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Abstract

The Tau method based on the Bernoulli polynomials is implemented
efficiently to approximate the Nash equilibrium of open-loop kind in non-
linear differential games over a finite time horizon. By this treatment,
the system of two-point boundary value problems of differential game ex-
tracted from Pontryagin’s maximum principle is transferred to a system of
algebraic equations that Newton’s iteration method can be used for solving
it. Also, for the mentioned approximation by the Bernoulli polynomials,
the convergence analysis and the error upper bound are discussed. To
demonstrate the applicably and accuracy of the proposed approach, some
illustrated examples are presented at the final.
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1 Introduction

A differential game is an extension of optimal control theory that describes a
conflict situation between some players, who seek their maximum or minimum
own payoffs under a dynamical system. It has arisen in practical problems
from economics to engineering applications in recent years [29, 30, 44, 11, 15,
31].

One of the most important and crucial solution concepts in game theory is
the Nash equilibrium, in which players have no incentive to deviate from their
original plans [23] and is classified into the following two cases in differential
games based on the information of the state of the game that players know
at different times of game:

• The players have no information during the game and only know the
game state at the initial time. This kind of equilibrium is known as
open-loop Nash equilibrium.

• The current game state is known to players. Such equilibrium is often
called feedback Nash equilibrium.

The main approaches to computing the open-loop Nash equilibrium in differ-
ential games are indirect methods and direct methods. In indirect methods,
the nonzero-sum differential game is reduced to a system of two-point bound-
ary value problems (TPBVPs) by using the necessary optimality conditions
of the Pontryagin’s maximum principle that can be solved analytically or nu-
merically [5]. In direct approaches that are optimization based methods, dif-
ferential game problem is transferred to mathematical programming [12, 20].
However, the drawback of direct approaches is that there is no guarantee
that the solution obtained is feasible for the original problem [27, 42].

Regarding the indirect methods, most researchers have focused on a spe-
cial kind of differential game, namely linear-quadratic dynamic games that
the state equation of the game is linear with respect to control and state
variables, and both are quadratic in the performance indices. For this kind
of differential game, the systems of TPBVPs are linear in general, and hence
the open-loop Nash equilibrium can be obtained analytically based on solv-
ing Riccati equations [14, 17]. Indeed in practice, we face with differential
games that their systems of TPBVPs are nonlinear generally. Therefore,
using suitable numerical methods is necessary [35].

To the best of our knowledge, there are a few research works carried out
to compute open-loop Nash differential games in nonlinear case. In [27], a
pseudospectral method based on Chebyshev polynomials was applied for find-
ing the players’ open-loop strategies in nonlinear differential games. In [24],
by Riccati equations, the open-loop Nash equilibrium of differential games in
polynomial case was obtained. In [9], the coordinate transformation approach
was extended for computing open-loop Nash equilibrium, and complementar-
ity theory was applied for a class of zero-sum differential games to be solved
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in [43]. In [32], a combined quasilinearization method with exponential Bern-
stein functions was introduced for a numerical solution to TPBVPs.

There are several methods for solving differential equations numerically,
such as spectral methods [8], shooting and multiple shooting methods [25],
variational iteration method [16], and homotopy analysis method [1] that
each of which has its own implementation. Spectral methods are based on the
weighted residual method that has high accurate results in solving differential
equations and are classified into three methods, namely collocation, Galerkin,
and Tau methods [19, 22, 34, 41].

The Tau method is one of the most accurate spectral methods for a nu-
merical solution to differential equations of different kinds [39, 3, 38, 18].
The goal of this paper is to propose an implementation of the Bernoulli Tau
method (BTM), in which the solution functions are defined by means of a
truncated Bernoulli series expansion, to compute the open-loop Nash equi-
librium in nonlinear differential games with finite horizons.

The remainder of the paper is organized into the following sections. In
Section 2, the nonzero-sum nonlinear differential games are defined, and the
extraction of the systems of TPBVPs from Pontryagin’s maximum principle is
described. In Section 3, the Tau approach based on the Bernoulli polynomials
is introduced and applied for computing the open-loop strategies of these
differential games. In Section 4, some numerical examples are presented
to validate the accuracy and applicability of the present method. Finally,
conclusions are presented in section 5.

2 Problem statement

A family of nonzero-sum nonlinear differential games with finite horizon is
described in the following definition.

Definition 1. A nonzero-sum nonlinear differential game is defined as follows
[6]:

max
ui(·)

Ji(ui(·), u−i(·)) =
∫ T

0

Ki(t, x(t), u1(t), u2(t), . . . , um(t)) dt +Φi(x(T )),

ẋ(t) = f(t, x(t), u1(t), u2(t), . . . , um(t)), (1)
x(0) = x0 ∈ R,

where ui(t) ∈ Ui ⊂ R is the player i’s control (strategy), x(t) ∈ R is the
state vector of the differential game, and M = {1, 2, . . . ,m} is the set of
players. The functions Ki(t, x(t), u1(t), u2(t), . . . , um(t)) and Φi(x(T )), i =
1, 2, . . . ,m, are continuously differentiable functions that describe the player
i’s running payoff and terminal payoff, respectively. The goal of this differ-
ential game for each player i, i = 1, 2, . . . ,m, is to maximize his payoff by
choosing a suitable strategy ui(t) ∈ Ui ⊂ R.
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For differential game (1), the open-loop Nash equilibrium is described as
follows.

Definition 2. The control actions u⋆
i (·), i = 1, 2, . . . ,m, are considered as a

Nash equilibrium for differential game (1), if the following inequalities hold:

Ji(u
⋆
i (·), u⋆

−i(·)) ⩾ Ji(ui(·), u⋆
−i(·)), for all ui ∈ Ui,

where ui is the ith player’s strategy and u−i state the other players’ strategies,
that is, u−i = uj , j ̸= i.

For deriving the first-order optimality necessary conditions of nonlinear
differential game (1) and characterizing an open-loop strategy, the Hamilto-
nian functions are defined as follows:

Hi(t, x, ui, u−i, λi) = Ki(t, x, ui, u−i) + λi f(t, x, ui, u−i), i = 1, 2, . . . ,m,

where the variables λi, i = 1, 2, . . . ,m, are the adjoint functions.
Pontryagin’s maximum principle provides a set of optimality conditions

for control actions to construct an open-loop strategy in nonlinear differential
game (1) as follows:

·
x(t) = f(t, x(t), u1(t), . . . , um(t)), x(0) = x0, (2)
·
λi(t) = −∂Hi

∂x
(t, x(t), ui(t), u−i(t), λi(t)), λi(T ) =

∂Φi(x(T ))

∂x
, (3)

∂Hi

∂ui
(t, x(t), ui(t), u−i(t), λi(t)) = 0, i = 1, 2, . . . ,m. (4)

An expression for ui(t) , i = 1, 2, . . . ,m, with respect to x(t) and λi(t) can
be obtained by solving the algebraic equations (4) as follows:

ui = Ψi(t, x(t), λi(t)).

This expression is replaced in (2) and (3) to obtain the system of TPBVPs
based on x(t) and λi(t) , i = 1, 2, . . . ,m, as follows:

·
x(t) = f(t, x(t),Ψ1(t),Ψ2(t), . . . ,Ψm(t)),
·
λi(t) = −∂Hi

∂x
(t, x(t),Ψi(t),Ψ−i(t), λi(t)),

x(0) = x0,

λi(T ) =
∂Φi(x(T ))

∂x
,

(5)

where Ψi = Ψi(t, x(t), λi(t)), i = 1, 2, . . . ,m.
This system of differential equations with split boundary conditions is

nonlinear generally, which makes it difficult or impossible to be solved ana-
lytically. Therefore, using an appropriate numerical approach is required.

IJNAO, Vol. 12, No. 2, pp 467–482



A numerical treatment based on Bernoulli ... 471

3 The Bernoulli Tau method for nonlinear differential
games

In this part, an efficient formulation of the Tau method for a numerical
solution to the system of TPBVPs is established by obtaining the open-loop
strategy of nonlinear differential game (1).

The Tau method is a highly accurate spectral method for differential
equations to be solved numerically. Implementing this method is based on
expanding the solution functions f(t) of differential equations in terms of suit-
able basis polynomials such as Bernoulli [40, 33], Jacobi [4, 28], and Bernstein
polynomials [21] as follows:

f(t) =

∞∑
i=0

fi Pi(t),

where fi and Pi(t), i = 0, 1, 2, . . ., are unknown coefficients and basis poly-
nomials, respectively [7].

In practice, we use only a finite number of these basis polynomials, mean-
ing that fn(t) =

∑n
i=0 fi Pi(t) is a numerical approximation of the exact

solution f(t).
In this paper, the Bernoulli polynomials are considered as basis polynomi-

als, in which the definition and properties of these polynomials in a function
approximation are stated below.

Definition 3. Bernoulli polynomials of order n are defined on [0, 1] by (see
[26])

βn(t) =

n∑
i=0

(
n

i

)
αn−it

i,

where αi, i = 0, 1, . . . , n, are Bernoulli numbers and defined as

t

et − 1
=

∞∑
i=0

αi
ti

i!
.

The first few Bernoulli numbers are

α0 = 1, α1 =
−1

2
, α2 =

1

6
, α4 =

−1

30
, . . . ,

with α2i+1 = 0, for i = 1, 2, 3, . . ..

The first seven Bernoulli polynomials are

β0(t) = 1, β1(t) = t− 1

2
, β2(t) = t2 − t+

1

6
, β3(t) = t3 − 3

2
t2 +

1

2
t,

β4(t) = t4 − 2t3 + t2 − 1

30
, β5(t) = t5 − 5

2
t4 +

5

3
t3 − 1

6
t,
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β6(t) = t6 − 3t5 +
5

2
t4 − 1

2
t2 +

1

42
.

A complete basis is formed by these polynomials over the interval [0, 1].

Any function f(t) belonging to L2[0, 1] can be approximated by Bernoulli
functions as follows:

f(t) ≈ fn(t) =

n∑
i=0

fiβi(t).

To apply the Tau method based on the Bernoulli polynomials for solving
the system of TPBVPs (5), for simplification matters and without loss of
generality, we consider T = 1, and then the unknown functions x(t) and
λi(t), i = 1, . . . ,m, can be approximated as finite expansions of Bernoulli
polynomials as follows:

x(t) ≈ xn(t) =

n∑
j=0

ajβj(t) = ATβ(t)

λi(t) ≈ λn
i (t) =

n∑
j=0

bijβj(t) = BT
i β(t), i = 1, 2, . . . ,m ,

where AT = [a0, a1, . . . , an] and BT
i = [bi0, bi1, . . . , bin], i = 1, . . . ,m, are the

vectors of unknown coefficients and β(t) = [β0(t), β1(t), . . . , βn(t)]
T is the

vector of Bernoulli polynomials.

The residual functions are defined by substituting these expansions in the
differential equations of the system of TPBVPs (5) as follows:

R0(t) = ẋn(t)− f(t, xn(t),Ψn
1 (t),Ψ

n
2 (t), . . . ,Ψ

n
m(t)),

Ri(t) = λ̇n
i (t) +

∂H

∂xn
(t, xn(t),Ψn

i (t),Ψ
n
−i(t)), i = 1, . . . ,m.

Then, multiplying these residuals by βj(t), j = 0, 1, . . . , n − 1, integrating
over the interval [0, 1], and setting equal to zero, together with the boundary
values, the following system of (m+1)(n+1) algebraic equations is created,
which Newton’s iteration method can be applied to solve it and to determine
the unknown vectors AT and BT

i , i = 1, . . . ,m:

∫
1

0
R0(t)Bj(t)dt = 0,∫

1

0
Ri(t)Bj(t)dt = 0,

xn(0) = x0,

λn
i (1) =

∂Φi(x
n(1))

∂xn
.
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By the following theorem, the convergence analysis and the error upper bound
for the mentioned approximation obtained by the Bernoulli polynomials is
discussed.

Theorem 1. Suppose that x(t) and λi(t), i = 1, . . . ,m, belong to Cn+1[0, 1]
and that Sn = span{β0(t), β1(t), . . . , βn(t)}. If ATβ(t) ∈ Sn and BT

i β(t) ∈
Sn, i = 1, 2, . . . ,m, are the best approximations of x(t) and λi(t), i =
1, . . . ,m, respectively, then

∥x(t)−ATβ(t)∥L2[0,1] ≤
C

(n+ 1)!
√
2n+ 3

and

∥λi(t)−BT
i β(t)∥L2[0,1] ≤

Ci

(n+ 1)!
√
2n+ 3

, i = 1, 2, . . . ,m,

where C = max
t∈[0,1]

|x(n+1)(t)| and Ci = max
t∈[0,1]

|λ(n+1)
i (t)|, i = 1, 2, . . . ,m.

Proof. The proof will be done for the first inequality and the other inequalities
can be proved in a similar manner.

Since x(t) ∈ Cn+1[0, 1], there exists C ∈ N such that for every t ∈ [0, 1],
we have |xk(t)| ≤ C, k = 0, 1, . . . , n + 1, and x(t) can be expanded into the
Taylor formula as

x(t) =

n∑
k=0

x(k)(0)

k!
tk +

x(n+1)(ξ)

(n+ 1)!
tn+1 = x̃(t) +

x(n+1)(ξ)

(n+ 1)!
tn+1,

where x̃(t) =

n∑
i=0

x(k)(0)

k!
tk and ξ ∈ [0, t]. Hence, we have

|x(t)− x̃(t)| = x(n+1)(ξ)

(n+ 1)!
tn+1.

Because ATβ(t) is the best approximation of x(t) out of Sn, x̃(t) ∈ Sn, and
considering the above equality, it is concluded that

∥x(t)−ATβ(t)∥L2[0,1] ≤ ∥x(t)− x̃(t)∥L2[0,1] =

∥∥∥∥x(n+1)(ξ)

(n+ 1)!
tn+1

∥∥∥∥
L2[0,1]

=

(∫ 1

0

∣∣∣∣x(n+1)(ξ)

(n+ 1)!
tn+1

∣∣∣∣2 dt
) 1

2

≤ C

(n+ 1)!

(∫ 1

0

t2n+2dt

) 1
2
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=
C

(n+ 1)!
√
2n+ 3

,

and this completes the proof.

Remark 1. It should be noted that for practical use of Bernoulli polynomi-
als on the interval [a, b], it is necessary to shift the defining domain by the
following variable substitution and construct the shifted Bernoulli polynomi-
als:

t =
x

b− a
− a

b− a
.

4 Numerical illustrations

In this part, three differential game problems are presented to illustrate the
accuracy and efficiency of the proposed approach. Example 1 is a linear-
quadratic differential game that its exact solution can be obtained. By this
example and comparing it with the exact solution, we can verify and validate
the proposed approach. Example 2 is also a linear quadratic differential game
with attainable exact solution. In this example, we compare the results of
the proposed method with the Chebyshev pseudospectral method (CPM)
presented in [27]. Example 3 is a differential game arising from an economic
model with a nonlinear system of TPBVPs that the exact solution is not
available. To check the performance of the proposed method for this problem,
a residual function is defined.

All the computations associated with the proposed method have been
performed by Maple 17 software with 32 digits precision on a Core (TM) i7
PC with 2.70GHz of CPU and 16GB of RAM.

Example 1. For this differential game, the state equation is [13]

ẋ(t) = u1(t) + u2(t), x(0) = 1,

and two players’ performance indices are

min
u1

J1 =

∫ 1

0

(−x2(t) + u2
1(t))dt,

min
u2

J2 =

∫ 1

0

(2x2(t) + u2
2(t))dt+ x2(1).

The exact open-loop Nash equilibrium of this differential game is [13]

u∗
1 = −1

e
+ e−t,

u∗
2 =

1

e
− 2e−t.
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Hence, the exact values of players’ performance indices are

J∗
1 = −0.32975303263305,

J∗
2 = 1.9344880850240.

The system of TPBVPs for the mentioned game is stated as

ẋ(t) = −λ1(t)

2
− λ2(t)

2
,

λ̇1(t) = 2x(t),

λ̇2(t) = −4x(t),

x(0) = 1,

λ1(1) = 0, λ2(1) = 2x(1).

The values of performance indices obtained by the proposed approach and
the comparison of the analytical solutions are shown in Table 1. Also, the
approximate solutions and the exact solutions with n = 10 together with
absolute errors are plotted in Figure 1.

Table 1: Comparison of optimal payoff functionals J1 and J2 obtained by
BTM with the exact solutions and also the CPU time(s) for Example 1.

n J1BTM J2BTM |J1BTM − J∗
1 | |J2BTM − J∗

2 | CPU time(s)
4 −0.32975302954236861650 1.93448814833633875533 3.09× 10−9 5.23× 10−8 0.124
6 −0.32975303263303305145 1.93448808502434431993 1.35× 10−14 2.27× 10−13 0.156
8 −0.32975303263304656749 1.93448808502406878964 1.69× 10−20 2.84× 10−19 0.218
10 −0.32975303263304656750 1.93448808502406878929 8.17× 10−27 1.37× 10−25 0.328

Example 2. For this differential game, the state equation is [13]

ẋ(t) = 2x(t) + u1(t) + u2(t), x(0) = 1,

and two players’ performance indices are

min
u1

J1 =

∫ 3

0

(x2(t) + u2
1(t))dt,

min
u2

J2 =

∫ 3

0

(4x2(t) + u2
2(t))dt+ 5x2(3).

The exact open-loop Nash equilibrium of this differential game is [13]

u∗
1 = −e−st +

1

e3
e−2t,

u∗
2 = −4e−3t −

1

e3
e−2t.

Hence, the exact values of players’ performance indices are

J∗
1 = 0.3140381912,
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Figure 1: Plots of the approximate solutions and the analytical solutions
together with absolute errors with n = 10 for Example 1.

J∗
2 = 3.4136123279.

The system of TPBVPs for the mentioned game is stated as

ẋ(t) = 2x(t)− λ1(t)

2
− λ2(t)

2
,

λ̇1(t) = −2x(t)− 2λ1(t),

λ̇2(t) = −8x(t)− 2λ2(t),

x(0) = 1,

λ1(3) = 0, λ2(3) = 10x(3).
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The values of performance indices obtained by the proposed approach and
the comparison of the analytical solutions are shown in Table 2. Besides, to
compare the BTM results with an existing approach, the results obtained by
the CPM [27] are shown in Table 3.

Table 2: Comparison of optimal payoff functionals J1 and J2 obtained by
BTM with the exact solutions and also the CPU time(s) for Example 2.

n J1BTM J2BTM |J1BTM − J∗
1 | |J2BTM − J∗

2 | CPU time(s)
10 0.31403763402282 3.41361478021289 5.57× 10−7 2.45× 10−6 0.437
15 0.31403819123820 3.41361232797387 1.07× 10−14 4.58× 10−14 0.640
20 0.31403819123819 3.41361232797391 8.77× 10−24 3.85× 10−23 1.154

Table 3: Comparison of optimal payoff functionals J1 and J2 obtained by
CPM with the exact solutions for Example 2.

n J1CPM J2CPM |J1CPM − J∗
1 | |J2CPM − J∗

2 |
10 0.3140689582 3.4134809955 0.0000307670 0.0001313324
15 0.3140381906 3.4136123306 6.1× 10−10 2.7× 10−9

20 0.3140381912 3.4136123279 5.2× 10−15 2.2× 10−14

Table 2 indicates that in the same situation in terms of the number of basis
functions, the results obtained by the proposed method are more accurate
than the results obtained by the CPM in this example.

Example 3. The following differential game describes the competition be-
tween two players in an effort for harvesting a natural renewable resource.
The state equation of this game is expressed as

ẋ(t) = 0.1x(t)− 0.001x2(t)− x(t)u1(t)− x(t)u2(t), x(0) = 1.

The players’ payoffs are given by

J1(u1, u2) =

∫ 1

0

(3x(t)u1(t)−
1

2
u2
1(t))dt,

J2(u1, u2) =

∫ 1

0

(2x(t)u2(t)−
1

2
u2
2(t))dt,

where the value x(t) > 0 is the resource level and the amounts u1(t) ≥ 0 and
u2(t) ≥ 0 are the players’ efforts for harvesting this resource, all at time t.
Moreover, 1

2
u2
1 and 1

2
u2
2 indicate the costs for harvesting at effort levels u1

and u2, respectively [9].

Remark 2 (see [35]). By the linearity of the state equation of this differential
game with respect to the control variables ui, i = 1, 2, and the concavity of
integrand of performance index Ji, i = 1, 2, with respect to ui, i = 1, 2,
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(because ∂2Ji
∂u2

i

= −1 < 0, i = 1, 2), it yields that the open-loop strategy
exists and is unique for this dynamic game regrading the Filippov–Cesari
existence theorem [10].

The nonlinear system of TPBVPs extracted from Pontryagin’s maximum
principle for this differential game is stated as follows:

ẋ = 0.1x− 5.001x2 + x2λ1 + x2λ2,

λ̇1 = −9x− 0.1λ1 + 8.002xλ1 − xλ2
1 − xλ1λ2,

λ̇2 = −4x− 0.1λ2 + 7.002xλ2 − xλ2
2 − xλ1λ2,

x(0) = 1,

λ1(1) = 0, λ2(1) = 0.

The numerical results for various amounts of n are presented in Table 4. It
is worth mentioning that since the exact solution to this differential game is
not available, to check the accuracy and validity of the proposed method for
the differential game under consideration, the error of residuals is defined as
follows:

∥Res∥2 =

∫
1

0

(R2
1(t) +R2

2(t) +R2
3(t))dt,

where Ri(t), i = 1, 2, 3, are the residuals defined in the previous section.

Table 4: Optimal payoff functionals J1 and J2 for Example 3 with error
norms and also the CPU time(s).

n J1BTM J2BTM ∥Res∥2 CPU time(s)
6 0.946161437829 0.452174552034 3.74× 10−5 3.931
8 0.946161294373 0.452174505059 5.44× 10−7 12.683
10 0.946161293220 0.452174504702 7.27× 10−9 35.334
12 0.946161293210 0.452174504699 9.16× 10−11 92.486

It is notable that due to the nonlinearity of the system of TPBVPs for this
example and also the process of implementing the Tau method, we expect
that it consumes more time than the previous examples to be solved. Table
4 verifies this matter.

5 Conclusions

In this paper, a formulation of the Bernoulli Tau method (BTM) was es-
tablished efficiently for approximating the open-loop Nash equilibrium in
nonlinear differential games over a finite time horizon. Using this approach,
the system of TPBVPs extracted from Pontryagin’s maximum principle was
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reduced to a system of algebraic equations by expanding the solution func-
tions in terms of Bernoulli polynomials, which can be solved numerically to
determine the unknown coefficients. At last, three examples were presented
and solved by this approach to validate the applicably and accuracy of the
present method. The approximate solutions were obtained with an excellent
agreement with the exact solutions.
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