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Deception in multi-attacker security game
with nonfuzzy and fuzzy payoffs

S. Esmaeeli, H. Hassanpour*, and H. Bigdeli

Abstract

There is significant interest in studying security games for defense op-
timization and reducing the effects of attacks on various security systems
involving vital infrastructures, financial systems, security, and urban safe-
guarding centers. Game theory can be used as a mathematical tool to
maximize the efficiency of limited security resources. In a game, players
are smart, and it is natural for each player (defender or attacker) to try
to deceive the opponent using various strategies in order to increase his
payoff. Defenders can use deception as an effective means of enhancing
security protection by giving incorrect information, hiding specific security
resources, or using fake resources. However, despite the importance of de-
ception in security issues, there is no considerable research on this field,
and most of the works focus on deception in cyber environments. In this
paper, a mixed-integer linear programming problem is proposed to allocate
forces efficiently in a security game with multiple attackers using game the-
ory analysis. The important subjects of information are their credibility
and reliability. Especially when the defender uses deceptive defense forces,
there are more ambiguity and uncertainty. Security game with Z-number
payoffs is considered to apply both ambiguities in the payoffs and the reli-
ability of earning these payoffs. Finally, the proposed method is illustrated
by some numerical examples.
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1 Introduction

Game theory has many applications in real-world problems, in many fields
such as economics, military, politics, and so on (e.g., see [6, 2, 37]). In real-
world game problems, we may encounter various types of uncertainty or inac-
curacy in information (payoffs). Many researchers have studied game theory
with different types of information ambiguity [3, 38, 39]. Seikh, Dutta, and
Li [36] studied matrix games with rough interval payoffs and investigated two
different solution methodologies to solve such a game. Karmakar, Seikh, and
Castillo [24] developed a matrix game in a type-2 intuitionistic fuzzy environ-
ment. Bigdeli, Hassanpour, and Tayyebi [5] introduced two multiobjective
linear programming problems to compute the optimistic and pessimistic val-
ues of fuzzy multiobjective games and their corresponding Pareto optimal
strategies for each of the players by considering the concept of nearest inter-
val approximation.

Security in maintaining military order and defense has always been a
significant concern in human societies. In recent years, economic and political
security has also become important. Limitations of resources such as money,
personnel, and equipment have made it necessary to optimize the allocation
of security resources. Security games have been successfully applied to solve
many real-world security problems [1, 18, 26, 41]. They are also effective tools
for arguing about the allocation of limited security resources and patrolling
problems [1, 13, 25].

There has been a great deal of interest in research on game theory for
security in airports, ports, transportation, and other infrastructures. Over
the past decade, game theory has been used in various military sectors, com-
puter network security applications, anti-ballistic missile defense systems,
wildlife protection, and so on. Lye and Wing [27] proposed a game-theoretic
method for analyzing security in computer networks. Brown et al. [8] de-
scribed a new two-sided optimization model for planning the pre-positioning
of defensive missile interceptors to counter an attacking threat. Conitzer and
Sandholm [11] proposed a method to perform optimal random strategies in
security games. Tarjom, Clempner, and Poznyak [42] used a method to cal-
culate the Nash equilibrium in the case of one defender and several attackers.
With respect to wildlife protection, Fang et al. [18] used repetitive interac-
tions between rangers and hunters in protected areas to plan a patrol strategy
that allowed rangers to collect hunting signals over time. Bigdeli, Hassan-
pour, and Tayyebi [7] proposed a model for solving a multiobjective security
game with fuzzy payoffs and its application in a metro security system.
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Most security games use the Stackelberg game because security forces
typically commit to specific security policies to arrange their forces. Thus
attackers are empowered to model their attacks under surveillance to take
advantage of any potential weakness of the defender. Furthermore, the main
assumption in Stackelberg security games is that limited security resources
must be deployed strategically, considering differences in priorities of targets
requiring security coverage and the responses of the adversaries to the security
position (e.g., see [7, 4, 42, 43, 44]).

Previous studies assume the perfect surveillance of the defender’s strate-
gies despite the deceptions, while it is natural that if one of the players can
deceive another, he will not hesitate. Defender’s deceptive actions can affect
the attacker’s view of the defender’s strategy, thus on the attacker’s best
response, and vice versa. Despite being relatively ignored in academia, in
the military, deception is as old as war or politics. There are many examples
of military deception in history. The story of the Trojan horse in Ancient
Greece is perhaps the most famous ancient military deception. Also, in an-
cient China, many generals used to resort to deception ruses [30].

As a more recent example, World War II armies deceived their enemies by
designing and building air tanks and wooden artillery. Thus, enemy forces
would overestimate the enemy’s defense capabilities and waste their ammuni-
tion or endanger their equipment. In another example, on a Japanese island
in the Pacific Ocean, wicker planes deceived many American pilots. They
spent a significant portion of their ammunition attacking unreal models by
thinking only that the planes were real. For further study, in [12, 21, 19],
there are numerous examples of deception in the First and Second World
Wars.

Although research on deception in security games has increased in recent
years, there is no noteworthy research in this field. Moreover, most authors fo-
cus on deception in cyber environments (e.g., see [14, 20, 28, 32, 40, 47]). Re-
cently, deceptive methods have also been used to defend information systems.
Cohen and Koike [10] provided a comprehensive discussion of deception to
increase the security of information systems and concluded that “deception”
is a positive factor for the defender and a negative factor for the attacker.
In the security-military sector, Yin et al. [45] examined how fake resources
and concealing the real resources of the defender might affect the attacker’s
beliefs and thus affect his best response. The authors [17] proposed a mathe-
matical model to solve a security game in a fuzzy environment, in which the
defender uses unrealistic resources when confronted with only one attacker.
In the real world, it is important for players to have complete confidence in
their information. Especially in situations where the defender uses deceptive
defense forces, there are more ambiguity and uncertainty. Therefore, not
only players can not accurately estimate their payoffs, but also they cannot
be 100 % sure of these approximated estimates. Therefore, using fuzzy set
theory in such games is necessary. There is no research on multi-attacker
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security games with deceptive resources and fuzzy payoffs based on the best
knowledge of the authors.

The security game has also been studied in [7, 17, 41]. In the multi-
attacker security game solved in [41], the players’ payoffs are considered to
be crisp numbers. In [17], a security game problem in the fuzzy environment
having only one attacker was solved. The fuzzy order used in [17] increases
the number of constraints. In addition, the proposed method cannot be gen-
eralized to the case of multiple attackers. In [7], a multi-attacker security
game with triangular fuzzy payoffs was solved, in which the authors consid-
ered the pessimistic situation and obtained an efficient solution for a cautious
defender. In this paper, a security game problem with different types of at-
tackers and different types of defense forces, such as real, secret, and fake, in
a fuzzy environment is considered.

The remainder of the paper is organized as follows: In Section 2, some
required concepts of fuzzy set theory are given. In Section 3, Stackelberg
games are introduced, and the concept of efficient strategy in these games
with multi-follower is defined. A security game with different types of at-
tackers is introduced in Section 4. In Section 5, a security game problem is
considered in which the defender’s strategies can include deceptive protection
covers, and a multiobjective optimization problem is proposed to obtain an
efficient strategy for the defender. In Section 6, the players’ payoffs are con-
sidered as Z-numbers, and a multiobjective optimization problem is proposed
to get the efficient coverage of the defender when he uses deceptive resources.
In Section 7, four numerical examples are provided to illustrate the proposed
method. Finally, the conclusion is made in Section 8.

2 Basic concepts and definitions

In this Section, some concepts that are used in the paper are given.

Definition 1. A fuzzy set Ã defined on a universe X is given as Ã =
{(x, µÃ(x))|x ∈ X}, where µÃ : X −→ [0, 1] is the continuous member-
ship function of Ã. The membership value µÃ(x) describes the degree of
belongingness of x ∈ X in Ã.

The support of a fuzzy set Ã on X is defined by

supp(Ã) = {x ∈ X | µÃ(x) > 0}.

A fuzzy number is a fuzzy set Ã on the real line R with a continuous
membership function µÃ that can be described as follows [15, 22]:
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µÃ(x) =


0 for all x ∈ (−∞, a1],
fA(x) for all x ∈ [a1, a2],
1 for all x ∈ [a2, a3],
gA(x) for all x ∈ [a3, a4],
0 for all x ∈ [a4,∞),

(1)

where fA represents a continuous and monotonically increasing function on
[a1, a2] and gA is a continuous and monotonically decreasing function on
[a3, a4].

The α-level set of a fuzzy number Ã is defined by the ordinary set Ãα =
{x ∈ X| µÃ(x) ≥ α} for α ∈ (0, 1], and for α = 0, Ãα = cl{x ∈ X|µÃ(x) > 0}
where cl means closure of the set [9]. For α ∈ (0, 1], the α-level set of a fuzzy
number is a closed and bounded interval, denoted as Ãα = [f−1

A (α), g−1
A (α)],

where f−1
A (α) = inf{x| µÃ(x) ≥ α} and g−1

A (α) = sup{x| µÃ(x) ≥ α}.

Definition 2. [22] The expected interval of a fuzzy number Ã, denoted by
EI(Ã), is defined as follows:

EI(Ã) = [

∫ 1

0

f−1
A (α)dα,

∫ 1

0

g−1
A (α)dα].

A fuzzy number Ã on R is said to be a triangular fuzzy number if its
membership function µÃ : R −→ [0, 1] is

µÃ(x) =

 (x− a1)/(a2 − a1), a1 ≤ x ≤ a2,
(a3 − x)/(a3 − a2), a2 ≤ x ≤ a3,
0, otherwise,

(2)

where a1 and a3 represent the beginning and end points of the support of Ã,
respectively, and a2 is the median value (center).

The triangular fuzzy number defined above, is denoted by Ã = (a1, a2, a3).
The addition of two triangular fuzzy numbers Ã = (a1, a2, a3) and B̃ =
(b1, b2, b3), and the multiplication of the triangular fuzzy number Ã by k ∈ R
using the extension principle of Zadeh [34] are obtained as follows:

Ã+ B̃ = (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3). (3)

kÃ =

{
(ka1, ka2, ka3), k ≥ 0,
(ka3, ka2, ka1), k < 0.

(4)

Proposition 1. [31] If Ã is a triangular fuzzy number, then its expected
interval can be computed as follows:

EI(Ã) = [
1

2
(a1 + a2),

1

2
(a2 + a3)].

Let A = [AL, AR] and B = [BL, BR] be two intervals. Then,
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A+B = [AL +BL, AR +BR], A−B = [AL −BR, AR −BL], (5)

λA =

{
[λAL, λAR], λ ≥ 0,
[λAR, λAL], λ < 0,

(6)

where λ is a real scalar.
Traditional fuzzy sets were developed to model the uncertainty made by

human doubt when extracting information. However, the classical fuzzy sets
do not account for the reliability of the obtained information. To overcome
this limitation, Zadeh [46] proposed Z-numbers.

Definition 3. [23] A Z-number is an ordered pair of fuzzy numbers denoted
as Z = (Ã, R̃). The first component Ã is a restriction on the values which
a real-valued uncertain variable Y can take. The second component R̃ is a
measure of reliability for the first component.

In above definition, the membership function of the first component Ã, is
µÃ : X → [0, 1], where X is an arbitrary universal set and the membership
function of the second component is µR̃ : [0, 1] → [0, 1].

In this paper, both parts of Z-numbers are considered to be triangular
fuzzy numbers. To manipulate the problem involving Z-numbers, first, we
convert Z-numbers to triangular fuzzy numbers in three steps, using the
method presented by Kang et al. [23]. Consider a Z-number Z = (Ã, R̃).
Step 1. Convert the second component to a crisp number α as follows:

α =

∫ 1

0
xµR̃(x)dx∫ 1

0
µR̃(x)dx

. (7)

Step 2. Use α as the weight of the first part (restriction). The weighted
Z-number can be denoted as Z̃α = {(x, µZ̃α(x))|µZ̃α(x) = αµÃ(x), x ∈ X}.
Step 3. Convert the irregular fuzzy number (weighted restriction) to regular
fuzzy number. The regular fuzzy set can be denoted as

Z̃ ′ = {(x, µZ̃′(x))|µZ̃′(x) = µÃ(
x√
α
), x ∈

√
αX}.

Example 1. For the triangular fuzzy number Ã = (a1, a2, a3) by some simple
calculations, one can see from (7) that

α =
a1 + a2 + a3

3
.

Let we have an uncertain variable, which takes the value of “almost 3” with
the reliability of “almost 0.9”. One can represents “almost 3” by the trian-
gular fuzzy number (2, 3, 4) (e.g.), and its reliability by the triangular fuzzy
number (0.8, 0.9, 1). Then we have the Z-number Z = ((2, 3, 4), (0.8, 0.9, 1))
to represent such an uncertainty. To handle such a Z-number payoff in our
game problem, first we convert its reliability to a crisp number as follows:
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α =
a1 + a2 + a3

3
= 0.9.

Then, we convert the weighted Z-number to triangular fuzzy number accord-
ing to the proposed approach. So we have

Z̃ ′ = (2
√
0.9, 3

√
0.9, 4

√
0.9) = (1.8974, 2.8461, 3.7948).

3 Stackelberg game

Stackelberg games, also known as the leader-follower games, were first intro-
duced in 1952 by the German economist Van Stackelberg to model leadership
and commitment. In Stackelberg games, the first player is the leader who
chooses a strategy first, then the second player, called the follower, observes
the leader’s strategy and selects a counter-strategy accordingly. In other
words, the game has two players and two stages. In stage 1, the leader’s
action set is [0,∞), whereas the follower’s only available action is to “do
nothing”. In stage 2, the follower’s action set is [0,∞), and the leader’s only
available action is to “do nothing”. The problem in this game is to find the
optimal strategy for the leader, assuming that the follower optimizes his pay-
off according to the logical observations that depend on the chosen strategy
of the leader. The leader is committed to his decision, which means that if he
selects a strategy, then he cannot change it. Therefore, to obtain Stackler-
berg’s solution, first, the maximum value of the follower’s payoff is obtained
for the various strategies of the leader. The payoff of the leader is optimized
on the best response of the follower. The solution from the above process
is called the Stackelberg solution, which can be calculated by the following
bilevel linear programming problem[29]:

max
x

z1(x, y) = c1x+ d1y

where y solves
max

y
z2(x, y) = c2x+ d2y

subject to Ax+By ≤ b,

x ≥ 0, y ≥ 0, (8)

where c1 and c2 are n1-dimensional row coefficient vectors, d1 and d2 are n2-
dimensional row coefficient vectors, A is an m×n1, B is an m×n2 coefficient
matrix, and b is anm-dimensional column constant vector. Moreover, z1(x, y)
and z2(x, y), respectively, represent the payoff functions of the leader and
follower, and x and y represent the strategy of the leader and the follower,
respectively.

If the leader commits to the strategy x, the optimal solution y∗(x) is ob-
tained as the logical solution of the follower, by solving the low-level problem

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 542–566



Deception in multi-attacker security game ... 549

of (8). Assuming that the follower gives a logical solution y∗(x), the leader
maximizes his objective function z(x, y∗(x)). In this case, the obtained so-
lution is called the Stackelberg solution. This problem can be solved us-
ing bilevel programming method (see, e.g., [29]). In this paper, we use the
Karush–Kuhn–Tucker (KKT) optimality conditions.

In a Stackelberg game with multi-followers, the leader has to maximize
his payoff in the face of several types of followers. He has to choose a strategy
to get the most payoff against all of the followers.

First, the followers choose their strategies, so each of them plays his best
response. The leader must decide how to play against all of them in order
to earn the highest possible payoff. He cannot play his best response against
all the followers. Because if he plays his best against one of the followers,
he may suffer a significant loss against another, which will reduce his final
payoff. Therefore, to obtain Stacklerberg’s solution, a multiobjective prob-
lem must be solved. Let us call this solution an efficient strategy, defined
mathematically here.

Definition 4. Consider a Stackelberg game with p followers. Suppose that
yj is the chosen strategy of the follower type j and that xj is the chosen
strategy of the leader against the follower j. Let U j

l (x
j , yj) and U j

f (x
j , yj)

be the payoffs of leader and follower type j, respectively, for the selected
strategies. We call the strategy x∗ = (x1∗, x2∗, . . . , xp∗) the efficient strategy
for leader, whenever (x∗, y∗) is an efficient solution of the following multiob-
jective programming problem

Ul(x
∗, y∗) = max

x
(U1

l (x
1, y1∗), . . . , Up

l (x
p, yp∗)),

where yj∗ represents the best response of the follower type j to the leader’s
xj strategy.

4 Security game with multi-attackers

The security game precisely matches the Stackelberg game if we consider
the defender as the leader and the attacker(s) as the follower(s). Thus, in
this game, the defender commits to a strategy first. Then, the attackers
optimize their payoffs, considering the action chosed by the defender. The
defender must first commit to a strategy for placing his resources (manpower,
equipment, ammunition, etc.) on targets. Then the attackers decide which
targets they attack.

Let T = {1, . . . , n} be a set of targets, which may be attacked by p
attackers, and assume that the defender has m security forces to protect
the targets. The defender and each of the attackers, as the players of this
game, try to earn the most payoffs. The attackers select targets that cause
the most damage to the defender. On the other hand, the defender aims
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to optimize resource assignments to minimize damage. Thus, each player
has different strategies for achieving his goal. Each pure strategy of each
attacker is to select a target to attack. The mixed strategy of attacker type
j is Aj = (aj1, . . . , a

j
n), defined as follows:

ajt ≥ 0, for all t ∈ T,

n∑
t=1

ajt = 1, j = 1, . . . p,

where ajt is the portion of the force of attacker type j used in attacking to
the target t.

Each pure strategy of the defender is choosing a set of targets that have
to be protected. If the defender considers only pure strategies, some targets
may not be covered, and the attackers may use this weakness to attack them.
Note that security resources are limited, and the defender may not be able
to cover all the targets fully. Given the limited resources, we define the
defender’s mixed strategy as C = (c1, . . . , cn), where

0 ≤ ct ≤ 1, for all t ∈ T,

n∑
t=1

ct ≤ m.

In fact, ct is the amount of coverage of the target t ∈ T and indicates the
probability of the defender succeeding in preventing an attack on the target
t. The constraint 0 ≤ ct ≤ 1 ensures that the amount of coverage of the
target t have to be less than or equal to one unit of force required for the
target t and to prevent force loss. The constraint

∑n
t=1 ct ≤ m ensures that

all of the allocated covers have not to be more than the number of available
covering forces.

Suppose that defender and the attacker type j choose strategies C and
Aj , respectively. The expected payoffs of the defender and the attacker type
j, are

U j
d(C,A

j) =

n∑
t=1

ajtU
j
d(C, t), j = 1, . . . , p,

U j
a(C,A

j) =

n∑
t=1

ajtU
j
a(C, t), j = 1, . . . , p, (9)

if the target t is attacked by ajt unit of the force of attacker type j and covered
by cover ct, where

U j
d(C, t) = ctU

c,j
d (t) + (1− ct)U

u,j
d (t),

U j
a(C, t) = ctU

c,j
a (t) + (1− ct)U

u,j
a (t). (10)
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In (10), U c,j
d (t) (Uu,j

d (t)) is defender’s payoff when the target t is selected by
attacker type j and covered (uncovered) by the defender. Similarly, U c,j

a (t)
and Uu,j

a (t) are defined for the attacker type j.
This security game, as a Stackelberg game, has several followers (attack-

ers), wherein the defender first selects a strategy, and the attackers surveil
the defender’s actions. Each attacker tries to maximize his payoff by choosing
a strategy that is the best response to the defender’s fixed strategy. This is
while the defender has to maximize his payoff against several types of attack-
ers. He has to decide how to cover the various targets to get the most payoff.
In other words, we are looking for an efficient strategy for the defender. The
defender has to consider the set of best responses of attackers to each of his
strategies.

An efficient strategy is obtained by solving the following bilevel multiob-
jective program:

(P1) Max (U1
d (C,A

1), U2
d (C,A

2), . . . , Up
d (C,A

p))
s.t.

∑n
t=1 ct ≤ m,

0 ≤ ct ≤ 1, t = 1, . . . , n,
where Aj solves

Max U j
a(C,A

j)

s.t.
∑n

t=1 a
j
t = 1,

ajt ≥ 0, t = 1, . . . , n,

 j = 1, . . . , p,

where U j
d(C,A

j) and U j
a(C,A

j) for j = 1, . . . , p are given by (9).

Theorem 1. The bilevel multiobjective program (P1) can be solved by solv-
ing the following multiobjective optimization problem:

(P2) Max (U1
d (C,A

1), U2
d (C,A

2), . . . , Up
d (C,A

p))

s.t.

n∑
t=1

ct ≤ m, (11)

0 ≤ ct ≤ 1, t = 1, . . . , n, (12)
ajt ≥ 0,

ajt ≤ Mδjt ,∑n
t=1 a

j
t = 1,

0 ≤ kj − (ctU
c,j
a (t) + (1− ct)U

u,j
a (t)) ≤ (1− δjt )M,

kj ∈ R, δjt ∈ {0, 1},


j = 1, . . . , p,
t = 1, . . . , n,

(13)

whereM is a large positive number, and U1
d (C,A

1), U2
d (C,A

2), . . . , Up
d (C,A

p)
are given by (9).

Proof. We prove that the constraints (13) are equivalent to the low-level
problem of (P1). By keeping C, the optimal policy of the defender fixed, the
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optimization problem of attacker type j, which gives his best response to the
defender’s strategy C, is

Max U j
a(C,A

j)

s.t.
∑n

t=1 a
j
t = 1,

ajt ≥ 0, t = 1, . . . , n,

(14)

There is a scalar kj that satisfies together with ajt the following KKT op-
timality conditions (Note that keeping C fixed, each low-level problem is a
linear programming problem, for which the KKT conditions are necessary
and sufficient for optimality):

kj ≥ ctU
c,j
a (t) + (1− ct)U

u,j
a (t), t = 1, . . . , n,

ajt (k
j − (ctU

c,j
a (t) + (1− ct)U

u,j
a (t))) = 0, t = 1, . . . , n,

n∑
t=1

ajt = 1,

ajt ≥ 0, t = 1, . . . , n.

(15)

By introducing the binary variables δjt for t = 1, . . . , n, and M as a large
positive number, the constraints (15) are equivalently written as follows:

ajt ≤ Mδjt , t = 1, . . . , n,

0 ≤ kj − (ctU
c,j
a (t) + (1− ct)U

u,j
a (t)) ≤ (1− δjt )M, t = 1, . . . , n,

n∑
t=1

ajt = 1,

ajt ≥ 0, t = 1, . . . , n.

(16)

If the defender knows that each attacker attacks at most one target, the
constraints (13) can be equivalently replaced by the following constraints:

ajt ∈ {0, 1},∑n
t=1 a

j
t = 1,

0 ≤ kj − (ctU
c,j
a (t) + (1− ct)U

u,j
a (t)) ≤ (1− ajt )M,

 j = 1, . . . , p,
t = 1, . . . , n.

(17)

A solution to the multiobjective programming problem (P2) is an efficient
strategy for the defender in the security game with multiple attackers.

There are several methods to get an efficient solution to problem (P2) (e.g.,
see [16, 34]). In Section 7, we use the weighted sum method. The weights
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of the objective functions in problem (P2), depending on the importance of
them for the defender, can be determined by consultation with experts or
using methods such as AHP1 and TOPSIS2.

5 Deception in multi-attacker security game

In a security game, depending on the available budget, a defender can use
deceptive resources to increase his payoff or to reduce the attackers’ desire to
attack targets. For example, in military operations, the security of various
urban or regional centers, different political ceremonies, and so on, defense
forces use some types of covert resources and some types of fake ones. De-
pending on the type of protected targets, the defender uses different deceptive
resources, with different probability of deception failure. For example, hidden
cameras for protected targets, secret police forces, air marshals on the flight
lines, and fake resources are some deceptive resources. The defense force must
be able to have the best arrangement of these resources against the attackers
according to the available budget. In this section, we consider m real forces
and two kinds of deceptive resources: the first kind has a positive effect on
the defender’s payoff. For example, secret forces have positive effects on the
defender’s payoff because they have defensive power. The second kind has
no effect on the defender’s payoff and only reduces the attackers’ desire to
attack targets. These kinds of deceptive resources do not affect the defense
of a target, but they can at least disturb the view of the attackers, and they
can reduce the intensity of their attacks. For example, fake resources cause
errors in the attacker’s observations but do not have defensive power. There-
fore they do not increase the defender’s payoff. We denote the set of the first
(second) kind of deceptive resources by D1 (D2). Accordingly, the defender’s
payoff for a target t ∈ T is

U j
d(C, t) = ctU

c,j
d (t) + (1− ct)U

u,j
d (t) +

∑
i∈D1

(ct,iU
cij
d (t) + (1− ct,i)U

uij
d (t)).

(18)
In (18), for i ∈ D1 and t ∈ T , ct,i is the amount of deceptive resource cov-
erage, and U cij

d (t) (Uuij
d (t)) is the defender’s payoff from deceptive resource

coverage (uncoverage) i against the attacker type j. Note that, obviously, the
defender’s payoff from using a deceptive resource i ∈ D1 and a real resource
are not the same necessarily. Also, obviously ct +

∑
i∈D1

ct,i ≤ 1 because
more coverage for the target t is useless for the defender. If the importance
of a real cover unit differs from a deceptive cover unit, then the mentioned
constraint is changed to wct +

∑
i∈D1

wict,i ≤ 1, where w and wi are the
weights of real cover and each unit cover type i, respectively.

1 Analytic Hierarchy Process
2 Technique for Order of Preference by Similarity to Ideal Solution
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To determine the attackers’ payoffs, we look at the amount of coverage
that they observe and their reaction. Using deceptive coverage resources by
the defender is not always 100 percent successful in deceiving the attackers.
It is natural that each of them has a failure probability. Suppose that ri is
the probability of deceptive resource’s failure for i ∈ D1 ∪D2. If the vector
of defender choices is C = (c1+

∑
i∈D1∪D2

c1,i, . . . , cn+
∑

i∈D1∪D2
cn,i), then

the attacker’s observation is E = (e1, . . . , en) in which

et = ct +
∑

i∈D1∪D2

rict,i, t = 1, . . . , n. (19)

It is assumed that the failure probability of the deceptive resource depends
only on its structure. Therefore, the failure probability of one type of decep-
tive resource is the same for all attackers. Then the payoff of attacker type
j is

U j
a(E, t) =ctU

c,j
a (t) + (1− ct)U

u,j
a (t) (20)

+
∑

i∈D1∪D2

(rict,iU
cij
a (t) + (1− ri)(1− ct,i)U

uij
a (t)), t = 1, . . . , n.

In (20), U cij
a (t) (Uuij

a (t)) is the payoff of attacker type j in attacking to
the target t with (without any) deceptive resource coverage i.

Now, suppose that the defender’s budget to create deceptive resources is
B, and that he can purchase deceptive resource type i at the cost of Bi per
unit. Then to obtain an efficient defense strategy, he has to consider the
following constraints:

n∑
t=1

∑
i∈D1∪D2

Bict,i ≤ B. (21)

Based on the above discussion, the efficient strategy of the defender is ob-
tained by solving the following multiobjective mixed-integer linear program:

(P3) Max (U1
d (C,A

1), U2
d (C,A

2), . . . , Up
d (C,A

p))
s.t.

∑n
t=1 ct ≤ m,

0 ≤ ct ≤ 1 t = 1, . . . , n,
ct +

∑
i∈D1

ct,i ≤ 1, t = 1, . . . , n,∑n
t=1

∑
i∈D1∪D2

Bict,i ≤ B,∑n
t=1 a

j
t = 1,

ajt ≥ 0,

ajt ≤ Mδjt ,

0 ≤ kj − U j
a(E, t)) ≤ (1− δjt )M,

kj ∈ R, δjt ∈ {0, 1},


j = 1, . . . , p,
t = 1, . . . , n,

where M is a large positive number.
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6 Deception in multi-attacker security game in a fuzzy
environment

In the real world, the information in a security game is often vague due to
the lack of sufficient evidence. For example, a defender may not accurately
identify any type of attacker, and attackers may not recognize and/or control
different kinds of deceptive resources. Even if they know to some extent what
the deceptive resource is, they cannot be 100% sure of what they have seen.
In this situation, showing the payoffs in the form of Z-numbers is an appropri-
ate suggestion for expressing ambiguity. The first component represents the
player’s payoff from selecting a strategy, and the second component shows
the measure of the reliability of this selection. In our study, both components
of Z-numbers are considered to be triangular fuzzy numbers. For a strategy
profile (C,A), the payoff of attacker type j is U

j

a = (Ũ j
a , R̃

j
a), wherein Ũ j

a

and R̃j
a represent the payoff of attacker type j and the reliability of earning

this payoff, respectively. The same definition is applied to the defender, and
his payoff against attacker type j is denoted by U

j

d = (Ũ j
d , R̃

j
d). To solve the

problem, we convert the Z-numbers to triangular fuzzy numbers by the pro-
cedure described in Section 2. Finally, considering the described conversion,
we have a triangular fuzzy number for each player’s payoff.

Now we have the following programming problem, in which some param-
eters are triangular fuzzy numbers:

(P4) Max (Ũ1
d (C,A

1), Ũ2
d (C,A

2), . . . , Ũp
d (C,A

p))

s.t.

n∑
t=1

ct ≤ m,

0 ≤ ct ≤ 1, t = 1, . . . , n,

ct +
∑
i∈D1

ct,i ≤ 1, t = 1, . . . , n,

n∑
t=1

∑
i∈D1∪D2

Bict,i ≤ B,

∑n
t=1 a

j
t = 1,

0 ≤ ajt ≤ Mδjt ,

Ũ j
a(E, t) ≤ k̃j ,

k̃j ≤ (1− δjt )M̃ + Ũ j
a(E, t),

kj ∈ R, δjt ∈ {0, 1},


j = 1, . . . , p,
t = 1, . . . , n.

To solve the problem (P4), let for s = a, d and j = 1, . . . , p, EI(Ũ j
s (C,A

j)) =
[U jL

s (C,Aj), U jR
s (C,Aj)] and EI(k̃) = [kjL, kjR] be the expected intervals

corresponding to fuzzy numbers Ũ j
s (C,A

j) and k̃, which are calculated ac-
cording to Proposition 1. Then problem (P4) is transformed into the following
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interval programming problem:

(P5) Max ([U1L
d (C,A1), U1R

d (C,A1)], . . . , [UpL
d (C,Ap), UpR

d (C,Ap)])

s.t.∑n
t=1 ct ≤ m,

0 ≤ ct ≤ 1, t = 1, . . . , n,
ct +

∑
i∈D1

ct,i ≤ 1, t = 1 · · · , n,∑n
t=1

∑
i∈D1∪D2

Bict,i ≤ B,∑n
t=1 a

j
t = 1, j = 1, . . . , p,

0 ≤ ajt ≤ Mδjt ,
j = 1, . . . , p,
t = 1, . . . , n,

[U jL
a (E, t)), U jR

a (E, t))] ≤ [kjL, kjR],
j = 1, . . . , p,
t = 1, . . . , n,

[kjL, kjR] ≤ (1− δjt )[M,M ] + [U jL
a (E, t)), U jR

a (E, t))],
j = 1, . . . , p,
t = 1, . . . , n,

kjL, kjU ∈ R, δjt ∈ {0, 1}, j = 1, . . . , p.

There are several methods for solving (P5). In most of them, the main
idea is based on intervals’ comparison. Instead, Saati, Memariani, and Ja-
hanshahloo [33] proposed a new approach in which a variable is defined cor-
responding to each interval so that it maximizes the objective functions while
satisfying the constraints. More clearly, to solve problem (P5), we solve the
following problem:

(P6) Max (u1, . . . , up)
s.t.

∑n
t=1 ct ≤ m,

0 ≤ ct ≤ 1, t = 1, . . . , n,
ct +

∑
i∈D1

ct,i ≤ 1, t = 1, . . . , n,∑n
t=1

∑
i∈D1∪D2

Bict,i ≤ B,

U jL
d (C,Aj) ≤ uj ≤ U jR

d (C,Aj), j = 1, . . . , p,
U jL
a (E, t)) ≤ vj ≤ U jk

a (E, t)), j = 1, . . . , p,
kjL ≤ kj ≤ kjU , j = 1, . . . , p∑n

t=1 a
j
t = 1,

0 ≤ ajt ≤ Mδjt ,
vj ≤ kj ,

kj ≤ (1− δjt )M + vj ,

kjL, kjU ∈ R, δjt ∈ {0, 1},


j = 1, . . . , p,
t = 1, . . . , n,

in which
uj ∈ [U jL

d (C,A1), U1R
d (C,Aj)], j = 1, . . . , p,

vj ∈ [U jL
a (E, t)), U jk

a (E, t))], j = 1, . . . , p,
kj ∈ [kjL, kjU ], j = 1, . . . , p.
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In fact, by solving problem (P6), the best choices of the variables uj , vj , and
kj are determined from their corresponding intervals so that both maximize
the objective functions and satisfy the constraints.

Now, once again, we have a multiobjective problem with crisp parameters.
There are several methods to get an efficient solution to this problem (e.g.,
see [16, 34]). In the solved examples in Section 7, we use the weighted sum
method.

Remark 1. The proposed method was extended to solve a multi-attacker
security game having Z-numbers payoffs. However, it can be used if the
payoffs are triangular fuzzy numbers or real numbers as well. In the first
case, steps 1-3 in Section 2 to convert Z-numbers to triangular fuzzy numbers
are removed, and in the second case, we have to solve the problem (P3).

Remark 2 (Comparison with similar works). As mentioned in Remark 1,
our method can also be used to solve a security game with triangular fuzzy
payoffs. Such a problem was also considered in [7]. Bigdeli, Hassanpour, and
Tayyebi [7] have used a pessimistic approach to solve the problem, but our
method solves the problem without considering a pessimistic or optimistic
point of view. Therefore it is natural to obtain different solutions by the
two methods. Furthermore, there is no significant difference between the
two methods in view of computational complexity. Therefore, in a security
game with triangular fuzzy payoffs, a pessimistic decision-maker can use the
method of [7]. The special feature of our work is that we have considered a
security game with Z-numbers payoffs and deceptive resources, but in [7], it
did not cover these issues.

7 Numerical examples

In this section, we give four examples. In the first example, the defender uses
only real resources. In the second example, the defender uses three types
of deceptive resources: one fake and two types of secret resources. In both
examples, the players’ payoffs are considered to be real numbers. In the third
example, the defender uses two types of deceptive resources, and the players’
payoffs are Z-numbers. The final example is an example solved in [7]. We
solve it by our method and compare the solutions obtained from the two
methods. All of the optimization problems in examples were solved by Lingo
software.

Example 2. In a security game, suppose that three attackers intend to
attack four targets and that a defender has m = 2 forces to protect these
targets. The players’ payoffs are given in Tables 2–4. The weights assigned
to the tables are 0.2, 0.3, and 0.5, respectively.

By solving the problem (P2) by the weighted sum method, the following
efficient strategy is obtained:
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Table 1: Game matrix of defender and attacker type 1 in Example 2

target 1 target 2 target 3 target 4
covered (c) uncovered (u) c u c u c u

defender 1.5 -0.5 5 -6 2 -1 9 -8
attacker -1.5 2 -4 5 -2 3 -4 9

Table 2: Game matrix of defender and attacker type 2 in Example 2

target 1 target 2 target 3 target 4
c u c u c u c u

defender 2 -0.5 6 -5 3 -2 11 -10
attacker -1 1 -3 4 -2 3 -4 8

C = (0.34, 0.55, 0.40, 0.62).

Since the defender has two covering resources (two defense forces), it is con-
cluded that 17, 27.5, 20, and 31 percent of the forces should be assigned to
the targets t1, t2, t3, and t4, respectively, and 4.5 % of defense forces are not
assigned.

As the tables show, the target t4 has greater payoffs for the defender than
the other targets. Also, for all three attackers, this target has greater payoffs
than the other targets. Therefore, it is more likely to attack this target. In
the case of the target t1 is the opposite. In the solution obtained by our
method, the highest coverage was obtained for the target t4, and the lowest
coverage was achieved for the target t1.

Example 3. Consider a security game in which three attackers intend to
attack four targets. The defender has m = 1 real security force to protect the
targets. Decision-makers (experts) have provided the following information:
The defender uses three types of deceptive resources. He uses an experienced
and trained secret force with a 0.2 probability of being exposed. At the same
time, a real force acts as a covert force with a lower cost and 0.4 probability
of being exposed (secret normal force). The payoff of an experienced secret
force is 1.3 times more than that of a real security force. The probability that
the attacker will not distinguish these fake resources is 0.4 (i.e., his failure
probability is 0.6). The required budget for each deceptive force unit is 1,

Table 3: Game matrix of defender and attacker type 3 in Example 2

target 1 target 2 target 3 target 4
c u c u c u c u

defender 1 -0.5 6 -4.5 3 -1 10 -9
attacker -1 0.5 -4 5 -3 4 -6 10

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 542–566



Deception in multi-attacker security game ... 559

Table 4: Game matrix of defender and attacker type 1 in Example 3

cover’s type target 1 target 2 target 3 target 4
c u c u c u c u

defender real 5 -3 8 -9 2 -2.5 3 -5
real/secret normal force -2 3 -4 6 -3 5 -4 5

attacker experienced secret force -3 3 -5 6 -4 5 -5 5
fake 3 -3 6 -6 5 -5 3 -5

Table 5: Game matrix of defender and attacker type 2 in Example 3

cover’s type target 1 target 2 target 3 target 4
c u c u c u c u

defender real 4 -1 10 -7 1.5 -1 2 -2.5
real/secret normal force -3 2.5 -2 1.5 -2 1 -3 1

attacker experienced secret force -4 2.5 -3 1.5 -2 1 -1 1
fake 2.5 -2.5 1.5 -1.5 1 1 2 -1

3, and 7, respectively, for fake, secret normal, and experienced secret force,
and the defender’s available budget is 12. The players’ payoffs are given in
Tables 4–6.

Solving the problem (P3) by weighted sum method with equal weights for
the objective functions yields the solution given in Table 3.

This means that in order to protect four targets with the mentioned se-
curity resources, the defender must plan the presence of the real security
resource with 42% in the target 1, 50% in the target 3, and 7% in the target
4. The target 2 does not require a real resource, and it is sufficient to be
protected by an experienced secret force unit and 0.79 fake force unit. Like-
wise, the defender must deploy other deceptive security resources according
to Table 3.

Example 4. Consider a security game with three targets and two attackers.
The defender uses m = 1 real security force and two secret sources to protect
the targets. Secret forces are exposed to 0.3 probability. The required budget
for a secret force unit is 5, and the defender’s available budget is 9. The value
of each unit of secret force is 1.5 times that of a real force unit. The players’
payoffs are Z-numbers given in Tables 8 and 9.

Table 6: Game matrix of defender and attacker type 3 in Example 3

cover’s target 1 target 2 target 3 target 4
type c u c u c u c u

defender real 5 -2 6 -4 3 -1 4 -3
real/secret normal force -3 3 -2 5 -2 4 -1 1

attacker experienced secret force -3 3 -2 5 -2 4 -1 1.5
fake 3 -3 5 -4 4 -5 1 -2
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Table 7: Amounts of targets coverages in Example 3

i=real i=experienced secret force i= secret normal force i= fake
t=1 0.42 0 0 0
t=2 0 1 0 0.79
t=3 0.5 0 0.5 0.2
t=4 0.07 0 0.5 0

Table 8: Game matrix of defender and attacker type 1 in Example 4

defender attacker type 1
c u c u

real ((6,6,7), ((-3,-2,-2), ((-3,-3,-2), ((2,3,4),
t1 (0.8,.0.9,1)) (0.8,.0.9,1)) (0.8,.0.9,1)) (0.7,0.8,.0.9))

secret ((3,3,4), ((-2,-2,-1), ((-4,-3,-2), ((1,2,3),
(0.6,0.7,0.8)) (0.6,0.7,0.8)) ,(0.6,0.7,0.8)) (0.6,0.7,0.8))

real ((6,6,7), ((-2,-1.5,-1), ((-5,-4,-3), ((2,3,3),
t2 (0.7,0.8,0.9)) ,(0.7,0.8,0.9)) (0.7,0.8,0.9)) (0.7,0.8,0.9))

secret ((3,4,5), ((-2,-1,-1), ((-2,-2-1), ((1,2,3),
(0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8))

real ((2,4,4), ((-1.5,-1,-1), ((-3,-2,-1), ((1,2,2),
t3 (0.8,.0.9,1)) (0.8,.0.9,1)) (0.8,.0.9,1)) (0.8,.0.9,1))

secret ((2,2,3), ((-3,-2,-1), ((-2,-2,-1), ((1,2,3),
(0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8))

Table 9: Game matrix of defender and attacker type 2 in Example 4

defender attacker type 2
c u c u

real ((5,5,6), ((-2,-2,-1), ((-2,-2,-1), ((1,2,3),
t1 (0.8,.0.9,1)) (0.8,.0.9,1)) (0.8,.0.9,1)) (0.8,.0.9,1))

secret ((5,6,6), ((-3,-2,-1), ((-4,-3,-2), ((1,2,3),
(0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8)) ,(0.6,0.7,0.8))

real ((4,4,5), ((-1,-0.5,0), ((-2,-1,-1), ((2,2,3),
t2 (0.7,0.8,0.9)) (0.7,0.8,0.9)) (0.7,0.8,0.9)) (0.7,0.8,0.9))

secret ((5,6,6), ((-2,-2,-1), ((-2,-2,-1), ((2,3,4),
(0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8))

real ((3,3,4), ((-3,-2,-2), ((-4,-3,-3), ((1,2,4),
t3 (0.7,0.8,0.9)) (0.7,0.8,0.9)) (0.7,0.8,0.9)) (0.7,0.8,0.9))

secret ((3,3,4), ((-1.5,-1,-0.5), ((-3,-2,-1), ((1,3,4),
(0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8)) (0.6,0.7,0.8))
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Table 10: Game matrix of defender and attacker type 1 as triangular fuzzy
numbers in Example 4

defender attacker type 1
c u c u

t1 real (5.75,5.75,6.6) (-2.8,-1.8,-1.8) (-2.8,-2.8,-1.9) (1.8,2.8,3.8)
secret (2.5,2.5,3.3) (-1.6,-1.6,-0.8) (-3.3,-2.5,-1.67) (0.8,1.6,2.5)

t2 real (5.3,5.3,6.2) (-1.78,-1.2,-0.8) (-4.4,-3.5,-2.6) (1.78,2.68,2.68)
secret (3.3,4.1,4.1) (-1.6,-0.8,-0.8) (-1.67,-1.67,-0.8) (0.8,1.67,2.5)

t3 real (1.8,3.8,3.8) (-1.2,-0.8,-0.8) (-2.8,-1.9,-0.9) (0.94,1.9,1.9)
secret (1.6,1.6,2.5) (-2.5,-1.6,-0.8) (-1.67,-1.67,-0.83) (0.8,1.67,2.5)

Table 11: Game matrix of defender and attacker type 2 as triangular fuzzy
numbers in Example 4

defender attacker type 2
c u c u

t1 real (4.7,4.7,5.6) (-1.7,-1.7,-0.8) (-2.84,-1.89,-0.94) (0,1.89,2.84)
secret (4.2,5,5) (-2.5,-1.6,-0.8) (-1.67 ,-0.83,-0.83) (0.83,1.67,2.5)

t2 real (3.5,3.5,4.4) (-0.8,-0.4,0) (-1.7,-0.8,-0.8) (1.78,2.68,2.68)
secret (4.1,4.1,5) (-1.7,-0.8,-0.8) (-1.67,-1.67,-0.83) (1.67,2.5,3.34)

t3 real ( 2.5,2.5,3.3) (-2.6,- 1.8,-1.8) (-3.5,-2.68,-2.68) (0.89,1.78,3.57)
secret (2.5,2.5,3.3) (-1.2,-0.8,-0.4) (-2.5,-2.5,-1.67) (0.83,2.5,3.3)

Now, for the given player’s payoffs, we calculate the
√
α values from (7),

and apply them as the weights of payoffs. Then we have triangular fuzzy
payoffs given in Tables 10 and 1.

Solving the problem (P6) by the weighted sum method (with equal weights
for the objective functions) for these data yields the following solution:

Creal = (0.52, 0.23, 0.04), Csecret = (0, 0.83, 0.97).

This means that the defender should allocate 52%, 23%, and 4% of his real
forces to the targets 1, 2, and 3, respectively. Because of the constraint∑n

t=1 ct ≤ m, not all resources will necessarily be allocated in the optimal
solution. In this example, 79% of the real resources are used and 21% of
them remain unused. Also, with the available budget, he can allocate 41.5%
of the two secret forces (i.e., 0.83 of the two units) to the target 2 and 48.5%
(i.e., 0.97 of the two units) to the target 3.

Example 5. Consider the security game with two targets and three attackers
solved in [7]. The players’ payoffs are given in Tables 12–14.

Solving this example by our method (Problem P6, without deceptive re-
sources) yields the payoff 4.7 and the cover C = Creal = (0.05, 0.95). This
example was solved in [7] with a pessimistic viewpoint and the defender’s
payoff was obtained 3.19 and C = (0.29, 0.79), which is not better than our
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Table 12: Game matrix of defender and attacker type 1 in Example 5

target 1 target 2
c u c u

defender (3,5,6) (-3,-2,-1) (9,10,11) (2,3,5)
attacker (-2,-1,0) (2,4,5) (-2,-1,0) (9,10,11)

Table 13: Game matrix of defender and attacker type 2 in Example 5

target 1 target 2
c u c u

defender (0,1,2) (0,0,0) (1,2,4) (-3,-2,-1)
attacker (-2,-1,0) (0,1,2) (0,0,0) (3,5,6)

solution. Such a result was expected because the solution of [7] is a pessimistic
solution.

8 Conclusions

Optimization of force allocation is an important issue in war situations for
enemy points of attack, and in any situation (whether war or not), for sensi-
tive centers and infrastructure. A motivated attacker monitors defense forces
and takes advantage of the pattern of forces. Defenders must be able to pre-
dict the attacker’s reaction to different defensive strategies with the highest
probability. On the other hand, resource limitation is a major problem in
many security areas. Game theory can be used as a valuable tool to analyze
these issues and especially to determine the optimal strategy in case of a
conflict of interests. Security games are used to solve various security issues
according to the type and number of attackers and defenders.

In this paper, a mathematical model was proposed to allocate defense
forces in a security game with several attackers. Defenders can use deceptive
resources to reduce attack, intensity, productivity, or costs. Applying these
resources can fail with certain probabilities. Given these probabilities and
budget constraints, a mathematical model was introduced to optimize the
allocation of these deceptive resources. In the proposed model, the available

Table 14: Game matrix of defender and attacker type 1 in Example 5

target 1 target 2
c u c u

defender (1,2,4) (-2,-1,0) (2,3,5) (-3,-2,-1)
attacker (-3,-2,-1) (0,1,2) (-5,-3,-2) (2,4,5)
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budget, the importance of targets for attackers and defenders, and their possi-
ble strategies were considered to optimize the allocation of forces. Also, when
the defender uses deceptive resources, the ambiguity in the amount of players’
payoffs for both players increases. Hence, the players’ payoffs were considered
as Z-numbers. Then, the problem was solved in a two-stage procedure. In the
first stage, the Z-numbers were converted to triangular fuzzy numbers, and
in the second stage, the triangular fuzzy numbers were converted to intervals
using their expected intervals. Then the interval programming problem was
solved by an available method in the literature. Finally, the applicability of
the proposed methods was illustrated by some numerical examples.

There are various types of uncertain data, for example, intuitive fuzzy
numbers, type-2 fuzzy numbers, and so on. The introduced model handles
the payoffs of real, triangular fuzzy numbers, and Z-numbers. However, it
cannot be used for other types of fuzzy numbers (or types of uncertainty).
As a suggestion, security games with multi-attacker can be solved with other
kinds of uncertainty in payoffs.
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