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This paper aims to apply and investigate the compact finite difference
methods for solving integer-order and fractional-order Riccati differential
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1 Introduction

In recent years, there has been a growing interest in fractional computation
[14, 26, 31, 33, 34]. Fractional differential equations have become increasingly
important as they have applications in various fields of science and engineer-
ing [13]. Numerous phenomena in fluid mechanics, viscoelasticity, chemistry,
physics, finance, and other sciences can be described successfully by mod-
els using mathematical tools of fractional calculation, that is, the theory of
fractional-order derivatives and integrals. Much important work on theoreti-
cal analysis [38, 10] has been carried out, but the analytical solutions of most
fractional differential equations cannot be achieved explicitly. Numerical so-
lution strategies based on convergence and stability analysis were used by
many authors [12, 11, 13, 16, 20, 35, 36, 39, 41, 22]. Liu has carried out
extensive research on the finite difference method of fractional differential
equations [22, 23, 24]. The two most frequently used are the Riemann–
Liouville and Caputo type. The difference between the two definitions is in
the order of evaluation [29].

In this paper, we consider the following Riccati equation:{
u′(x) = p(x) + q(x)u(x) + r(x)u2(x), 0 < x < T,
u(0) = 0.

(1)

Also, we consider the following fractional Riccati equation:

Dαu(x) = p(x) + q(x)u(x) + r(x)u2(x), 0 < α ≤ 1, 0 < x < T, (2)

along with the initial condition

u(0) = 0, (3)

where x ∈ R and p(x), q(x), and r(x) are known functions. Moreover, Dα is
the Caputo derivative operator of the fractional-order α, which is defined as
below:

Dαu(x) =
1

Γ(1− α)

∫ x

0

(x− s)−αu′(s) ds. (4)

In the past, two scholars, Bernoulli (1654-1705) and Riccati (1676-1754) in-
troduced and assessed a particular case of differential equations (2). The
Riccati differential equations (RDEs) and fractional Riccati differential equa-
tions (FRDEs) are used in many physical phenomena. Such applications can
include control systems, robust stabilization, diffusion problems, network
synthesis, optimal filtering, stochastic theory, controls, financial mathemat-
ics, optimal control, river flows, robust stabilization, financial mathematics
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dynamic games, linear systems with Markovian jumps, stochastic control,
econometric models, and invariant embedding [32, 28, 4, 19, 15, 9, 21, 5, 30].
Many researchers have used numerical approaches to solve the RDEs and
FRDEs. Some standard procedures can be referenced, including the differen-
tial transform method [7], series solutions Adomian’s decomposition method
[1], Homotopy perturbation method [1], variational iteration method [18],
Homotopy analysis method [37], piecewise spectral-collocation method [6],
and so on [8, 27, 25, 3].
This paper aims to obtain numerical solutions to (1)–(3) using a high-order
compact finite difference approach.

Several researchers have employed the compact finite difference method
to solve fractional differential equations. Du, Cao, and Sun [14] have used
the compact finite difference method to solve the fractional diffusion-wave
equation. Gao and Sun [17] have also employed the compact finite differ-
ence method to solve the fractional sub-diffusion equation. They have also
proved the stability and convergence of their method. Cui [13] solved the
one-dimensional fractional diffusion equation via a high-order compact finite
difference scheme and obtained a fully discrete implicit system by Grunwald–
Letnikov’s discretization of the Riemann–Liouville derivative.

The present study is organized as follows: In Sections 2, 3, and 4, the
compact finite difference methods are reviewed and applied to solve (1)–
(3). Also, their convergence is discussed. In Section 5, the numerical results
obtained by the proposed methods are presented. We also compare the results
of our approach and those of the proposed methods in [2]. The conclusion
and the advantages of the proposed technique are presented in Section 6.

2 Compact finite difference scheme

In this work, our primary goal is to apply the compact finite difference method
to solve (1)–(3). For this, we first subdivide the range 0 ≤ x ≤ T to N equal
partitions with step length h as follows:

x0 = 0, xi = ih, i = 0, 1, . . . , N, h =
T

N
. (5)

Set

ui ≈ u(xi), u′
i ≈ u′(xi).

For the first derivatives, the following compact finite difference scheme was
given in [40]:
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588 Porki, Arabameri and Gharechahi 4u′
1 + u′

2 = 1
h (

−11
12 u0 − 4u1 + 6u2 − 4

3u3 +
1
4u4),

u′
i−1 + 4u′

i + u′
i+1 = 3

h (−ui−1 + ui+1), i = 1, . . . , N − 1,
u′
N−2 + 4u′

N−1 = 1
h (−

1
4uN−4 +

4
3uN−3 − 6uN−2 + 4uN−1 +

11
12uN ).

(6)

All above relations have the accuracy of O(h4). The matrix form for (23)
is

A1u
′ =

1

h
B1u, (7)

where

A1 =



0 4 1 0 . . . 0
1 4 1 0 . . . 0

0
. . . . . . . . . . . . 0

... . . . 0 1 4 1
0 . . . 0 1 4 0


(N+1)×(N+1)

,

B1 =



− 11
12 −4 6 4

3
1
4 0 . . . 0

−3 0 3 0 0 0 . . . 0
0 −3 0 3 0 0 . . . 0

0
. . . . . . . . . . . . . . . . . . 0

... . . . 0 0 0 −3 0 3
0 . . . 0 − 1

4
4
3 −6 4 11

12


(N+1)×(N+1)

.

Also, u = [u0, u1, . . . , uN ]T and u′ = [u′
0, u

′
1, . . . , u

′
N ]T .

Lemma 1. The coefficient matrix A1 is invertible.

Proof. Let us expand A1 along the first column. Then

det(A1) = −det


4 1 0 . . . 0
1 4 1 . . . 0
... . . . . . . . . .

...
0 . . . 1 4 1
0 . . . 1 4 0


N×N

.

Now, by expanding along the last column, we have

det(A1) = (−1)Ndet


4 1 0 . . . 0
1 4 1 . . . 0
... . . . . . . . . .

...
0 . . . 1 4 1
0 . . . 0 1 4


(N−1)×(N−1)

̸= 0.
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According to Lemma 1, from (24), we have u′ = 1
hA

−1
1 B1u. By defining

C = A−1
1 B1, the following relation holds for u′:

u′ =
1

h
Cu, (8)

and in the component form, we have

u′
i =

1

h

N∑
j=0

ci+1,j+1uj , i = 0, . . . , N. (9)

Lemma 2. The coefficient matrix B1 is invertible.

Proof. Let us expand B1 along the first row. Then

det(B1) = −det



−3 0 3 0 0 0 . . . 0
0 −3 0 3 0 0 . . . 0

0
. . . . . . . . . . . . . . . . . . 0

... . . . 0 0 0 −3 0 3
0 . . . 0 − 1

4
4
3 −6 4 11

12


N×N

.

Now, by expanding along the last row, we have

det(B1) = (−1)Ndet


−3 0 3 0 0 0 . . . 0
0 −3 0 3 0 0 . . . 0

0
. . . . . . . . . . . . . . . . . . 0

... . . . 0 0 0 −3 0 3


(N−1)×(N−1)

̸= 0.

According to Lemma 2, it follows that the matrix C is invertible.

3 Compact finite difference scheme for Riccati problem
in α = 1 case and its convergence

This section uses the compact finite difference scheme for the nonfractional
Riccati problem and investigates its convergence. Consider the subsequent
classical Riccati initial value problem

u′(x) = p(x) + q(x)u(x) + r(x)u2(x), 0 < x < T. (10)

Its initial condition is
u(0) = 0. (11)
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Using (10), we have
u′
0 = p(x0). (12)

So, using (9), equation (12) can be written as

1

h

N∑
j=0

c1,j+1uj = p(x0). (13)

For x = xi, one can write (10) as

u′(xi) = p(xi) + q(xi)u(xi) + r(xi)u
2(xi), i = 1, . . . , N. (14)

Thus from (9)

1

h

N∑
j=0

ci+1,j+1uj − p(xi)− q(xi)ui − r(xi)u
2
i = 0, i = 1, . . . , N. (15)

Equations (13) and (15) form a system including N +1 equations and N +1
unknowns u0, u1, . . . , uN , that can be solved by Maple software.

Now, the convergence analysis of the proposed method for (10) along with
initial conditions (11) is investigated.

Theorem 1. Let U = [u(x0), u(x1), . . . , u(xN )]T be the vector of exact so-
lution to (1) along with its initial condition, and let u = [u0, u1, . . . , uN ]T be
the numerical solution at the same points obtained by (13) and (15). Then

∥E∥ ≤ O(h2), (16)

provided h∥C−1∥∥M∥ ≤ 1, where E = [e0, e1, . . . , eN ]T and ei = u(xi)− ui,
i = 0, . . . , N (∥ · ∥ is the infinity norm).

Proof. According to (13) and (15), for a numerical solution, we have{
1
h

∑N
j=0 c1,j+1uj = p(x0),

1
h

∑N
j=0 ci+1,j+1uj − p(xi)− q(xi)ui − r(xi)u

2
i = 0, i = 1, . . . , N,

(17)
and for an exact solution, we have{

1
h

∑N
j=0 c1,j+1u(xj) = p(x0) +O(h4),

1
h

∑N
j=0 ci+1,j+1u(xj)− p(xi)− q(xi)u(xi)− r(xi)u

2(xi) = O(h4), i = 1, . . . , N.

(18)
By subtracting (17) and (18), one concludes that
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1
h

∑N
j=0 c1,j+1(u(xj)− uj) = O(h4),

1
h

∑N
j=0 ci+1,j+1(u(xj)− uj)− q(xi)(u(xi)− ui)

−r(xi)(u
2(xi)− u2

i ) = O(h4), i = 1, . . . , N.

(19)
Using the Taylor expansion, we have

u2(xi)− u2
i =

∂u2

∂u
|x=xi(u(xi)− ui) +O(h2), i = 1, . . . , N. (20)

In relation (19), we have
1
h

∑N
j=0 c1,j+1(u(xj)− uj) = O(h4),

1
h

∑N
j=0 ci+1,j+1(u(xj)− uj)− q(xi)(u(xi)− ui)

−2r(xi)u(xi)(u(xi)− ui) = O(h4) +O(h2), i = 1, . . . , N.

(21)

Thus, one concludes that{∑N
j=0 c1,j+1ej = O(h5),∑N
j=0 ci+1,j+1ej − hq(xi)ei − 2hr(xi)u(xi)ei = O(h3), i = 1, . . . , N,

(22)
where ej = u(xj)− uj , j = 0, . . . , N , and ui ≈ u(xi). Therefore, (22) can be
written as



c11e0 + c12e1 + c13e2 + · · ·+ c1,N+1eN = O(h5),

c21e0 + c22e1 + c23e2 + · · ·+ c2,N+1eN − hq(x1)e1 − 2hr(x1)u(x1)e1 = O(h3),

c31e0 + c32e1 + c33e2 + · · ·+ c3,N+1eN − hq(x2)e2 − 2hr(x2)u(x2)e2 = O(h3),

...
cN+1,1e0 + cN+1,2e1 + cN+1,3e2 + · · ·+ cN+1,N+1eN

−hq(xN )eN − 2hr(xN )u(xN )eN = O(h3).

(23)

The matrix form of the above equations is as follows:

[C − hQ− hRJ ]E = T, (24)

where Q = diag(0, q(x1), . . . , q(xN )), R = diag(0, r(x1), . . . , r(xN )), J =
diag(0, 2u(x1), . . . , 2u(xN )), and
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592 Porki, Arabameri and Gharechahi

T =


O(h5)
O(h3)
O(h3)

...
O(h3)


(N+1)×1

C =


c11 c12 . . . c1,N+1

c21 c22 . . . c2,N+1

...
... . . . ...

cN+1,1 cN+1,2 . . . cN+1,N+1


(N+1)×(N+1)

.

(25)

By replacing M = Q + RJ in relation (24), we have [C − hM ]E = T .
Because C is invertible, we can write

(I − hC−1M)E = C−1T. (26)

Now, if we assume h∥C−1∥∥M∥ ≤ 1, then we conclude the matrix I −
hC−1M is invertible. By the geometric series theorem, we have

∥(I − hC−1M)−1∥ ≤ 1

1− h∥C−1∥∥M∥
. (27)

From (26), we have E = (I − hC−1M)−1C−1T . Thus ∥E∥ ≤ ∥(I −
hC−1M)−1∥∥C−1∥∥T∥.

Now from relation (27), we can write ∥E∥ ≤ 1
1−h∥C−1∥∥M∥∥C

−1∥∥T∥.
Because ∥T∥ ≡ O(h3), we can derive ∥E∥ ≤ O(h3)

O(h) ≡ O(h2).

4 Implement the compact finite difference scheme for
the fractional Riccati problem and its convergence

In this section, we introduce a compact finite difference scheme for the frac-
tional Riccati problem of order 0 < α < 1. According to (2), we rewrite the
Caputo derivative in x = xi, i = 1, . . . , N , as

Dαu(xi) =
1

Γ(1− α)

i−1∑
k=0

∫ xk+1

xk

u′(s)

(xi − s)α
ds. (28)

Now, the above equation can be written as
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Dαu(xi) ≈
1

Γ(1− α)

i−1∑
k=0

∫ xk+1

xk

u′
i(xi − s)−αds

=
1

Γ(1− α)
u′
i

i−1∑
k=0

∫ xk+1

xk

(xi − s)−αds

=
1

Γ(1− α)
u′
i

i−1∑
k=0

[
(xi − xk)

1−α − (xi − xk+1)
1−α

1− α
].

(29)

Substituting xi = ih in (29), we have

Dαu(xi) ≈
1

Γ(1− α)
u′
i

i−1∑
k=0

[
h1−α((i− k)1−α − (i− k − 1)1−α)

1− α
]

=
u′
i

hα−1Γ(2− α)

i−1∑
k=0

ai−k,

(30)

where ai−k = (i− k)1−α − (i− k − 1)1−α, i = 1, . . . , N and k = 0, . . . , i− 1.

Thus, the solution to (2) can be approximated using the following equa-
tions:

u′
i

hα−1Γ(2− α)

i−1∑
k=0

ai−k = p(xi)+q(xi)ui+r(xi)u
2
i , 0 < α < 1, i = 1, . . . , N,

(31)

where u′
i =

1
h

N∑
j=0

ci+1,j+1uj , i = 1, . . . , N. In the matrix form, (31) is equiv-

alent to
Fu′ = ρ(G+Qu+Ru2), (32)

where ρ = hα−1Γ(2−α), Q = diag(q(x1), . . . , q(xN )), R = diag(r(x1), . . . , r(xN )),

u = [u1, . . . , uN ]T , u′ = [u′
1, . . . , u

′
N ]T , G =


p(x1)
p(x2)

...
p(xN )

, and

F =



a1 0 0 0 . . . 0
0 a1 + a2 0 0 . . . 0
0 0 a1 + a2 + a3 0 . . . 0
...

...
... . . . . . . ...

0 0 . . . 0 a1 + a2 + · · ·+ aN−1 0
0 0 . . . 0 0 a1 + a2 + · · ·+ aN


.

(33)
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For i = 1, . . . , N , (31) can be used to form a system including N equations
and N unknowns u1, . . . , uN , that can be solved by Maple software.

Now, we discuss the issue of convergence. For convergence analysis of the
fractional case, we need the following Lemma.

Lemma 3. [35] Suppose u ∈ C2[0, xi]. Then

|
∫ xi

0

u′(s)

(xi − s)α
ds−

i−1∑
k=0

u′
i

∫ xk+1

xk

(xi − s)−αds|

≤ 1

1− α
[
1− α

12
+

22−α

2− α
− (1 + 2−α)] max

0≤s≤xi

|u′′(s)|h2−α.

(34)

From (30), we have

Dαu(xi) =
1

hα−1Γ(2− α)

i−1∑
k=0

ai−ku
′(xi) +Ri, i = 1, . . . , N, (35)

where according to Lemma 3

Ri ≤
1

1− α
[
1− α

12
+

22−α

2− α
− (1 + 2−α)] max

0≤s≤xi

|u′′(s)|h2−α. (36)

For x = xi, by replacing (35) into (2), we have

i−1∑
k=0

ai−ku
′(xi) = ρ(p(xi) + q(xi)u(xi) + r(xi)u

2(xi)) + R̃i, i = 1, . . . , N,

(37)
where ρ = hα−1Γ(2− α) and R̃i = hα−1Γ(2− α)Ri, i = 1, . . . , N.

In the matrix form, (37) is equivalent to

FU ′ = ρ(G+QU +RU2) + R̃, (38)

where F is the matrix defined in relation (33), U ′ = [u′(x1), . . . , u
′(xN )]T ,

U = [u(x1), . . . , u(xN )]T , and R̃ = hα−1Γ(2− α)[R1, . . . , RN ]T .

Theorem 2. Let U = [u(x1), . . . , u(xN )]T be the vector of exact solution
to (2) along with its initial condition at points x0, x1, . . . , xN , and let u =
[u1, . . . , uN ]T be the numerical solution obtained by (31). Then

∥E∥ ≤ O(h2−α), (39)

provided h∥C−1∥∥M +N∥ ≤ 1, where E = U − u and
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J =


2u(x1) 0 . . . 0

0 2u(x2) . . . 0
... . . . . . . ...
0 . . . 0 2u(xN )

 .

Proof. According to (38) and (32), for the exact and numerical solutions, we
have {

FU ′ = ρ(G+QU +RU2) + R̃,

Fu′ = ρ(G+Qu+Ru2).
(40)

By using (40), one concludes that

F (U ′ − u′) = ρ(Q(U − u) +R(U2 − u2)) + R̃. (41)

Therefore, by replacing u′ = 1
hCu from (8) and U ′ = 1

hCU +T1 into (41),
we have

1

h
C(U − u)− ρF−1Q(U − u)− ρF−1R(U2 − u2) = F−1R̃+ T1, (42)

where T1 ≡ O(h4) is the local truncation error of system (23).
Moreover, U2 − u2 can be written as

U2 − u2 =


u2(x1)− u2

1

u2(x2)− u2
2

...
u2(xN )− u2

N

 = JE + T2, (43)

where

T2 =


O(h2)
O(h2)

...
O(h2)

 .

Therefore, by replacing (43) into (42), we have

1

h
CE − ρF−1QE − ρF−1RJE = F−1R̃+ T1 + ρF−1RT2. (44)

By inserting relations M = ρF−1Q and N = ρF−1R into (44), it can be
written as

(C − hM − hN)E = h(F−1R̃+ T1 +NT2), (45)

(I − hC−1(M +N))E = hC−1(F−1R̃+ T1 +NT2). (46)
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Now, if h∥C−1∥∥M +N∥ ≤ 1, then (I − hC−1(M +N) is invertible and

E = h(I − hC−1(M +N))−1C−1(F−1R̃+ T1 +NT2),

∥E∥ ≤ h∥(I − hC−1(M +N))−1∥∥C−1∥(∥F−1∥∥R̃∥+ ∥T1∥+ ∥N∥∥T2∥).

It follows that

∥E∥ ≤ h∥C−1∥(∥F−1∥∥R̃∥+ ∥T1∥+ ∥N∥∥T2∥)
1− h∥C−1∥∥M +N∥

. (47)

Therefore, using the relations R̃ = hα−1Γ(2 − α)R and (36), we have
∥R̃∥ ≡ O(h), so

∥E∥ ≤ O(h2)

O(hα)
+
O(h5)

O(hα)
+
O(h3)

O(hα)
= O(h2−α)+O(h5−α)+O(h3−α) ≡ O(h2−α).

(48)

5 Numerical results

This section applies our compact finite difference schemes to two examples to
illustrate their effectiveness. Maple software is used for obtaining numerical
results.

Example 1. Consider the following fractional RDE as the first example:{
Dαu(x) = 1− u2(x), 0 < α ≤ 1, 0 < x < T,
u(0) = u0 = 0.

(49)

The exact solution is u(x) = exp(2x)−1
exp(2x)+1 for α = 1; see [2].

In Figure 1, a comparison between the exact solution for α = 1 and the
numerical solution for α = 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 1, and T = 1 is
shown. Table 1 presents numerical solutions at some points of [0, 1] and for
different values of α, at T = 1. Table 2 presents a comparison between the
exact solution for α = 1 and the numerical solution for T = 10. Also, Figure
2 shows a comparison between the exact solution for α = 1 and the numerical
solution for T = 10.

We have calculated the rate of convergence of our methods (denoted by
ROC) with the following formula:

ROC = log2(
Error2h

Errorh
). (50)

Table 3 shows the obtained maximum errors and ROC for α = 1, T = 1,
and N = 5, 10, 20, 40, 80, 160. Also, Figure 3 shows the numerical and exact
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solutions for α = 1, T = 1, and N = 10. The numerical rate of convergence
is highly consistent with our theoretical analysis results.

In Table 4, we compare the approximate solution and exact solution of
the present method with the trigonometric transform method (TTM) [2] at
points 0.2, 0.4, 0.6, 0.8, 1, for α = 1. Also, in Table 5, we compare the error
of solutions of the present method with TTM [2] for α = 1.

Table 1: Exact solutions and numerical solutions of Example 1 for N = 10,
T = 1, and α = 0.3, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 1

α 0.3 0.6 0.7 0.8 0.9 0.95 0.99 0.999 1 Exact
x
0.1 5.38× 10−1 2.66× 10−1 2.06× 10−1 1.60× 10−1 1.25× 10−1 1.11× 10−1 1.01× 10−1 9.98× 10−2 9.96× 10−2 9.96× 10−2

0.2 7.43× 10−1 4.34× 10−1 3.53× 10−1 2.88× 10−1 2.37× 10−1 2.16× 10−1 2.00× 10−1 1.97× 10−1 1.97× 10−1 1.97× 10−1

0.3 8.34× 10−1 5.51× 10−1 4.66× 10−1 3.95× 10−1 3.37× 10−1 3.12× 10−1 2.95× 10−1 2.91× 10−1 2.91× 10−1 2.91× 10−1

0.4 8.83× 10−1 6.38× 10−1 5.57× 10−1 4.86× 10−1 4.27× 10−1 4.02× 10−1 3.84× 10−1 3.80× 10−1 3.79× 10−1 3.79× 10−1

0.5 9.14× 10−1 7.05× 10−1 6.31× 10−1 5.64× 10−1 5.07× 10−1 4.83× 10−1 4.66× 10−1 4.62× 10−1 4.62× 10−1 4.62× 10−1

0.6 9.34× 10−1 7.57× 10−1 6.91× 10−1 6.30× 10−1 5.79× 10−1 5.56× 10−1 5.40× 10−1 5.37× 10−1 5.37× 10−1 5.37× 10−1

0.7 9.48× 10−1 7.99× 10−1 7.41× 10−1 6.87× 10−1 6.41× 10−1 6.21× 10−1 6.07× 10−1 6.04× 10−1 6.04× 10−1 6.04× 10−1

0.8 9.58× 10−1 8.32× 10−1 7.82× 10−1 7.35× 10−1 6.95× 10−1 6.78× 10−1 6.66× 10−1 6.64× 10−1 6.64× 10−1 6.64× 10−1

0.9 9.65× 10−1 8.59× 10−1 8.16× 10−1 7.76× 10−1 7.42× 10−1 7.28× 10−1 7.18× 10−1 7.16× 10−1 7.16× 10−1 7.16× 10−1

1.0 9.71× 10−1 8.81× 10−1 8.44× 10−1 8.10× 10−1 7.82× 10−1 7.70× 10−1 7.63× 10−1 7.61× 10−1 7.61× 10−1 7.61× 10−1

X
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Exact

Figure 1: Comparison between the exact solution of Example 1 for α = 1
and numerical solutions for α = 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 1 and T = 1
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Table 2: Comparison between the exact solution and numerical solutions of
Example 1 for α = 1, T = 10, and N = 100

x Numerical solution Exact solution Error
1 0.7615917576 0.7615941559 2.3983554× 10−6

2 0.9640223166 0.9640275800 5.2634336× 10−6

3 0.9950446865 0.9950547536 1.0067173× 10−5

4 0.9993096449 0.9993292997 1.9654751× 10−5

5 0.9998709681 0.9999092042 3.8236123× 10−5

6 0.9999133772 0.9999877116 7.4334413× 10−5

7 0.9998538332 0.9999983369 1.4450373× 10−4

8 0.9997188603 0.9999997749 2.8091453× 10−4

9 0.9994538522 0.9999999695 5.4611733× 10−4

Table 3: Maximum absolute errors and ROC of Example 1 for α = 1, T = 1,
and N = 5, 10, 20, 40, 80, 160

N Maximum Absolute Error ROC
5 7.95× 10−4 −
10 1.91× 10−5 5.38
20 9.47× 10−7 4.33
40 3.43× 10−8 4.79
80 1.16× 10−9 4.88
160 3.99× 10−11 4.87
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Figure 2: Comparison between the exact solution and numerical solutions of
Example 1 for α = 1, T = 10, and N = 100
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u
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1

Numerical solution
Exact solution

Figure 3: Comparison between the exact solution and numerical solutions of
Example 1 for α = 1, T = 1, and N = 10

Example 2. Let the following FRDE be the second example

Dαu(x) = 1 + 2u(x)− u2(x), 0 < α ≤ 1, 0 < x < T, (51)

with the initial condition
u0 = u(0) = 0. (52)

The exact solution for α = 1 is u(x) = 1 +
√
2 tanh(

√
2x+ 1

2 log(
√
2−1√
2+1

)); see
[2].
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Table 4: Comparison between the approximation solution and exact solution
of the presented method with TTM [2] for α = 1, T = 1, and N = 10 for
Example 1

x TTM [2] proposed method Exact
0.0 0.0 0.0 0.0
0.2 0.197773 0.197378 0.197374
0.4 0.380422 0.379951 0.379949
0.6 0.537449 0.537051 0.537050
0.8 0.664285 0.664036 0.664037
1.0 0.761671 0.761572 0.761594

Table 5: Comparison between the absolute error of solution by our method
with TTM [2] for α = 1 and T = 1, for Example 1

x Error of proposed method Error of TTM [2]
0.0 0.0 0.0
0.2 1.4598× 10−6 7.2107× 10−4

0.4 1.5961× 10−6 1.7216× 10−3

0.6 4.6060× 10−7 2.7186× 10−3

0.8 1.1006× 10−6 3.3906× 10−3

1.0 1.9061× 10−5 3.6117× 10−3

In Figure 4, a comparison between the exact solution for α = 1 and the
numerical solution for α = 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 1 and T = 1 is
shown. Also, Table 6 presents numerical solutions at some points of [0, 1] and
for different values of α at T = 1.

Table 7 shows the obtained maximum errors and ROC for α = 1, T = 1,
and N = 5, 10, 20, 40, 80, 160 Also, Figure 5 shows the numerical and exact
solutions for α = 1, T = 1, and N = 10. The numerical rate of convergence
is highly consistent with our theoretical analysis results.
Table 8 represents the present method and the achieved results of parti-
cle swarm optimization (PSO) [2], modified homotopy perturbation method
(MHPM) [2], Chebyshev wavelets (CW) [2], fractional variational itera-
tion method (FVI) [2], Legendre wavelets method (LWM) [2], and Pad´e-
variational iteration method (PVI) [2].
Table 9 presents a comparison between the exact solution for α = 1 and the
numerical solution for T = 8. Also, Figure 6 shows a comparison between the
exact solution for α = 1 and the numerical solution for T = 8 and N = 80.IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 585–606
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Table 6: Exact solutions and Numerical solutions of Example 2 for N = 10,
T = 1, and α = 0.3, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 1

α 0.3 0.6 0.7 0.8 0.9 0.95 0.99 0.999 1 Exact
x
0.1 1.38 3.79× 10−1 2.65× 10−1 1.92× 10−1 1.44× 10−1 1.25× 10−1 1.13× 10−1 1.10× 10−1 1.10× 10−1 1.10× 10−1

0.2 1.92 7.21× 10−1 5.25× 10−1 3.94× 10−1 3.04× 10−1 2.70× 10−1 2.47× 10−1 2.42× 10−1 2.41× 10−1 2.41× 10−1

0.3 2.14 1.02 7.80× 10−1 6.05× 10−1 4.82× 10−1 4.35× 10−1 4.02× 10−1 3.95× 10−1 3.95× 10−1 3.95× 10−1

0.4 2.24 1.29 1.02 8.22× 10−1 6.74× 10−1 6.16× 10−1 5.76× 10−1 5.68× 10−1 5.67× 10−1 5.67× 10−1

0.5 2.30 1.51 1.25 1.03 8.75× 10−1 8.10× 10−1 7.66× 10−1 7.56× 10−1 7.55× 10−1 7.55× 10−1

0.6 2.34 1.70 1.45 1.24 1.07 1.01 9.64× 10−1 9.54× 10−1 9.53× 10−1 9.53× 10−1

0.7 2.36 1.84 1.62 1.43 1.27 1.20 1.16 1.15 1.15 1.15
0.8 2.37 1.96 1.77 1.59 1.45 1.39 1.35 1.34 1.34 1.34
0.9 2.38 2.05 1.89 1.74 1.61 1.56 1.53 1.52 1.52 1.52
1.0 2.39 2.12 1.99 1.87 1.76 1.72 1.69 1.69 1.68 1.68

Table 7: Maximum absolute errors and ROC of Example 2 for α = 1, T = 1,
and N = 5, 10, 20, 40, 80, 160

N Maximum Absolute Error ROC
5 6.35× 10−3 −
10 3.63× 10−5 7.45
20 3.63× 10−6 3.32
40 1.73× 10−7 4.39
80 7.05× 10−9 4.62
160 2.98× 10−10 4.57

Table 8: Comparison of the numerical solutions of the equation in Example
2 with α = 1 and T = 1

x SJOM [2] MHPM [2] PSO [2] CW [2] FVI [2] PVI [2] LWM [2] Our Method Exact
0.6 1.007291 1.370240 1.296320 1.349150 1.331462 1.873658 1.296302 0.953552 0.953567
0.7 1.253674 1.367499 1.416139 1.481449 1.497600 2.112944 1.416311 1.152926 1.152950
0.8 1.467499 1.794879 1.506936 1.599235 1.630234 2.260134 1.506913 1.346363 1.346365
0.9 1.629901 1.962239 1.569252 1.705303 1.724439 2.339134 1.569221 1.526897 1.526913
1.0 1.787222 2.087384 1.605580 1.801763 1.776542 2.379356 1.605571 1.689487 1.689500

Table 9: Comparison between the exact solution and numerical solutions of
Example 2 for α = 1, T = 8, and N = 80

x Numerical solution Exact solution Error
0.8 1.346362994 1.346363655 6.6128045× 10−7

1.6 2.246290755 2.246285959 4.7957279× 10−6

2.4 2.395782816 2.395756424 2.6391922× 10−5

3.2 2.412338083 2.412281528 5.6554231× 10−5

4.0 2.414131848 2.414012382 1.1946588× 10−4

4.8 2.414445422 2.414192625 2.527976× 10−4

5.6 2.414746423 2.414211383 5.3504015× 10−4

6.4 2.415345681 2.414213335 1.1323455× 10−3

7.2 2.416609669 2.414213538 2.3961302× 10−3

8.0 2.418416749 2.414213559 4.2031900× 10−3
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Figure 4: Comparison between exact solution of Example 2 for α = 1 and
numerical solutions for α = 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 1 and T = 1
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Figure 5: Comparison between the exact solution and numerical solution of
Example 2 for α = 1, T = 1, and N = 10
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Figure 6: Comparison between the exact solution and numerical solutions of
Example 2 for α = 1, T = 8, and N = 80

6 Conclusions

This paper proposed a high-order compact finite difference method for the
Riccati problem. The convergence analysis has been discussed. The numer-
ical results presented in Tables 1–9 showed that the method is effective and
that the numerical experiment is very consistent with our theoretical analysis
results.
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