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Abstract

This article investigates the activity regimes of a realistic neuron model
(as a slow-fast system). The authors study this model using the dynam-
ical systems theory, for example, qualitative theory methods of slow-fast
systems. The authors obtain the stability conditions of equilibria in leech
heart interneurons under defined pharmacological conditions and following
Hodgkin–Huxley formalism. Although in neuronal models, the membrane
is usually considered capacitance as a fixed parameter, the membrane ca-
pacitance parameter is assumed as a control parameter to guarantee the
existence of Hopf bifurcation using the Routh–Hurwitz criteria. The au-
thors investigate the transition mechanism between the silent phase and
tonic spiking mode. Furthermore, some simulations are provided using
XPPAUT software for analytical results.
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1 Introduction

Periodic orbits play an important role in nonlinear dynamical models, espe-
cially in computational neuroscience from the point of view of their topology.
Now one of the models that pay attention to researchers, is neuron models
whose topology is associated with specific and regular activities such as tonic
spiking, bursting, and resting.

Most neurons show potential membrane oscillations as endogenous or in
terms of external perturbations. Many kinds of activities on neuronal models
based on models following the formalism of Hodgkin–Huxley were described
in terms of the qualitative theory of fast-slow systems [1, 11]. Fast-slow
systems are a special class of dynamical systems with at least two distinct
time scales. The solutions of fast-slow systems possess features that are con-
strained to stay near the slow-motion manifolds, composed of equilibria and
periodic orbits of the fast subsystem. If both manifolds are transient for
the solutions of the corresponding neuron model, then it exhibits a burst-
ing behavior, a repetitive alternation of tonic spiking and quiescent periods.
Otherwise, the model indicates the tonic spiking activity if there is a stable
periodic orbit on the tonic spiking manifold, or it shows no oscillations when
solutions are attracted to a stable equilibrium state on the quiescent manifold
[12].

Classifying transition mechanisms between various regimes is a fundamen-
tal problem of the theory of dynamical systems and neuroscience. Real neu-
rons can show various types of firing patterns, such as tonic spiking, bursting
oscillations, and silent states, that are frequently observed in neuronal elec-
trophysiological experiments. We investigate the stability of the silent phase
and the existence of periodic solutions in the Leech heart interneuron model.

Malashchenko, Shilnikov, and Cymbalyuk [14] described that the leech
heartbeat is one of the best-studied invertebrate neuronal networks with
an identified function, a set of identified participating neurons, and well-
developed biophysically accurate models. It consists of a small number of
interneurons distributed over several ganglia. Those located in ganglia 3 and
4 are responsible for generating basic rhythm [2]. Here we focus on the dy-
namics of a single interneuron from either ganglion 3 or 4. The canonical
model has proved itself as a powerful tool for predicting phenomena.
This model has already been studied by Shilnikov and Cymbaluk [18] and
Wanga et al. [20]. They consider different parameters, for example, V shift

K2 or
El, gl, as a control parameter with different initial conditions and investigated
the existence of different codimension-one or two bifurcations. Researchers
found the parameter regimes in which bursting, tonic spiking, and silence are
stable. They located several kinds of multi-stability in which more than one
activity is stable, such as bi- stability in which bursting coexistent with tonic
spiking, bursting coexistent with silence, and tonic spiking with silence.

Cymbalyuk et al. [4] have examined the single heart interneuron model.
Using extracellular recording methods, they demonstrated that oscillator and
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premotor cardiac interneurons continue to burst when pharmacologically iso-
lated with bicuculline, albeit in certain preparations, the bursting is not
strong. They performed a bifurcation analysis of their model using the leak
conductance gl and reversal potential El as parameters. The bifurcation
diagram shows a narrow strip of parameter values, where bursting occurs,
separating large zones of tonic spiking and silence. Moreover, the authors
found multi-stability zones, which are regions where the major activities co-
exist. They propounded how robustness is achieved in this system, how
critical variables such as period and duty cycle may be controlled, and how
modulation may affect this control.

Shilnikov and Cymbalyuk [18] showed how two different codimension-
one bifurcations of a saddle-node periodic orbit with homoclinic orbits could
explain a scenario of transitions between tonic spiking and bursting activities
in neuron models following Hodgkin–Huxley formalism. They also found the
co-existence of tonic spiking and bursting modes, which are separated by
a saddle periodic orbit. This mechanism is based on a Lukyanov–Shilnikov
bifurcation for a saddle-node periodic orbit with noncentral homoclinic orbits.
They showed that as a bifurcation parameter is varied, the unstable periodic
orbit separates the basins of attraction of two co-existing modes: the tonic
spiking periodic orbit and bursting regime.

Cymbalyuk and Shilinkov [5] presented conditions under which this model
demonstrates another kind of bi-stability with two coexistent tonic spiking
modes. They developed a geometrical framework for Pontryagin’s averag-
ing method of singularly perturbed systems and located periodic orbits and
studied their bifurcations. Pontryagin’s averaging method gives a clear geo-
metrical interpretation of this mechanism. They showed that as a bifurcation
parameter is varied, the unstable periodic orbit separates the basins of attrac-
tion of two co-existing modes: tonic spiking regime coexisting with another
spiking regime.

Furthermore, by synchronization of Wanga et al. [20] in gap-junction,
coupled neurons with co-existing attractors of spiking and bursting firings are
investigated as the coupling strength gets increased for this model. Kolomiets
and Shilnikov [12] considered this model as an example to investigate generic
mechanisms of transition between distinct patterns of activity in it. They
considered neuronal bursting as a modular activity consisting of different
limiting branches corresponding to oscillatory and equilibrium regimes from
the fast subsystem, based on the Poincaré return map to analyze nonlocal
bifurcation to understand better and determine what makes bursting and
spiking attractors fluctuate their shape and stability.

The lipid bilayer of the cell membrane is a dielectric that creates a ca-
pacitance by separating charge inside and outside the cell. Such capacitance
behavior is represented in electrical equivalent circuit models of the cell mem-
brane with an electrical capacitor element [15]. The membrane-specific capac-
itance is considered constant and ubiquitous [6]. Moreover, myriad models
of excitable cells and axons incorporate a constant membrane capacitance
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[15]. However, the dielectric properties of living tissues exhibit frequency-
dependent behavior [7].
Howell et al. [10] checked out the effect of a frequency-dependent capacitance
on neuronal excitability. They found that the effect of dielectric dispersion
on the sinusoidal stimulation thresholds depended on the electrical properties
of the neuronal membrane. Moreover, dielectric dispersion increased action
potential conduction velocity. When analyzing the response qualities of brain
elements at various frequencies, it is necessary to account for the influence of
frequency-dependent capacitance . Furthermore, in this paper, we consider
the membrane capacity as a control parameter in the neuronal model. To the
best of our knowledge, this is the first work that shows how to occur Hopf
bifurcation in this model when the membrane capacitance parameter varies.

The concept of Hopf bifurcation, which is known as the Poincaré–
Andronov–Hopf bifurcation, seems complicated and abstract. However, this
theory applies to many real problems. Furthermore, the application of Hopf
bifurcation theory is quite wide. This theory is applied in tests of various
oscillations caused by wind gusts (which is very important in the field of con-
struction), LCR oscillations in electrical circuits, transitions among neuronal
activity regimes in neuronal models, periodic generation of nerve impulses in
the nervous system, as well as, for instance in epidemiological models that
describe fluctuations in the number of patients with an infectious disease.
Through experimental measurements, the researchers found that the mem-
brane capacity decreases with increasing frequency.

In many neuronal models, Hopf bifurcation occurs by changing various pa-
rameters. Using computer software, the Hopf bifurcation can be determined
in multidimensional dynamical systems that depend on certain parameters.
The presence of Hopf bifurcation is proved, and the bifurcation parameter
value is estimated using the Routh–Hurwitz criterion, which determines the
difference of this research.

This manuscript considers a model of a pharmacologically isolated heart-
beat interneuron when the membrane capacitance is the control parameter.
Then, the transition mechanism between the silent phase and tonic spiking
mode is investigated. Hopf bifurcation occurs when a periodic solution or
boundary cycle, which surrounds the equilibrium point, appears or disap-
pears with a change in the parameter value. This type of Hopf bifurcation
occurs where a pair of complex conjugate eigenvalues of the Jacobian matrix
passes through the imaginary axis while all other eigenvalues have negative
real parts. Furthermore, the existence of this type of Hopf bifurcation leads
limit cycle losing stability and disappearing when changing a control param-
eter. First, we find that such a region for the existence of periodic solutions
and Hopf bifurcation is being investigated. The type of bifurcation can be de-
termined analytically, but it is very complicated. However, using computers
(numerical experiments), we determine the type of bifurcation much faster
and easier. The trajectories of this model were obtained using Dormand–
Prince solvers, which are related to Runge–Kutta and are adaptive method
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of solving ODE. The integration and bifurcation analysis was performed uti-
lizing Mathematica and XPPAUT. These simulations present our theoretical
results.

The manuscript is organized as follows: first, we provide some necessary
preliminaries. Then we introduce the neuronal model and specify the pa-
rameters and the initial condition. In Section 3, we investigate a general
geometrical framework for the analysis of (equilibrium points of a system)
solutions to slow-fast dynamical systems. In the last section, we present some
simulations to illustrate analytical results.

2 Preliminaries

2.1 Routh–Hurwitz criterion for the existence of Hopf
bifurcation

In this section, an important criterion, which is known as the Routh–Hurwitz
criterion, is presented that gives necessary and sufficient conditions for all
roots of the characteristic equation that real parts of eigenvalues are nega-
tive. This criterion is stated in the next theorem; see [19, 16].

Theorem 1 (Routh–Hurwitz criterion). Consider a polynomial as follows:

αkx
k + αk−1x

k−1 + αk−2x
k−2 + · · ·+ α1x+ α0,

when α > 0, the polynomial has all roots with negative real parts if and only
if all the leading principal minors of the k × k matrix

A =


α1 α0 · · · 0
α2 α1 · · · 0
...

... . . . ...
α2k−1 α2k−2 · · · αk


are positive and αk > 0. We assume that αj = 0 if j < 0 or j > k.

Let us consider a system

ẋ = f(x, µ), x ∈ Rn, µ ∈ R1, (1)

with an equilibrium (x0, µ0) and f ∈ C∞.
There is another theorem, which shows the existence of Hopf bifurcation in
system (1).
Theorem 2. Assume that system (1) has an equilibrium (x0;µ0) at which
the following properties are satisfied:
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(SH1) Dxfµ0
(x0) has a simple pair of pure imaginary eigenvalues and other

eigenvalues have negative real parts.

Thus, there exists a smooth curve of equilibria (x(µ);µ) with x(µ0) = x0.
The eigenvalues λ(µ); λ̄(µ) of Dxfµ0

(x(µ)) which are imaginary at µ = µ0

vary smoothly with µ. In addition, if

(SH2) d(Re(λ(µ))/dµ ̸= 0,

then a simple Hopf bifurcation will occur.

Proof. See [8].

Moreover, researchers can apply n principal sub-determinants to obtain
a parameter value for Hopf bifurcation Theorem. It should be noted that
the characteristic polynomial of the Jacobian matrix J(µ) of system (1) is
denoted as follows:

P (λ;µ) = det(λIn − J(µ)) = p0(µ) + p1(µ)λ+ · · ·+ pn(µ)λ
n,

where every pi(µ) is a smooth function of µ, and pn(µ) = 1. We consider the
case p0(µ) > 0, because there is not any nonnegative real root. Let

Ln(µ) =


p1(µ) p0(µ) · · · 0
p2(µ) p1(µ) · · · 0

...
... . . . ...

p2n−1(µ) p2n−2(µ) · · · pn(µ)


where pi(µ) = 0 if i < 0 or i > n. Moreover, when p0(µ) > 0, according to
the Routh–Hurwitz criterion, the polynomial P (λ;µ) of λ has all roots with
negative real parts if and only if the following n principal subdeterminants
of Ln(µ) are positive:

• D1(µ) = det(L1(µ)) = p1(µ) > 0,

• D2(µ) = det(L2(µ)) = det

(
p1(µ) p0(µ)
p3(µ) p2(µ)

)
> 0,

...

• Dn(µ) = det(Ln(µ)) > 0.

Since Dn(µ) = pn(µ)Dn−1(µ) and for characteristic equation pn(µ) = 1, the
Routh–Hurwitz criterion conditions can be formulated as

p0(µ) > 0, D1 > 0, D2 > 0, . . . , Dn−1 > 0.
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Theorem 3. Suppose that there is a smooth curve of equilibria (x(µ), µ)
with x(µ0) = x0 for (1). Then conditions (SH1) and (SH2) for a simple
Hopf bifurcation are equivalent to the following conditions on the coefficients
of the characteristic polynomial P (λ;µ):

1. p0(µ0) > 0;D1(µ0) > 0; . . . ;Dn−2(µ0) > 0;Dn−1(µ0) = 0,

2. dDn−1(µ0)
dµ ̸= 0.

Proof. see [13].

2.2 Neuron model

Because a complete study of a neuronal model including all the currents iden-
tified experimentally is very complex, we study the dynamics of a reduction
of the canonical leech heart interneuron model. Depending on the parame-
ter values, the model may display several regimes, including tonic spiking,
bursting, and quiet phase. These regimes represent the intricacy of the dy-
namics of diverse membrane ionic currents acting on distinct time scales.
These neurons are particularly attractive for analysis in terms of the theory
of dynamical systems since their membrane ionic currents were measured via
voltage-clamp experiments and well described by a canonical model using
the Hodgkin–Huxley formalism. We focus on the dynamics of a single in-
terneuron when isolated pharmacologically from the rest of the network. In
these neurons, eight voltage-dependent ionic currents have been well identi-
fied and characterized [17, 9]. These currents are separated into four groups
and classified by their ionic specificity in Table 1. Moreover, “C.N.” is the
abbreviation of current names. The model equations for INa current were

Table 1: Ionic currents in leech heart interneuron model

Ion C.N. Description Method of quantify

Na INa

INaP

fast sodium current
persistent sodium current

Hodgkin–Huxley
Voltage clamp

K
IK1

IK2

IKa

delayed rectifier-like potassium current
persistent potassium current

fast transient potassium
Voltage clamp

Ca ICaF

ICaS

rapidly inactivating current
slowly inactivating current Voltage clamp

Na, K Ih hyperpolarization activated current Voltage clamp

borrowed from the original work by Hodgkin and Huxley, which adjusted
for leech kinetics. These currents are independent of the intracellular con-
centration of any particular ion. A canonical model of a single neuron was
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described by a system of 14 differential equations running at multiple time
scales which vary from a few milliseconds through seconds. As pointed out
before, a complete investigation of this concept would be exceedingly tough
and difficult. By blocking clusters of currents in live cardiac interneurons and
exploiting their distinctive characteristics, neuronal dynamics are simplified.
From the standpoint of the theory of dynamical systems, these distinctive
behaviors provide intriguing phenomena for investigation [18].
Shilnikov and Cymbalyuk [18] removed from the 14-D canonical model de-
veloped in [9] the equations and terms describing blocked currents: ICaF ,
ICaS , and Ih. For simplicity, they assumed that the partial block of outward
currents completely removes IK1, as well as IKA, and the current INaP is
ignored, whereas it reduces IK2. Now, the neuron can be described by the
model based on just two currents activation of IK2 as mK2 and inactivation
of INa as hNa and V as the membrane potential. Therefore the resulting
model described in [3] is as follows:

CV ′ = −(ḡK2m
2
K2(V − EK) + gl(V − El)

+ḡNaf(−150, 0.0305, V )3hNa(V − ENa)),

m′
K2 =

f(−83,0.018+V shift
K2 ,V )−mK2

τK2
,

h′
Na = f(500,0.03391,V )−hNa

τNa
,

(2)

where the variables V , mK2, and hNa display as membrane potential, acti-
vation of IK2, and an inactivation of INa, respectively.
Moreover, f is a Boltzman function: f(x, y, z) = 1

(1+ex(y+z))
and other

Table 2: Electrical properties of the leech heart interneuron Model

Parameter Description Unit(s) Value
C Membrane capacitance nF B.P.
ḡNa Maximum conductance of INa nS 200
ḡK2 Maximum conductance of IK2 nS 30
gl Leakage conductance of current nS 8

ENa Sodium reversal voltage mV 45
EK2 Potassium reversal voltage mV -70
El Leakage reversal voltage mV -46

V shift
K2

Shift of the membrane potential
of half-inactivation of IK2

from its canonical value
mV -25.98

τNa Time constants of inactivation of INa S 0.0405
τK2 Time constants of activation of IK2 S 0.9

parameters are described in Table 2. As we noted before, we use C as a
bifurcation parameter or (B.P.) in system (2).
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3 Main results

Now, we replace the parameter values are given in Table 2 in system (2) and
compute its equilibrium points. These points are as follows:

q1 = (0.004327, 0.424776, 0), q2 = (−0.02793, 0.04831, 0.04788).

To investigate the dynamical behavior of equilibrium points, we need to
get the Jacobian matrix of system (2) at these points. For this aim, we obtain
the Jacobian matrix of system (2) as follows:


− 200z

(a+1)3
− 90000a(x−0.045)z

(a+1)4
− 30y2 − 8 − 60(x+ 0.07)y − 200(x−0.045)

(a+1)3

92.2222Ce−83(x−0.00798)

(e−83(x−0.00798)+1)2
−1.11111C 0

− 12345.7Ce500(x+0.03391)

(e500(x+0.03391)+1)2
0 −24.6914C

 ,

where (V,mK2, hNa) = (x, y, z) and a = e−150(x+0.0305). The Jacobian ma-
trix and the characteristic equation of system 2 at q1 and q2 are computed
below

• at q1

Aq1(C) =

 −13.4131 −1.89443 8.00404
22.5345C −1.11111C 0

−0.0000613486C 0 −24.6914C

 ,

Pq1(λ,C) = 1422.06C2 + (27.4349C2 + 388.782C)λ

+(13.4131 + 25.8025C)λ2 + λ3,

• at q2

Aq2(c) =

 16.7353 −0.121944 3.07555
4.24029C −1.11111C 0
−562.805C 0 −24.6914C

 ,

Pq2(λ, c) = 1476.9C2 + (1299.64C + 27.4349C2)λ

+(25.8025C − 16.7353)λ2 + λ3.

Now, we investigate the stability of equilibria by the Routh–Hurwitz cri-
terion. Therefore we need to compute Li(C), i = 1, 2 and find where the
coefficients of the characteristic polynomials are positive. In the following,
we denote the coefficients of Pqi(λ,C) by Pij , where j shows the power of λ
parameter. Hence the Routh–Hurwitz criterion holds for Pq1(λ,C) if
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P10 = 1422.06C2 > 0;

P11 = 27.4349C2 + 388.782C > 0;

P12 = 25.8025C + 13.4654 > 0;

P13 = 1 > 0;

• D1(C) = det(L1(C)) = p1(C) = 27.4349C2 + 388.782C > 0;

• D2(C) = det(L2(C))

= det

(
27.4349C2 + 388.782C 1422.06C2

1 25.8025C + 13.4654

)
> 0.

We have similar conditions for Pq2(λ,C) as follows:

P20 = 1476.9C2 > 0;

P21 = 27.4349C2 + 1299.64C > 0;

P22 = 25.8025C − 16.7353 > 0;

P23 = 1 > 0;

• D1(C) = det(L1(C)) = p1(C) = 27.4349C2 + 1299.64C > 0;

• D2(C) = det(L2(C))

= det

(
27.4349C2 + 1299.64C 1476.9C2

1 25.8025C − 16.7353

)
> 0.

By the above computations, we have the following theorem.

Theorem 4. Let q1 = (0.00433, 0.42478, 0) and q2 = (−0.02793, 0.04831, 0.04788)
be the equilibrium points of system (2). Then

1. q1 is unstable for 0 < C ≤ 1,

2. q2 is stable for C > 0.678033 and unstable for C < 0.678033.

Proof. It is trivial.

If we put C0 = 0.678033 at q2 = (−0.02793, 0.04831, 0.04788), then we
get the following relations:

P20(0.678033) = 1476.9(0.6780332) > 0;

P21(0.678033) = 27.4349(0.6780332) + 1299.64(0.678033) > 0;

D2(0.678033) = det

(
27.4349C2

0 + 1299.64C0 1476.9C2
0

1 25.8025C0 − 16.7353

)
= 707.889C2

0 + 31597.9C0 − 21749.9 ≃ 0;
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dD2(C)

dC

∣∣
C=C0

=
d(707.889C2 + 31597.9C − 21749.9)

dC

∣∣
C=0.678033

= 1415.778(0.678033) + 31597.9 ̸= 0.

Therefore, according to these results we can state the following theorem.

Theorem 5. Suppose that for C0 = 678033 and equilibrium point q = q2 of
system (2) the following relations satisfy:

1. P20(C0) = 1476.9C2
0 > 0;

2. P21 = 27.4349C2 + 1299.64C0 > 0;

3. D2(C0) ≃ 0;

4. dD2(C)
dC

∣∣
C=C0

̸= 0.

Then C0 is a simple Hopf bifurcation value for system (2) at the equilibrium
point q = q2.

4 Numerical simulation

In this section, several numerical simulations are presented to verify the effi-
ciency of our analytical results. In addition, we draw the bifurcation diagram
that shows periodic orbits crossing the plane V = −0.025. The simulation
parameter values are shown in Table 3. We study the stability of the system’s
equilibrium points for particular C parameter values satisfying Theorems 4
and 5.
If we consider the starting point p1 = (0.0043, 0.42, 0.0001) near equilib-

Table 3: C parameters values and initial values

C Initial value Figure
0.64 (0.004,0.413,0.001) Figure 1
0.685 (-0.0266,0.0478,0.0475) Figure 2
0.6 (-0.0266,0.0478,0.0475) Figure 3

rium point q1, for C = 0.64, then it is observed that the equilibrium point is
unstable; see Figure 1.
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(a) (b)

(c) (d)

Figure 1: (a). Phase portrait in the space (V,mK2, hNa) at (0.0043, 0.42, 0.0001) and
C = 0.64. (b), (c), and (d). Time history of the neuronal model in terms of V,mK2 and
hNa, respectively.

(a) (b)

(c) (d)

Figure 2: (a). Phase portrait in the space (V,mK2, hNa) at (−0.0266, 0.0478, 0.0475) and
C = 0.685. (b), (c), and (d). Time history of the neuronal model in terms of V,mK2

and hNa, respectively.
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Now suppose that the starting point p2 = (−0.0266, 0.0478, 0.0475) near
equilibrium point q2, for parameter C = 0.64. Then it is observed that the
equilibrium point is unstable; see Figure 2.

Therefore, by Theorem 5, C0 = 0.678033 is a Hopf bifurcation value

(a) (b)

(c) (d)

Figure 3: (a). Phase portrait in the space (V,mK2, hNa) at (−0.0266, 0.0478, 0.0475) and
C = 0.6. (b), (c), and (d). Oscillatory waveforms generated by the neuron model (2) in
terms of V,mK2 and hNa, respectively.

for equilibrium q2 of leech heart interneuron model. Furthermore, for
C0, the Jacobian matrix Aq2(C0) has a pair of pure imaginary eigenvalues
λ1;λ2 ≃ ±29.842209i, and a negative real eigenvalues λ3 = −0.762921.
We solved equation (2) by means of the fourth and fifth-order Runge–Kutta
(RK-45) method. To show the occurrence of Hopf bifurcation, we present
some numerical simulations. The related trajectories in the phase space
(V,mK2, hNa) and the oscillatory waveforms generated by the neuronal model
(2) for different values of parameter C are presented in Figures 3 and 4.
In Figure 5, we show that by considering a fixed point and changing C, the
periodic orbit at the bifurcation value disappeared. As it is illustrated in
Figure 4, the equilibrium point

q2 = (−0.02793, 0.04831, 0.04788)

Iran. j. numer. anal. optim., Vol. 13, No. 2, 2023,pp 170–186
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Figure 4: Comparison between phase portraits and oscillatory waveforms in (V, hNa)-
space for C = 0.645 and C = 0.72.

Figure 5: Bifurcation diagram of system (2)

is a stable focus when the membrane capacitance is bigger than C0. In this
case, through time, the amplitude of oscillatory waveforms will vanish. While
for C < C0, the equilibrium point q2 turns out to be an unstable focus
surrounded by a stable limit cycle.

This subsystem exhibits either tonic spiking, which corresponds to a stable
limit cycle or quiescence which corresponds to a stable equilibrium point.
Stability loss of the stable limit cycle in the fast subsystem gives rise to a
stable equilibrium through a supercritical Andronov–Hopf bifurcation. When
a stable limit cycle shrinks into an unstable equilibrium, then the equilibrium
becomes stable. That is, the equilibrium undergoes supercritical Andronov–
Hopf bifurcation.
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5 Conclusion

Since finding bifurcations, such as Hopf bifurcations in dynamical systems, is
not an easy task, mathematical researchers are looking for computer tools and
methods to observe Hopf bifurcations and estimate the number of bifurcation
parameters.

In this paper, a leech heart interneurons model has been considered when
membrane capacitance is the control parameter. Then by using the Routh–
Hurwitz criteria, the sufficient conditions have been examined such that under
which the system undergoes supercritical Andronov–Hopf bifurcation. Hence,
in this model, the transition between the silent phase and tonic spiking mode
was through Hopf bifurcation. Moreover, the authors introduced an interval
in the parameters space in which the system has a stable limit cycle in which
the neuron is in a tonic spiking mode. Numerical simulations were carried
out using the fourth and fifth-order Runge–Kutta method to support our
analytical results. In fact, by simulations and Hopf bifurcation theory, we
showed that the stable limit cycle could be disappeared.
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