(x)| ≤ 1, x ∈ [−1, 1], m ≥ 0. (4)

Legendre wavelets are defined on the interval [0, 1] as follows:

ψn,m(t) =

{√
(m+ 1

2 )2
k+1
2 Lm(2k+1t− (2n+ 1)), n

2k
≤ t < n+1

2k
,

0, otherwise,

where k ∈ N, m = 0, 1, . . . ,M − 1, and n = 0, 1, . . . , 2k − 1. The Legendre
wavelets are an orthonormal basis for L2 [0, 1] and the following orthogonality
holds: ∫ 1

0

ψm,n(t)ψr,s(t)dt = δmrδns.

Let f(t) ∈ L2 [0, 1] . Then

f(t) ≃
2k−1∑
n=0

M−1∑
m=0

cn,mψn,m(t) = CTΨ(t),

where cn,m =
∫ 1

0
f(t)ψn,m(t)dt. The vectors C and Ψ(t) are 2kM × 1 vectors

given by
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C =
[
c0,0, . . . , c0,M−1, c1,0, . . . , c1,M−1, . . . , c2k−1,0, . . . , c2k−1,M−1

]T
,

Ψ(t) = [ψ0,0(t), . . . , ψ0,M−1(t), ψ1,0(t), . . . , ψ1,M−1(t),

. . . , ψ2k−1,0(t), . . . , ψ2k−1,M−1(t)
]T
.

The Legendre wavelets approximation finds a shape constrained f to the
minimization problem (2). In the minimization problem (2), we set

f(t) ≃
2k−1∑
n=0

M−1∑
m=0

cn,mψn,m(t).

For simplicity, we can setψ((i−1)×M)+j+1(t) := ψi,j(t) and c((i−1)×M)+j+1 :=

cij for i = 1, . . . , 2k and j = 0, . . . ,M − 1. Hence the following vectors are
obtained:

Ψ(t) = [ψ1(t), . . . , ψ2kM (t)]
T
, C = [c1, c2, . . . , c2kM ]

T
. (5)

Therefore, we have

f(t) =

2kM∑
j=1

cjψj(t),

where ψj(t) are the Legendre wavelets. Therefore the objective function to
minimize (2) is the following penalized least square:

min
cj

1

N

N∑
i=1

yi − 2kM∑
j=1

cjψj(xi)

2

+
λ

N

∫ 1

0

2kM∑
j=1

cjψ
(r)
j (t)

2

dt,

where

∫ 1

0

2kM∑
j=1

cjψ
(r)
j (t)

2

dt =

2kM∑
i=1

2kM∑
j=1

cicj

∫ 1

0

ψ
(r)
i (t)ψ

(r)
j (t)dt.

Suppose that V is a matrix by elements of the form Vij :=
1
N

N∑
l=1

ψi(xl)ψj(xl),

that P is a matrix by elements Pij =
∫ 1

0
ψ
(r)
i (t)ψ

(r)
j (t)dt, and that the ele-

ments of vector b are defined by bi = 1
N

N∑
l=1

ψi(xl)yl, i, j = 1, . . . , 2k−1M , so

the minimization problem (2) has the following quadratic form of minimiza-
tion [5]:
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min
C∈R2kM

1

2
CTV C − bC + λ(

1

2
CTPC). (6)

By taking the derivative of (6) in terms of C and put it equal zero, we obtain
the following equation:

(V + λP )C = b. (7)

Now focus on the second term, to determine an appropriate operator matrix
to solve the problem (2). An important issue is to calculate the elements of
the matrix P . We use Legendre wavelets operational matrix of derivative,
to get the new structure of the matrix P . The following theorems determine
the Legendre wavelet operational matrices of derivatives, which are used to
solve differential equations.

Theorem 1. [10, Theorem 1] Let Ψ(t) be the Legendre wavelets vector as
in (5). Then the derivative of the vector Ψ(t) can be expressed by

dΨ(t)

dt
= DΨ(t),

where D is the 2kM operational matrix

D =


F 0 · · · 0
0 F · · · 0
...

... . . . ...
0 0 · · · F

 ,
where F is an M × M matrix such that (r, s)th entry of F is defined as
follows:

Fr,s =

 2k+1
√
(2r − 1)(2s− 1),

{
r = 2, . . . ,M,

s = 1, . . . , r − 1,
(r + s) odd,

0, otherwise.

Theorem 2. [10, Theorem 2] By using Theorem 1, the operational matrix
for nth derivative can be derived as

dnΨ(t)

dtn
= DnΨ(t),

where Dn is the nth power of the matrix D.

Therefore, using these operational matrices, the elements of the matrix P
in (7) are introduced in the next theorem.

Theorem 3. Let Ψ(t) be the Legendre wavelets vector defined in (5). As-
sume that r is a nonnegative integer and that the elements of the matrix
P = [Pij ] are Pij =

∫ 1

0
ψ
(r)
i (t)ψ

(r)
j (t)dt. Then Pij has the following exact

explicit expression
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Pij = (Dr
i )(D

r
j )

T , i, j = 1, . . . , 2kM, (8)

where Dr
i is the ith row of the operational matrix Dr as in Theorem 2.

Proof. By using Theorem 2, the elements of the matrix P are as follows:

Pij =

∫ 1

0

ψ
(r)
i (t)ψ

(r)
j (t)dt =

∫ 1

0

(Dr
iΨ(t))(Dr

jΨ(t))dt, i, j = 1, . . . , 2kM.

(9)

Let Dr
iΨ(t) =

2kM∑
s=1

d
(r)
is ψs(t). Then

Pij =

∫ 1

0

(
d
(r)
i1 ψ1(t) + · · ·+ d

(r)

i2kM
ψ2kM (t)

)(
d
(r)
j1 ψ1(t) + · · ·+ d

(r)

j2kM
ψ2kM (t)

)
dt

=

∫ 1

0

2kM∑
s=1

2kM∑
l=1

d
(r)
is d

(r)
jl ψs(t)ψl(t)dt =

2kM∑
s=1

2kM∑
l=1

d
(r)
is d

(r)
jl

∫ 1

0

ψs(t)ψl(t)dt.

According to the property of orthogonality, we have∫ 1

0

ψs(t)ψl(t)dt = δsl. (10)

By using (10), Pij =

2kM∑
s=1

d
(r)
is d

(r)
js = (Dr

i )(D
r
j )

T .

Therefore, we can calculate the elements of the matrix P only by a matrix
multiplication. By solving system (7), the appropriate weight coefficients are
obtained to approximate the function f .

3 Error analysis

In this section, we present an error estimate of the partial sums of Legendre
wavelets to the regression function f . For this purpose, we benefit from the
well-known mean-square error (MSE). By using the MSE [16], we measure
the performance of the estimator f̂ as follows:

MSE(f̂, f) =
1

N

N∑
i=1

E
[
f̂(xi)− f(xi)

]2
.

The Legendre wavelets estimator f̂ can be written as

f̂ = (f̂(x1), . . . , f̂(xN )) =

2k−1∑
n=0

M−1∑
m=0

cn,mψn,m(x1), . . . ,

2k−1∑
n=0

M−1∑
m=0

cn,mψn,m(xN )

 .
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We present a new approximation error of the function f , using the partial
sums of Legendre wavelets. We know that

f(t) =

∞∑
n=0

∞∑
m=0

cn,mψn,m(t)

=

2k−1∑
n=0

M−1∑
m=0

cn,mψn,m(t) +

2k−1∑
n=0

∞∑
m=M

cn,mψn,m(t) +

∞∑
n=2k

∞∑
m=0

cn,mψn,m(t).

(11)

The last part in (11),
∞∑

n=2k

∞∑
m=0

cn,mψn,m(t) = 0, because the Legendre

wavelets ψn,m(t) are zero outside of the interval [0, 1]. Then∥∥∥∥∥∥f(t)−
2k−1∑
n=0

M−1∑
m=0

cn,mψn,m(t)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
2k−1∑
n=0

∞∑
m=M

cn,mψn,m(t)

∥∥∥∥∥∥
2

≤
2k−1∑
n=0

∞∑
m=M

|cn,m|2 ∥ψn,m(t)∥2 .

We know that ∥ψn,m(t)∥2 = 1. Therefore

∥∥∥f(t)− f̂(t)
∥∥∥2 =

∥∥∥∥∥∥f(t)−
2k−1∑
n=0

M−1∑
m=0

cn,mψn,m(t)

∥∥∥∥∥∥
2

≤
2k−1∑
n=0

∞∑
m=M

|cn,m|2 . (12)

Hence, the approximation error of the truncated series of Legendre wavelets
depends on the Legendre wavelets coefficients cn,m. Now, we obtain an upper
bound for Legendre wavelets coefficients.

Theorem 4. Suppose that k ∈ N and that f, f ′, . . . , f (r) are absolutely
continuous on [0, 1]. Suppose that V = max

{
Vn, n = 0, . . . , 2k − 1

}
, where

Vn =

∫ n+1

2k

n

2k

∣∣∣f (r+1) (t)
∣∣∣ dt, n = 0, 1, . . . , 2k − 1.

Then for m ≥ r + 1,

|cn,m| ≤


V

2rk(2m−2r+3)···(2m−1)(2m+3)···(2m+2r−1)
√

2k(2m−2r+1)
, r odd,

V

2rk(2m−2r+3)···(2m+1)(2m+5)···(2m+2r−1)
√

2k(2m−2r+1)
, r even.

(13)

Proof. For each 0 ≤ i ≤ r, define the following sequence
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c(i)n,m =

∫ n+1

2k

n

2k

f (i)(t)ψn,m(t)dt

=

√
(m+

1

2
)2

k+1
2

∫ n+1

2k

n

2k

f (i)(t)Lm(2k+1t− (2n+ 1))dt, (14)

where c(0)n,m = cn,m. Let x = 2k+1t− (2n+ 1). Then

c(r+1)
n,m =

√
(m+

1

2
)2

k+1
2

∫ 1

−1

f (r+1)

(
x+ 2n+ 1

2k+1

)
Lm(x)

dx

2k+1

=

√
(m+ 1

2 )

2
k+1
2

∫ 1

−1

f (r+1)

(
x+ 2n+ 1

2k+1

)
Lm(x)dx. (15)

By using the equation (3), we have

c(r)n,m =

√
(m+ 1

2 )

2
k+1
2 (2m+ 1)

∫ 1

−1

f (r)
(
x+ 2n+ 1

2k+1

)(
L′
m+1(x)− L′

m−1(x)
)
dx.

(16)

Using integration by parts, we have

c(r)n,m =

√
(m+ 1

2 )

2
k+1
2 (2m+ 1)

[
f (r)

(
x+ 2n+ 1

2k+1

)
(Lm+1(x)− Lm−1(x))

]1
−1

+

√
(m+ 1

2 )

2
k+1
2 2k+1(2m+ 1)

∫ 1

−1

f (r+1)

(
x+ 2n+ 1

2k+1

)
(Lm+1(x)− Lm−1(x)) dx.

(17)

Using the properties Lm(1) = 1m and Lm(−1) = (−1)m for m ≥ 0, easy
computations shows that the first term of (17) vanishes. Thus we have

c(r)n,m =

√
(m+ 1

2 )

2
k+1
2 2k+1(2m+ 1)

∫ 1

−1

f (r+1)

(
x+ 2n+ 1

2k+1

)
(Lm+1(x)− Lm−1(x)) dx.

(18)

From (14) and (18), we obtain the following relation between the coefficients

c(r)n,m =
1

2k+1(2m+ 1)

(
c
(r+1)
n,m−1 − c

(r+1)
n,m+1

)
. (19)

Now, we obtain an upper bound for c(r+1)
n,m . We can see that
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c(r+1)
n,m =

√
(m+ 1

2 )

2
k+1
2

∫ 1

−1

f (r+1)

(
x+ 2n+ 1

2k+1

)
Lm(x)dx

=

√
(m+

1

2
)2k+1

∫ n+1

2k

n

2k

f (r+1)(t)Lm(2k+1t− (2n+ 1))dt.

From (9) and by easy computation, we obtain

∣∣∣c(r+1)
n,m

∣∣∣ =√(m+
1

2
)2k+1

∫ n+1

2k

n

2k

∣∣∣f (r+1) (t)
∣∣∣ ∣∣Lm(2k+1t− (2n+ 1))

∣∣ dt
≤
√

(2m+ 1)2k
∫ n+1

2k

n

2k

∣∣∣f (r+1) (t)
∣∣∣ dt ≤ V

√
2k(2m+ 1). (20)

Applying (20) in (19), we have∣∣∣c(r)n,m

∣∣∣ ≤ 1

2k+1(2m+ 1)

(∣∣∣c(r+1)
n,m−1

∣∣∣+ ∣∣∣c(r+1)
n,m+1

∣∣∣)
≤ V

√
2k(2m− 1) + V

√
2k(2m+ 3)

2k+1(2m+ 1)
. (21)

Since √
2m− 1 +

√
2m+ 3 ≤ 2

√
2m+ 1,

(21) becomes to ∣∣∣c(r)n,m

∣∣∣ ≤ 2V
√
2k(2m+ 1)

2(k+1)(2m+ 1)
=

V√
2k(2m+ 1)

. (22)

Also, by using (22) in (19), we obtain the following upper bound for c(r−1)
n,m :∣∣∣c(r−1)

n,m

∣∣∣ ≤ 1

2k+1(2m+ 1)

(∣∣∣c(r)n,m−1

∣∣∣+ ∣∣∣c(r)n,m+1

∣∣∣)
≤ 1

2k+1(2m+ 1)

(
V√

2k(2m− 1)
+

V√
2k(2m+ 3)

)

=
V

2k+1(2m+ 1)
√
2k

(√
(2m+ 3) +

√
(2m− 1)√

(2m− 1)(2m+ 3)

)

≤
2V
√
(2m+ 3)

2k+1(2m+ 1)
√

2k(2m− 1)(2m+ 3)

=
V

2k(2m+ 1)
√
2k(2m− 1)

.
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If we continue the above process, then by easy computation for an integer
s ≥ 2, we obtain the following upper bound for c(r−s−1)

n,m :

|c(r−s)
n,m | ≤


V

2(s−1)k(2m−2s+5)···(2m−1)(2m+3)···(2m+2s−3)
√

2k(2m−2s+3)
, s odd,

V

2(s−1)k(2m−2s+5)···(2m+1)(2m+5)···(2m+2s−3)
√

2k(2m−2s+3)
, s even.

Then (13) holds when s+ 1 = r.

Now, we are ready to provide an approximation error of the partial sums
of Legendre wavelets. We show that if the regression function f is smooth,
then the partial sums of Legendre wavelets converge to it rapidly.

Theorem 5. Suppose that k ∈ N and that f, f ′, . . . , f (r) are absolutely
continuous on [0, 1]. Moreover, suppose that Ek,M (f(t)) =

∥∥∥f(t)− f̂(t)
∥∥∥.

Then for M ≥ r + 1 and r ≥ 1,

Ek,M (f(t)) ≤


V

r2(r−1)k(2M−2r+1)···(2M−1)(2M+3)···(2M+2r−7)
√

2k(2M−2r+1)
, r odd,

V

r2(r−1)k(2M−2r+1)···(2M+1)(2M+5)···(2M+2r−7)
√

2k(2M−2r+1)
, r even.

Proof. Let r be an odd integer. Applying (13) in (12), we obtain

Ek,M (f(t))

≤
2k−1∑
n=0

∞∑
m=M

V

2rk(2m− 2r + 3) · · · (2m− 1)(2m+ 3) · · · (2m+ 2r − 1)
√

2k(2m− 2r + 1)

≤
V

2rk
√

2k(2M − 2r + 1)

2k−1∑
n=0

∞∑
m=M

1

(2m− 2r + 3) · · · (2m− 1)(2m+ 3) · · · (2m+ 2r − 1)

=
V

2rk
√

2k(2M − 2r + 1)

2k−1∑
n=0

∞∑
m=M

1

(2m+ 2r − 1)r−1(1− 4r−4
(2m+2r−1)

) · · · (1− 4
(2m+2r−1)

)

≤
V

2rk
√

2k(2M − 2r + 1)(1− 4r−4
(2M+2r−3)

) · · · (1− 4
(2M+2r−3)

)

2k−1∑
n=0

∫ ∞

M−1

1

(2x+ 2r − 1)r−1
dx

=
2kV

r2rk(2M − 2r + 1) · · · (2M − 1)(2M + 3) · · · (2M + 2r − 7)
√

2k(2M − 2r + 1)

=
V

r2(r−1)k(2M − 2r + 1) · · · (2M − 1)(2M + 3) · · · (2M + 2r − 7)
√

2k(2M − 2r + 1)
.(23)

By a similar approach, the results hold for an even integer r and complete
the proof.

Remark 1. The aim of this remark is to draw an approximation error for
a function f(x), using the partial sums of the Legendre wavelets. Consider
two functions f(x) = 1 + x− 0.45 exp[−5(x− 0.5)2] and f(x) = 1

6x
2|x|. The
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function f(x) = 1 + x − 0.45 exp[−5(x − 0.5)2] is infinitely differentiable.
In Table 1, numerical results are shown for this function for some values of
M,k, and r. The numerical results obtained from this table indicate that
by increasing M , k, and r, the partial sums of Legendre wavelets converge
to the function f(x) rapidly. Also, consider the function f(x) = 1

6x
2|x|

Table 1: Approximation errors of the function f(x) = 1 + x − 0.45exp[−5(x − 0.5)2]
evaluated by Theorem 5.

M k r Ek,M (f(x)) M k r Ek,M (f(x))
10 1 3 1.920× 10−3 10 1 5 6.977× 10−5

15 2 3 5.669× 10−5 15 2 5 1.686× 10−7

20 3 3 3.373× 10−6 20 3 5 8.670× 10−10

[19]. This function and its derivatives are absolutely continuous on [0, 1] and
f (2)(x) = |x|. Also, f (3)(x) = 2H(x) − 1, where H(x) is the Heaviside step
function, which is of bounded variation and f (4)(x) = 2δ(x), where δ(x) is the
Dirac delta function. In Table 55, the numerical results are listed for some
values of M,k, and r. Moreover, the logarithm of absolute errors is displayed

Table 2: Approximation errors of the function f(x) = 1
6
x2|x| evaluated by Theorem 5.

M k r Ek,M (f(x)) M k r Ek,M (f(x))
10 1 3 1.067× 10−4 10 2 3 1.887× 10−5

15 1 3 3.251× 10−5 15 2 3 5.747× 10−6

20 1 3 1.459× 10−5 20 2 3 2.579× 10−6

in Figure 1.

Figure 1: Approximation error of the functions f(x) = 1
6
x2|x| and f(x) = 1 + x −

0.45exp[−5(x− 0.5)2].
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4 Numerical results

In this section, we present some examples to illustrate the validity and ability
of the Legendre wavelets. For this purpose, we use some real-world test
functions. Suppose that (xi, yi), i = 1, . . . , N are N independent data with
the same distribution such that Xi, i = 1, . . . , N have normal distribution,
that is, xi ∼ N(µ, σ). Let yi = f(xi)+ϵi and let xi, ϵi, f be independent with
penalization order r = 2. We consider different kinds of regression functions,
which have different constraints on interval [0, 1].

Remark 2. Choosing the suitable smoothing parameter λ is also an im-
portant issue in solving the minimization problem (2). Corlay [5] showed
that λ = σ2r−1

xi
is a suitable smoothing parameter, where the quantity σxi

is the standard deviation, which scales proportionally with xi. Hence, in all
examples, the coefficient of the penalty term λ

N =
σ2r−1
xi

N is used.

Example 1. Consider two real regression functions f1(x) = 15(x − 0.25)2

[9] and f2(x) = 1 + x− 0.45 exp[−5(x− 0.5)2] [4]. Then f1(x) is convex over
[0, 1] and f2(x) is strictly monotone over [0, 1]. Penalized Legendre wavelets
regression of samples are plotted in Figure 2.

Figure 2: Approximate solution for the regression functions f1(x) and f2(x) in Example
1

Example 2. Consider the real regression function f3(x) = 15x2 sin(3.7x) +
2

σ
√
2π

exp[(− 1
2 (

x−µ
σ )2)] [7, 1], where σ = 0.1 and µ = 0.3. This function

is unimodal (first increasing and then decreasing), concave on [0.55, 1], and
twice differentiable. We approximate the minimization problem (2) for N =
1000 samples of (xi, yi). In Figure 3, the numerical results are shown.

Example 3. Consider the real regression function f4(x) = 10(x − 0.5)3 −
exp[−100(x− 0.25)2][4]. In Figure 4, the numerical results are shown.

In the following example, we compare our method by a nonparametric Re-
gression (NR) method. NR methods are very sensitive to parameters such as
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Figure 3: Approximate solution for the regression function f3(x).

Figure 4: Approximate solution for the regression function f4(x).

the bandwidth selection, the regression order, and the shape of the smoothing
kernel. In these methods, the choice of order and especially the bandwidth
parameter can be a hassle [14]. In the previous example, we observed that
the Legendre wavelets regression (LWR) method provides a good estimate
for N samples (xi, yi), which does not depend on any parameter except the
choice of k and M , where k specifies the level of resolution, 2k sub-intervals
on [0, 1], and M determines the degree of wavelets. Note that the selection
of these two parameters is easy.

Example 4. Consider the functions f1(x) = 1 + x − 0.45 exp[−5(x −
0.5)2], f2(x) = 15x2 sin(3.7x) + 2

σ
√
2π

exp(− 1
2 (

x−µ
σ )2) and f3(x) = −x3 − x2.

In Figure 5, we approximate the minimization problem (2) for N = 250
samples of (xi, yi) and compare this method by a nonparametric regression
method, which are shown in Figure 5.

5 Conclusion

In this paper, Legendre wavelets were used to approximate the regression
function. A new operational matrix was introduced to simplify the mini-
mization problem in (2), which is useful for new research in financial math-
ematics and numerical analysis. Moreover, a new approximation error of
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Figure 5: Comparing the Legendre wavelets estimation (black curve) with the nonpara-
metric regression (blue curve). Due to nonoptimal choices of h, under-fitting occurred
in the first row and over-fitting occurred in the second row for nonparametric regression
for the functions mentioned in Example 3.

a differentiable function f using the partial sums of the Legendre wavelets
was provided. Numerical experiments were performed for a variety of real
regression functions (see [9, 1, 4]). The proposed method was executed on
some popular functions, and the numerical results were compared with the
nonparametric regression method. Finally, the capability of the proposed
method was illustrated.
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