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with an application to image recovery
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Abstract

Like the Polak-Ribière-Polyak (PRP) and Hestenes-Stiefel (HS) meth-
ods, the classical Liu-Storey (LS) conjugate gradient scheme is widely be-
lieved to perform well numerically. This is attributed to the in-built capa-
bility of the method to conduct a restart when a bad direction is encoun-
tered. However, the scheme’s inability to generate descent search direc-
tions, which is vital for global convergence, represents its major shortfall.
In this article, we present an LS-type scheme for solving system of mono-
tone nonlinear equations with convex constraints. The scheme is based on
the approach by Wang et al. (2020) and the projection scheme by Solodov
and Svaiter (1998). The new scheme satisfies the important condition for
global convergence and is suitable for non-smooth nonlinear problems. Fur-
thermore, we demonstrate the method’s application in restoring blurry im-
ages in compressed sensing. The scheme’s global convergence is established
under mild assumptions and preliminary numerical results show that the
proposed method is promising and performs better than two recent meth-
ods in the literature.
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1 Introduction

In this paper, the following constrained system of nonlinear equations is con-
sidered:

F (x) = 0, x ∈ Φ, (1)

where F : Rn → Rn is a nonlinear mapping, which is continuous and mono-
tone, namely it satisfies the inequality

(F (x)− F (y))T (x− y) ≥ 0, ∀x, y ∈ Rn. (2)

Also, Φ in (1) is nonempty, closed convex set, which is sometimes expressed
as

Φ = {x ∈ Rn : u ≤ x ≤ v}, (3)

where u and v stand for the lower and upper bounds on the vector x. More-
over, when Φ is expressed as (3), the problem in (1) is refereed to as box
constrained nonlinear system.

Several applications in science, engineering and other areas of human en-
deavour involve the system of equations represented in (1). For example, in
problem of radiactive transfer and transport theory [15], the popular Chan-
rasekhar integral equations is discretized and expressed as (1). Also, the
economic equilibrium problems studied in [5, 24], are reformulated as prob-
lem (1). In addition, some ℓ1 − norm regularized optimization problems in
signal and image processing [23, 46] are obtained by reformulating systems
of monotone nonlinear equations.

In order to solve (1), various iterative schemes have been proposed over
the years. Newton-type schemes [32] and their improved variants, the quasi-
Newton schemes [4, 17] are the most widely used due to their rapid con-
vergence properties. These methods, however, are not suitable for large-
dimension problems due to their huge matrix storage requirement. The con-
jugate gradient (CG) method, by virtue of its low memory requirement is the
proper choice for problems with large dimensions. The scheme was primarily
developed to solve the unconstrained optimization problem

min
x∈Rn

f(x), (4)

where f : Rn −→ R denotes a nonlinear mapping that is assumed to be
at least twice continuously differentiable and bounded below. The following
notations are used with respect to problem (4):

gk = g(xk) = ∇f(xk), gk−1 = g(xk−1), yk−1 = gk − gk−1.
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The scheme is implemented using the iterative formula

x0 ∈ Rn, xk+1 = xk + sk, sk = αkdk, k = 0, 1, ..., (5)

where xk denotes the kth iterate, αk represents a step-size that is computed
using an appropriate line search technique, and dk is the CG search direction
defined by

dk = −gk + βkdk−1, d0 = −g0, (6)

and βk is a scalar known as the CG (update) parameter, which defines each
CG scheme and influences its performance. As part of the conditions for
the sequence of iterative points {xk} generated via (5) and (6) to converge
globally, the following sufficient descent condition is required:

dTk gk ≤ −τ∥gk∥2, τ > 0. (7)

Due to the fine attributes of CG methods with the known fact that the first
order optimality condition for (4), namely, ∇f(x) = 0, is equivalent to (1)
with F = ∇f denoting the gradient of some nonlinear functions, different
adaptations of the scheme for solving (1) have been proposed over the years.
Search directions of these adaptations are defined as

dk =

{
−Fk, if k = 0;

−Fk + βkdk−1, otherwise,
(8)

where Fk = F (xk).

One of the CG adaptations that has gained attention of researchers in
the last decade is the three-term methods for solving (1). Wang et al. [35],
proposed a self-adaptive three-term nonlinear CG method for solving convex
constrained system of nonlinear equations. Search direction of the scheme
was obtained by employing an adaptive technique and under mild conditions,
its global convergence was established. Based on the hyperplane projection
scheme [32], Gao and He [9], proposed a three-term modified CG method
for solving (1). Due to its derivative-free and low storage requirement, the
method is also ideal for nonsmooth nonlinear problems. Motivated by the
works in [1, 13, 27, 47], Koorapetse and Kaelo [25] also proposed three-term
adaptation of CG projection methods for solving (1). The proposed methods
were proven to satisfy the global convergence condition and under suitable
assumptions, the authors showed that the schemes converge globally. For
more details see ([44, 37, 38, 39, 40, 31, 41, 11, 42, 10, 43, 12, 33, 26] ).

In this paper, our aim is to develop an efficient three-term adaptation of
the Liu-Storey (LS) [22] CG method for solving (1). Our inspiration comes
from the work of Wang et al. [36] and the projection method by Solodov
and Svaiter [32]. Apart from developing a new scheme that satisfies the
condition for global convergence, a notable contribution of this research is
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its application in restoring blurry images, which is a trend in compressed
sensing.

The paper is organized as follows: Some preliminaries leading to deriva-
tion of the proposed method are given in Section 2. The proposed method
and its convergence analysis are presented in Section 3. Numerical results
and their discussions are presented in Section 4, while application of the pro-
posed scheme is discussed in Section 5. Concluding remarks are made in
Section 6.

2 Preliminaries

In the remaining part of the article, ∥x∥ =
√
xTx, stands for the ℓ2 norm,

Fk−1 = F (xk−1), and sk−1 = xk − xk−1. The following assumptions will be
required later in the article:
(i) The solution set Φ is not empty, namely, there exists x̃ ∈ Φ such that
F (x̃) = 0.
(ii) The mapping F satisfies the Lipschitz continuity property; i.e, there
exists a positive constant L such that for all x, y ∈ Rn, the following is
satisfied:

∥F (x)− F (y)∥ ≤ L∥x− y∥. (9)

We now introduce the projection operator. Let Φ ⊂ Rn be a nonempty,
closed and convex set. Then for each vector x ∈ Rn, its projection onto Φ is
given by

PΦ(x) = arg min∥x− y∥ : y ∈ Φ.

PΦ : Rn → Φ is referred to as the projection operator, with the nonexpansive
property given by,

∥PΦ(x)− PΦ(y)∥ ≤ ∥x− y∥, ∀x, y ∈ Rn,

for which, we can write

∥PΦ(x)− y∥ ≤ ∥x− y∥, ∀y ∈ Φ. (10)

3 Motivation, algorithm and global convergence of the
new method

This section deals with motivation of the scheme, its algorithm and conver-
gence analysis. First, we introduce the spectral CG method, which is an
extension of the classical scheme for solving (4). By employing the spectral
gradient scheme by Barzilai and Bowein [2], Birgin and Martinez [3] devel-
oped a spectral CG (SCG) method with the following search direction:
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dk = −θkgk + βkdk−1,

where the update parameter βk is defined by

βk =
(θkyk−1 − sk−1)

T gk
dTk−1yk−1

,

and θk is the spectral parameter given as

θk =
sTk−1sk−1

sTk−1yk−1
.

The scheme is computationally efficient, but its search directions are generally
not descent directions, i.e, the scheme does not satisfy the inequality defined
in (7). Over the years, three-term SCG schemes that satisfy the condition (7)
have been developed. By modifying the classical PRP CG method [29, 30],
Li et al. [21] proposed a spectral three-term scheme with the following search
direction:

dk =

{
−γkgk + βMPRP

k dk−1 − vkyk−1 k ≥ 1;

−gk, if k = 0,

with

βMPRP
k =

gTk yk−1

φ|gTk dk−1|+ ∥gk−1∥2
, vk =

gTk dk−1

φ|gTk dk−1|+ ∥gk−1∥2
, φ ≥ 0.

Simple inspection reveals that the method satisfies the sufficient descent con-
dition (7). Also, by employing standard assumptions, the authors proved
global convergence of the scheme for uniformly convex functions. Only re-
cently, Wang et al. [36] presented a spectral three-term modification of the
classical Conjugate Descent scheme [8] with search direction defined as

dk =

{
−γkgk +

∥gk∥2dk−1−(gT
k dk−1)gk

max{−dT
k−1gk−1,η1∥gk∥∥dk−1∥}

k ≥ 1;

−gk, if k = 0,

where

γk =
ϕk

min{η2sTk−1yk−1, η3ϕk}
, ϕk = ∥sk−1∥2, η1 > 0, η2, η3 ∈ (0, 1).

Now, like the classical PRP [29, 30] and HS [14] methods, the classical LS
[22] CG scheme is equipped with an in-built mechanism that addresses the
jamming phenomenon. So, like the others in the group, the scheme is numer-
ically effective. However, it does not satisfy the sufficient descent condition
(7). Motivated by this shortcoming of the LS scheme, the nice attributes

Iran. j. numer. anal. optim., Vol. 13, No. 1, pp 38–58



43 A modified Liu-Storey scheme for nonlinear systems ...

of three-term methods discussed above and the spectral three-term scheme
by Wang et al. [36], we propose a spectral three-term adaptation of the LS
scheme [22] with the following search direction:

dk =

{
−γkFk +

FT
k ȳk−1dk−1−FT

k dk−1ȳk−1

max{−dT
k−1Fk−1,ζ1∥ȳk−1∥∥dk−1∥}

k ≥ 1;

−Fk, if k = 0,
(11)

where

γk =
max{ζ2∥sk−1∥2, ζ3χk}

χk
, χk = sTk−1ȳk−1, ζ1 > 0, ζ2, ζ3 ∈ (0, 1), (12)

and
ȳk−1 = yk−1 + rsk−1, yk−1 = Fk − Fk−1, r > 0.

Note: It can easily be deduced from (11) and (12) that

max{−dTk−1Fk−1, ζ1∥ȳk−1∥∥dk−1∥} ≥ ζ1∥ȳk−1∥∥dk−1∥, (13)

and
max{ζ2∥sk−1∥2, ζ3χk}

χk
≥ ζ3χk

χk
= ζ3. (14)

Next, we obtain a bound for the spectral parameter γk. To achieve that, we
analyze two cases:
First case: If max{ζ2∥sk−1∥2, ζ3χk} = ζ2∥sk−1∥2, then, by monotonicity of
F, and definition of ȳk−1, we have

sTk−1ȳk−1 = sTk−1yk−1 + r∥sk−1∥2 ≥ r∥sk−1∥2. (15)

So, using (15) we have that

γk =
max{ζ2∥sk−1∥2, ζ3χk}

χk
=

ζ2∥sk−1∥2

sTk−1ȳk−1
≤ ζ2∥sk−1∥2

r∥sk−1∥2
=

ζ2
r
.

Second case: If max{ζ2∥sk−1∥2, ζ3χk} = ζ3χk, then

γk =
max{ζ2∥sk−1∥2, ζ3χk}

χk
=

ζ3χk

χk
= ζ3.

Therefore, setting κ = max{ ζ2
r , ζ3}, we see that 0 < γk ≤ κ.

Algorithm 1. Modified Liu-Storey Method (MLSTM)
Step 0: Choose a tolerance ϵ > 0, initial guess x0 ∈ Φ, β > 0, ρ ∈ (0, 1),
0 < ς < 2, σ > 0. Set k = 0 and d0 = −F0.
Step 1: Compute F (xk). If ∥F (xk)∥ ≤ ϵ, stop, if not, proceed to Step 2.
Step 2: Find zk = xk + tkdk, where
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tk = max{βρm : m = 0, 1, 2, ...},

for which
−F (xk + tkdk)

T dk ≥ σtk∥dk∥2, (16)

Step 3: If zk ∈ Φ and ∥F (zk)∥ ≤ ϵ stop, else determine

xk+1 = PΦ [xk − ςµkF (zk)] , (17)

where
µk =

F (zk)
T (xk − zk)

∥F (zk)∥2
. (18)

Step 4: Obtain the direction dk+1 by (11) and (12).
Step 5: Set k = k + 1. Go to Step 1.

Lemma 1. Let the sequence {dk} be generated by (11) and (12). Then

FT
k dk ≤ −τ∥Fk∥2, τ > 0. (19)

Proof. First, from (14) we have that γk ≥ ζ3. This implies that −γk ≤ −ζ3.
We now consider two cases:
1. For k = 0, by (11), it is obvious that FT

0 d0 = −∥F0∥2.
2. For k ≥ 1, from (11) and (12), we have

FT
k dk = −γk∥Fk∥2 +

(FT
k ȳk−1)d

T
k−1Fk − (dTk−1Fk)F

T
k ȳk−1

max{−dTk−1Fk−1, ζ1∥ȳk−1∥∥dk−1∥}
= −γk∥Fk∥2

≤ −ζ3∥Fk∥2.

(20)

Setting τ = ζ3, we obtain the result in both cases.

In the following Lemma, we prove that when the solution of (1) is not
attained, i.e., F (x) ̸= 0, then a stepsize tk exists for which (16) is satisfied.

Lemma 2. Suppose condition (i) in section 2 holds. Then, for every k ≥ 0,
there exists a positive constant tk such that (16) is satisfied.

Proof. Assuming that the statement is not true. It implies that a constant
k0 exists for which (16) does not hold for each integer m ≥ 0, namely

−F (xk0 + βρmdk0)
T dk0 < σβρm∥dk0∥2.

By employing the continuity of F with the fact that ρ ∈ (0, 1), letting the
integer m grow to infinity namely, m → ∞, we obtain
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−F (xk0
)T dk0

≤ 0. (21)

From (19), we have

−F (xk0)
T dk0 ≥ τ∥F (xk0)∥2 > 0. (22)

Clearly (21) and (22) do not agree. So, a contradiction is obtained, which
establishes the proof.

Lemma 3. Let the sequences {xk} and {zk} be generated by Algorithm 1,
then

tk ≥ min
{
β,

ρτ∥Fk∥2

(L+ σ)∥dk∥2

}
. (23)

Proof. By (16), we see that if tk = β, then (16) is satisfied. Conversely, if
tk ̸= β then t̄k = tk

ρ will not satisfy (16), i.e.,

−F (xk +
tk
ρ
dk)

T dk < σ
tk
ρ
∥dk∥2. (24)

By Assumption (ii) and (19), we can write

τ∥Fk∥ ≤ −FT
k dk

= (F (xk +
tk
ρ
dk)− F (xk))

T dk − F (xk +
tk
ρ
dk)

T dk

≤ L
tk
ρ
∥dk∥2 − σ

tk
ρ
∥dk∥2

=
tk
ρ
(L+ σ)∥dk∥2,

(25)

which ultimately yields the desired inequality and the proof is completed.

Lemma 4. Let conditions (i) and (ii) in section 2 hold. Then the sequences
{xk} and {zk} generated by Algorithm 1 are bounded and

lim
k→∞

tk∥dk∥ = 0. (26)

Proof. First, we prove boundedness of the sequences {xk} and {zk}. Let
x̃ ∈ Φ be a solution of (1). Then by (2), we have

(xk − x̃)TF (zk) = (xk − zk + zk − x̃)TF (zk)

= (xk − zk)
TF (zk) + (zk − x̃)TF (zk)

≥ (xk − zk)
TF (zk) + (zk − x̃)TF (x̃)

= (xk − zk)
TF (zk).

(27)

Also from (10), (18), and the fact that 0 < ς < 2, we have
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∥xk+1 − x̃∥2 = ∥PΦ(xk − ςµkF (zk))− x̃∥2

≤ ∥xk − ςµkF (zk)− x̃∥2

= ∥(xk − x̃)− ςµkF (zk)∥2

= ∥xk − x̃∥2 − 2ςµkF (zk)
T (xk − x̃) + ς2µ2

k∥F (zk)∥2

≤ ∥xk − x̃∥2 − 2ςµkF (zk)
T (xk − zk) + ς2µ2

k∥F (zk)∥2

= ∥xk − x̃∥2 − ς(2− ς)
(F (zk)

T (xk − zk))
2

∥F (zk)∥2

≤ ∥xk − x̃∥2,

(28)

which consequently yields

∥xk+1 − x̃∥ ≤ ∥xk − x̃∥, ∀k ≥ 0. (29)

And in a recursive manner, (29) implies that ∥xk − x̃∥ ≤ ∥x0 − x̃∥. So, the
sequence {∥xk − x̃∥} is decreasing and convergent, which means that {xk} is
bounded. Also, by assumption (i), (9) and (29) we have

∥F (xk)∥ = ∥F (xk)− F (x̃)∥ ≤ L∥xk − x̃∥ ≤ L∥x0 − x̃∥.

Setting L∥x0 − x̃∥ = π, we obtain that

∥F (xk)∥ ≤ π. (30)

Also, from (16) and definition of zk, we get

F (zk)
T (xk − zk) = −tkF (zk)

T dk ≥ σt2k∥dk∥2 = σ∥xk − zk∥2. (31)

By employing (2) and the Cauchy-Schwartz inequality, we can write

F (zk)
T (xk − zk) = (F (zk)− F (xk))

T (xk − zk) + F (xk)
T (xk − zk)

≤ ∥F (xk)∥∥xk − zk∥.
(32)

By (30),(31) and (32) we can write

σ∥xk − zk∥2 ≤ ∥F (xk)∥∥xk − zk∥,

which leads to
∥xk − zk∥ ≤ π

σ
.

Hence, the sequence {zk} is also bounded. Now, the boundedness of {zk},
implies that {∥zk− x̃∥} is bounded, i.e., there exists π2 > 0 such that for any
x̃ ∈ Φ

∥zk − x̃∥ ≤ π2. (33)

Similarly, from (9) and (33), we have
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∥F (zk)∥ = ∥F (zk)− F (x̃)∥ ≤ L∥zk − x̃∥ ≤ Lπ2.

Hence, setting π3 = Lπ2, we obtain

∥F (zk)∥ ≤ π3. (34)

Also, using (16), we have

σ2t4k∥dk∥4 ≤ t2k(F (zk)
T dk)

2. (35)

By combining (28) and (35), we obtain

σ2t4k∥dk∥∥4 ≤ ∥F (zk)∥2

ς(2− ς)
(∥xk − x̃∥2 − ∥xk+1 − x̃∥2). (36)

Now, by (29) we have that the sequence {∥xk − x̃∥} is convergent, and also
by (34) {F (zk)} is bounded. Hence, taking limits of both sides of (36) as k
approaches infinity, we have

σ2 lim
k→∞

t4k∥dk∥4 ≤ 0,

which consequently leads to the desired result, i.e.,

lim
k→∞

tk∥dk∥ = 0. (37)

Lemma 5. Let the sequence of search directions {dk} be generated by Al-
gorithm 1. Then {dk} is bounded, namely, a constant ϑ > 0 exists such
that

∥dk∥ ≤ ϑ, ∀k positive. (38)

Proof. From (11), (13), (30), and the Cauchy-Schwartz inequality, we obtain

∥dk∥ =

∥∥∥∥∥−γkFk +
FT
k ȳk−1dk−1 − FT

k dk−1ȳk−1

max{−dTk−1Fk−1, ζ1∥ȳk−1∥∥dk−1∥}

∥∥∥∥∥
≤ γk∥Fk∥+

∥Fk∥∥ȳk−1∥∥dk−1∥+ ∥Fk∥∥ȳk−1∥∥dk−1∥
max{−dTk−1Fk−1, ζ1∥ȳk−1∥∥dk−1∥}

≤ γk∥Fk∥+
2∥Fk∥∥ȳk−1∥∥dk−1∥
ζ1∥ȳk−1∥∥dk−1∥

= γk∥Fk∥+
2∥Fk∥
ζ1

≤
(
κ+

2

ζ1

)
∥Fk∥
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≤
(
κ+

2

ζ1

)
π. (39)

By setting ϑ =
(
κ+ 2

ζ1

)
π, the proof is established.

The following theorem establishes global convergence of Algorithm 1.

Theorem 1. Given that conditions (i) and (ii) hold. Consider the sequences
{xk} and {zk} generated by Algorithm 1. Then

lim inf
k→∞

∥Fk∥ = 0.

Proof. For the proof, we assume that the conclusion is not true. Then it
implies that a constant c̄ > o exists for which

∥Fk∥ ≥ c̄, ∀k ≥ 0. (40)

Utilizing (19), (40) and Cauchy Schwartz inequality yields

∥dk∥ ≥ τ c̄, ∀k ≥ 0. (41)

Similarly, by employing the inequalities (23), (39), (40), (41), and for all k
sufficiently large, we get

tk∥dk∥ ≥ min
{
β,

ρτ∥Fk∥2

(L+ σ) ∥dk∥2

}
∥dk∥

≥ min
{
βτ c̄,

ρτ c̄2

(L+ σ)ϑ

}
> 0.

(42)

Clearly, the second inequality in (42) contradicts (37). Therefore, we conclude
that lim infk→∞ ∥Fk∥ = 0.

4 Numerical experiments and discussions

Here, we investigate the effectiveness of Algorithm 1 by comparing its per-
formance with the two methods presented in [16, 18]. The experiments
with all the three algorithms were conducted using the backtracking line
search (16). For the other two methods, which we label as MLSCD and
HCGP for simplicity, we set the parameters as they are used in the re-
spective papers. For Algorithm 1, we set ρ = 0.6, β = 1, σ = 10−3,
ς = 1.6, r = 1, ζ1 = 0.5, ζ2 = 0.5, ζ3 = 0.6. Codes for the algorithms were
written using Matlab R2014a and run on a PC (2.30GHZ CPU, 4GB RAM).
The iteration is set to stop for all the methods when the number of iterations
exceed 1000 or whenever any of the following inequalities is satisfied:
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∥F (xk)∥ ≤ 10−8,

∥F (zk)∥ ≤ 10−8.

The following test problems were used to test the three methods.
Problem 4.1. This is a modification of the problem obtained from [34]. The
mapping F takes the form F (x) = (f1(x), f2(x), ..., fn(x))

T , where
fi(x) = (exi)2 + 3 sinxi − 1, i = 2, . . . , n− 1,
with Φ = Rn

+.
Problem 4.2. Exponential Function II obtained from [19]. The mapping F
takes the form F (x) = (f1(x), f2(x), ..., fn(x))

T , where
f1(x) = ex1 − 1, i = 2, 3, . . . , n,
fi(x) =

i
10 (e

xi + xi−1 − 1),
with Φ = Rn

+.
Problem 4.3. Non-smooth Function obtained from[20]. The mapping F
takes the form F (x) = (f1(x), f2(x), ..., fn(x))

T , where
fi(x) = 2xi − sin |xi|, i = 1, 2, . . . , n,

with Φ =

{
x ∈ Rn :

n∑
i=1

xi ≤ n, xi ≥ 0, i = 1, 2, . . . , n

}
.

Problem 4.4. Strictly Convex Function obtained from [34]. The mapping
F takes the form F (x) = (f1(x), f2(x), ..., fn(x))

T , where
fi(x) = exi − 1, i = 1, 2, . . . , n,
with Φ = Rn

+.
Problem 4.5. Tridiagonal Exponential Function obtained from [23]. The
mapping F takes the form F (x) = (f1(x), f2(x), ..., fn(x))

T , where

f1(x) = x1 − e(cos
x1+x2
n+1 ),

fi(x) = xi − e

(
cos

xi−1+xi+xi+1
n+1

)
, i = 2, 3, . . . , n− 1,

fn(x) = xn − e

(
cos

xn−1+xn
n+1

)
.

with Φ = Rn
+.

Problem 4.6. Non-smooth Function obtained from [46]. The mapping F
takes the form F (x) = (f1(x), f2(x), ..., fn(x))

T , where
fi(x) = xi − sin |xi − 1|, i = 1, 2, . . . , n,

with Φ =

{
x ∈ Rn :

n∑
i=1

xi ≤ n, xi ≥ 0, i = 1, 2, . . . , n

}
.

Problem 4.7 The problem is obtained from [19]. The mapping F takes the
form F (x) = (f1(x), f2(x), ..., fn(x))

T , where
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f1(x) = ex1 − 1,
fi(x) = exi + xi−1 − 1, i = 2, . . . , n− 1,
with Φ = Rn

+.
Problem 4.8 Modified version of the non-smooth Function in Problem 4.6.
The mapping F takes the form F (x) = (f1(x), f2(x), ..., fn(x))

T , where
fi(x) = xi − 2 sin |xi − 1|, i = 1, 2, . . . , n,

with Φ =

{
x ∈ Rn :

n∑
i=1

xi ≤ n, xi ≥ 0, i = 1, 2, . . . , n

}
.

For each of the above test functions, 24 numerical experiments were per-
formed with variables 1000, 10, 000 50, 000, and the following starting points:
x1
0 = (1, 1, ..., 1)T , x2

0 = (2, 2, ..., 2)T , x3
0 = (3, 3, ..., 3)T , x4

0 = (4, 4, ..., 4)T ,
x5
0 = (5, 5, ..., 5)T , x6

0 = (6, 6, ..., 6)T , x7
0 = (7, 7, ..., 7)T , x8

0 = (8, 8, ..., 8)T ,.
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Figure 1: Performance profile with respect to number of iterations

Furthermore, we adopt Dolan and Moré [6] performance profile in order
to present a graphical view of the performance of each of the three schemes
considered in the experiments. In line with this, three figures were plotted
with respect to three performance metrics, namely, number of iterations,
function evaluations and processing time. For each figure, the vertical−axis
corresponds to the percentage of the problems solved by any one of the al-
gorithms with the least value of any of the metric under consideration; the
right side, represents the percentage of problems solved successfully by each
algorithm. Also, the topmost curve in each figure corresponds to the algo-
rithm that solved the most problems in the experiments. It can be observed
from Fig. 1, that the MLSTM algorithm solved 78% of problems with least
number of iterations compared to the MLSCD and HCGP algorithms that
recorded 62% and 54% respectively. We have to note here, that this percent-
age values as shown in the figure, represent sums of the percentages recorded
by each algorithm with least number of iterations and the ties recorded for
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Figure 2: Performance profile with respect to function evaluation
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Figure 3: Performance profile with respect to CPU time

the same metric. From Fig. 2 it is observed that the MLSTM algorithm
solved 65% of the problems with least function evaluations compared to the
HCGP and MLSCD algorithms that recorded 52% and 4% respectively.
As in the earlier case, here too the percentage values are sums of the val-
ues recorded by each algorithm with least function values and the ties it
recorded with any one or two other algorithms. Based on least processing
time metric, Fig. 3 indicated that the HCGP algorithm has an edge over
the MLSTM and MLSCD algorithms as it solved 45% of the problems with
minimum processing time, while the other two algorithms recorded 40% and
18% respectively. Moreover, it is observed that the topmost curve in all the
three figures corresponds to the MLSTM algorithm. Hence, considering the
graphical representations in Figs 1, 2, and 3, and the above analysis, it can
be concluded that the MLSTM algorithm is more effective for solving the
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problem represented in (1) than the MLSCD and HCGP algorithms.

5 Application of the proposed scheme

Obtaining sparse solutions to ill-conditioned linear systems of equations is
the interest in most signal and image processing problems. Typically, this
involves minimizing the following ℓ1 − ℓ2 norm problem

min
x

1

2
∥Hx− w∥22 + δ∥x∥1, (43)

where δ is a nonnegative parameter, x ∈ Rn, w ∈ Rk is an observed value,
H ∈ Rk×n(k < n) denotes a linear mapping, while ∥x∥1 and ∥x∥2 repre-
sents the ℓ1 and ℓ2 norms respectively. Clearly, (43) represents a convex
unconstrained optimization problem.

In order to solve (43), Figueiredo et al. [7] reformulated it as a convex
quadratic problem, where each vector x ∈ Rn is split into two parts and
written as

x = a− b, a ≥ 0, b ≥ 0, a, b ∈ Rn. (44)

with ai = (xi)+, bi = (−xi)+, ∀i = 1, 2, ..., n and (.)+ = max{0, x}. Applying
the above representation to (43), we obtain

min
a,b

1

2
∥H(a− b)− w∥22 + δeTna+ δeTn b, (45)

where en = (1, 1, ..., 1)T ∈ Rn. Going by Figueiredo et al. [7], the problem
in (45) is reformulated as

min
z

1

2
zTAz +DT z, z ≥ 0, (46)

which is a quadratic program problem with

z =

(
a
b

)
, D = δe2n +

(
−y
y

)
, y = HTw, A =

(
HTH −HTH
−HTH HTH

)
.

(47)
In [45], the quadratic program problem in (46) was reformulated and shown
to be equivalent to

F (z) = min{z,Az +D} = 0, (48)

where F represents a vector-valued mapping. Also, since F is monotone and
Lipschitz continuous (see [28, 45]), the MLSTM scheme can conveniently be
applied to solve it.
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5.1 Image restoration experiment

Here, we conduct some experiments with the MLSTM scheme to further
demonstrate its effectiveness and application in image reconstruction. For
the experiments, four images are employed, which includes Barbera, Lena,
Einstein, and Cameraman. As in the previous experiments, all codes are
generated on MATLAB R2014a with the same configuration and parameter
values set as applied in the earlier experiments. Also, we test performance
of the MLSTM method with the CGDESCENT [46] solver, which is used
in image restoration problems. The same values of the parameters used by
the author were also applied in the experiments. The performance of both
schemes are compared in terms of final objective function value (Obj), mean
square error (MSE), signal to noise ratio (SNR), which is given by

SNR = 20× log10
(

∥x∥
∥x̃− x∥

)
,

and the structural similarity index (SSIM), which computes the similarity
between original image and the restored one in each of the experiments con-
ducted. Results of the experiments conducted are presented in table 1, while
Fig. 4 displays the original, blurred, and reconstructed images obtained by
the MLSTM and CGDESCENT schemes. Fig. 4 reveals that the quality
of reconstructed images by the MLSTM method for all the images consid-
ered, is somewhat better than that of CGDESCENT scheme. Also, table 1
showed that the MLSTM algorithm performed much better regarding Obj,
MSE, SNR and SSIM metrics than the CGDESCENT scheme. However,
the CGDESCENT scheme is much faster as it recorded less processing time
than the MLSTM algorithm. Hence, going by these results, it can be con-
cluded that the MLSTM algorithm is promising for reconstruction of the
images considered.

Table 1: Image restoration results for MLSTM and CGDESCENT

IMAGE SIZE MLSTM CGDESCENT
Obj MSE SNR PT SSIM Obj MSE SNR PT SSIM

BARBERA 256× 256 1.523× 106 1.5267× 102 20.85 10.75 0.80 1.585× 106 2.0627× 102 19.55 1.45 0.75
LENA 256× 256 1.448× 106 6.4566× 101 24.37 17.81 0.90 1.513× 106 9.0025× 101 22.93 1.81 0.87

EINSTEIN 256× 256 1.012× 106 7.0780× 101 21.39 10.33 0.86 1.045× 106 8.7884× 101 20.45 3.59 0.83
CAMERAMAN 256× 256 1.430× 106 1.4128× 102 21.05 9.59 0.85 1.47× 106 1.78× 102 20.05 3.14 0.83

6 Conclusion

An efficient modified Liu-Storey scheme (MLSTM) for solving constrained
system of monotone nonlinear equations was presented in this article. The
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Original image Blurry image MLSTM CGDESCENT

Original image Blurry image MLSTM CGDESCENT

Original image Blurry image MLSTM CGDESCENT

Original image Blurry image MLSTM CGDESCENT

Figure 4: Original and blurred images (First and second columns from the left). Restored
images by MLSTM and CGDESCENT methods (last two columns ).

scheme is ideal for large dimension problems as well as non-smooth functions
because it avoids computing derivatives and requires less memory to imple-
ment. Apart from inheriting numerical efficiency of the classical LS scheme,
the new method satisfies the important condition for global convergence. The
scheme’s global convergence was established by employing basic assumptions.
Also, numerical experiments conducted with some test problems indicate that
the proposed scheme is promising as it is competitive and more efficient com-
pared to the MLSCD and HCGP methods in [16, 18]. Furthermore, an
interesting novelty of the scheme is its application to solving the regularized
ℓ1 norm problem in compressed sensing. By conducting some experiments
to recover blurry images, the scheme proved to be effective as it competes
with and produces better results than the popular CGDESCENT scheme in
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[46]. As a further research, we intend to explore application of the MLSTM
scheme and its modified version to other area of interest.
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terest.
Acknowledgements The authors are grateful for the helpful and construc-
tive comments by the anonymous reviewers and editors.
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