- Aerts, J.C., Botzen, W.W., Emanuel, K., Lin, N., De Moel, H., & Michel-Kerjan, E.O. (2014). Evaluating flood resilience strategies for coastal megacities. Science 344: 473-475. https://doi.org/10.1126/science.1248222.
- Alizadeh, A. (2007). Principles of applied hydrology. The seventh edition. (In Persian)
- Alfieri, L., Dottori, F., Betts, R., Salamon, P., & Feyen, L. (2018). Multi-model projections of river flood risk in Europe under global warming. Climate 6: https://doi.org/10.3390/cli6010006.
- Asadi, R., Karami, M., & Jafari, Gh. (2015). Investigating the main factors of aggravating flood damage in Iran and its control methods. 10th International Seminar on River Engineering, Ahvaz.
- Badri, A., Sadeghloo, T., & Kazemi, N. (2018). Crisis management (with emphasis on rural areas). Noor e Elm Publications, Tehran. (In Persian)
- Baioni, D. (2011). Human activity and damaging landslides and floods on Madeira Island. Natural Hazards and Earth System Sciences 11: 3035-3046. https://doi.org/10.5194/nhess-11-3035-2011.
- Bala, J. (2016). Contribution of SPSS in Social Sciences Research. International Journal of Advanced Research in Computer Science
- Beshir, AA., & Song, J. (2021). Urbanization and its impact on flood hazard: the case of Addis Ababa, Ethiopia. Natural Hazards 109(1): 1167-1190. https://doi.org/10.1007/s11069-021-04873-9.
- Blair, P., & Buytaert, W. (2016). Socio-hydrological modelling: a review asking" why, what and how?". Hydrology and Earth System Sciences 20: 443-478. https://doi.org/10.5194/hess-20-443-2016.
- Chan, SW., Abid, SK., Sulaiman, N., Nazir, U., & Azam, K.A. (2022). systematic review of the flood vulnerability using geographic information system. Heliyon https://doi.org/10.1016/j.heliyon.2022.e09075.
- Cowan, W.L. (1956). Estimating hydraulic roughness coefficients. Agricultural Engineering 37: 473-475.
- CRED, U. (2015). The human cost of weather related disasters. The United Nations Office for Disaster Risk Reduction (UNISDR). org/10.1017/CBO9781107415324, 4.
- Daliran firooz, H., Mokhtari, F., Soltani, S., & Moosavi, A. (2015). Evaluation of flood damage in Ghamsar and Qahroud watersheds using HEC-FIA software. Journal of Soil and Water Sciences 19: 63-75. (In Persian)
- Dankers, R., Arnell, N.W., Clark, D.B., Falloon, P.D., Fekete, B.M., Gosling, S.N., & Satoh, Y. (2014). First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble. Proceedings of the National Academy of Sciences 111: 3257-3261. https://doi.org/10.1073/pnas.1302078110.
- Diaconu, DC., Costache, R., & Popa, MC. (2021). An overview of flood risk analysis methods. Water 13(4): 474. https://doi.org/10.3390/w13040474.
- Di Baldassarre, G., Montanari, A., Lins, H., Koutsoyiannis, D., Brandimarte, L., & Blöschl, G. (2010). Flood fatalities in Africa: from diagnosis to mitigation. Geophysical Research Letters 37(22). https://doi.org/10.1029/2010GL045467.
- Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J., & Blöschl, G. (2013). Socio-hydrology: conceptualising human-flood interactions. Hydrology and Earth System Sciences 17: 3295-3303. https://doi.org/10.1002/2014WR016416.
- Dougherty, M., Dymond, R.L., Grizzard Jr, T.J., Godrej, A.N., Zipper, C.E., & Randolph, J. (2007). Quantifying long-term hydrologic response in an urbanizing basin. Journal of Hydrologic Engineering 12: 33-41. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:1(33).
- Du, J., Qian, L., Rui, H., Zuo, T., Zheng, D., Xu, Y., & Xu, C.-Y. (2012). Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. Journal of Hydrology 464: 127-139. https://doi.org/10.1016/j.jhydrol.2012.06.057.
- Eftekhari, A., Salajeghe, A., & Hoseini, A. (2011). Evaluation of flood zoning with changes in roughness coefficient Case study: Atrak river. Journal of Natural Geography 22: 91-106. (In Persian)
- Feng, B., Zhang, Y., & Bourke, R. (2021). Urbanization impacts on flood risks based on urban growth data and coupled flood models. Natural Hazards 106(1): 613-627. http://creativecommons.org/licenses/by/4.0/.
- Ghahraman, B., & Abkhezr, H. (2004). Correction and relations of intensity-duration-frequency of rainfall in Iran. Soil and Water Sciences 8(2): 1-14. (In Persian). http://20.1001.1.24763594.1383.8.2.1.4.
- Ghaljaee, F., Naderifar, M., & Goli, H. (2017). Snowball, a purposive sampling method in qualitative research. Strides in Development of Medical Education.
- Handayani, W., Chigbu, UE., Rudiarto, I., & Putri, IHS. (2020). Urbanization and Increasing Flood Risk in the Northern Coast of Central Java—Indonesia: An Assessment towards Better Land Use Policy and Flood Management. Land 9(10): 343. https://doi.org/10.3390/land9100343.
- Harrower, M.J. (2010). Geographic Information Systems (GIS) hydrological modeling in archaeology: an example from the origins of irrigation in Southwest Arabia (Yemen). Journal of Archaeological Science 37: 1447-1452. https://doi.org/10.1016/j.jas.2010.01.004.
- Hodgkins, G., Dudley, R., Archfield, S.A., & Renard, B. (2019). Effects of climate, regulation, and urbanization on historical flood trends in the United States. Journal of Hydrology 573: 697-709. https://doi.org/10.1016/j.jhydrol.2019.03.102.
- Jha, A.K., Bloch, R., & Lamond, J. (2012). Cities and flooding: a guide to integrated urban flood risk management for the 21st century. World Bank Publications.
- Junk, W.J., Bayley, P.B., & Sparks, R.E. (1989). The flood pulse concept in river-floodplain systems. Canadian Special Publication ofF and Aquatic Sciences 106: 110-127.
- Khorasan Razavi water technical report. (2014). Report of Khorasan Razavi floods (2014-2015).
- Ma, M., Liu, C., Zhao, G., Xie, H., Jia, P., Wang, D., & Hong, Y. (2019). Flash flood risk analysis based on machine learning techniques in the Yunnan Province, China. Remote Sensing 11: https://doi.org/10.3390/rs11020170.
- Marcus, W.A., Roberts, K., Harvey, L., & Tackman, G. (1992). An evaluation of methods for estimating Manning's n in small mountain streams. Mountain Research and Development 227-239. https://doi.org/10.2307/3673667.
- Mohamadi, J., Khoda Rahmi, Y., & Golabi, M. (2017). Estimation of flood hydrograph with HEC-HMS model and simulation of flood zoning using HEC-RAS model Case study: Bakhtiar catchment, Karun river. The second national hydrological conference of Iran, Shahrekord. (In Persian)
- Munawar, HS., Hammad, AW., & Waller, ST. (2022). Remote Sensing Methods for Flood Prediction: A Review. Sensors 22(3): 960. https://doi.org/10.3390/s22030960.
- Nardi, F., Annis, A., & Biscarini, C. (2018). On the impact of urbanization on flood hydrology of small ungauged basins: The case study of the Tiber river tributary network within the city of Rome. Journal of Flood Risk Management 11: S594-S603. https://doi.org/10.1111/jfr3.12186.
- (2010). National Engineering Handbook Hydrology. USDA Soil Conservation Service
- Ogden, F.L., Raj Pradhan, N., Downer, C.W., & Zahner, J.A. (2011). Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resources Research 47(12). https://doi.org/10.1029/2011WR010550.
- Opperman, J.J., Galloway, G.E., Fargione, J., Mount, J.F., Richter, B.D., & Secchi, S. (2009). Sustainable floodplains through large-scale reconnection to rivers. Science 326: 1487-1488. https://doi.org/10.1126/science.1178256.
- Peel, M.C., & Blöschl, G. (2011). Hydrological modelling in a changing world. Progress in Physical Geography 35: 249-261. https://doi.org/10.1177/0309133311402550.
- Qi, W., Ma, C., Xu, H., Chen, Z., Zhao, K., & Han, H. (2021). A review on applications of urban flood models in flood mitigation strategies. Natural Hazards 108(1): 31-62. https://doi.org/10.1007/s11069-021-04715-8.
- Regional Water Company of Khorasan Razavi. (2015). Comprehensive Studies of Floods in Kalat. (In Persian)
- Romali, NS., Yusop, Z., & Ismail, AZ. (2018). Application of HEC-RAS and Arc GIS for floodplain mapping in Segamat town, Malaysia. GEOMATE Journal 15(47): 7-13. https://doi.org/10.21660/2018.47.3656.
- Roodaki, S., & Azizian, A. (2020). Uncertainty analysis due to the application of different infiltration estimation methods on the performance of the HEC-HMS rainfall-runoff model using the GLUE algorithm. Iran Water Resources Research 16(2): 50-66. (In Persian). https://www.sid.ir/fa/journal/ViewPaper.aspx?id=562645.
- Saberi tansavan, M., Ganji, Z., Delghand, M., & Dorostkar, V. (2020). Investigation of sensitivity analysis of flood parameters to roughness changes (Case study: Shirvan region). Irrigation and Water Engineering of Iran 10: 167-180. (In Persian)
- Salami, A.W., Bilewu, S.O., Ibitoye, B.A., & Ayanshola, M.A. (2017). Runoff hydrographs using Snyder and SCS synthetic unit hydrograph methods: A case study of selected rivers in south west Nigeria. Journal of Ecological Engineering 18(1). http://10.12911/22998993/66258.
- Schwartz, S.S., & Smith, B. (2014). Slowflow fingerprints of urban hydrology. Journal of Hydrology 515: 116-128. https://doi.org/10.1016/j.jhydrol.2014.04.019.
- Sivapalan, M., Savenije, H.H., & Blöschl, G. (2012). Socio-hydrology: A new science of people and water. Hydrol. Process 26: 1270-1276. http://doi.org/10.1002/hyp.8426.
- Thompson, S., Sivapalan, M., Harman, C., Srinivasan, V., Hipsey, M., Reed, P., & Blöschl, G. (2013). Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene. Hydrology and Earth System Sciences 17: 5013-5039. https://doi.org/10.5194/hess-17-5013-2013.
- Tripathi, G., Pandey, AC., & Parida, BR. (2022). Flood Hazard and Risk Zonation in North Bihar Using Satellite-Derived Historical Flood Events and Socio-Economic Data. Sustainability 14(3): 1472. https://doi.org/10.3390/su14031472.
- Troy, T., Konar, M., Srinivasan, V., & Thompson, S. (2015). Moving sociohydrology forward: a synthesis across studies. Hydrology and Earth System Sciences 19: 3667-3679. https://doi.org/10.5194/hess-19-3667-2015.
- Valeo, C., He, J., & Kasiviswanathan, K.S. (2021). Urbanization under a Changing Climate–Impacts on Hydrology. Multidisciplinary Digital Publishing Institute 13(4): 393. https://doi.org/10.3390/w13040393.
- Viglione, A., Di Baldassarre, G., Brandimarte, L., Kuil, L., Carr, G., Salinas, J.L., & Blöschl, G. (2014). Insights from socio-hydrology modelling on dealing with flood risk–roles of collective memory, risk-taking attitude and trust. Journal of Hydrology 518: 71-82. https://doi.org/10.1016/j.jhydrol.2014.01.018.
- Winsemius, H.C., Aerts, J.C., Van Beek, L.P., Bierkens, M.F., Bouwman, A., Jongman, B., & Van Vuuren, D.P. (2016). Global drivers of future river flood risk. Nature Climate Change 6: 381-385. https://doi.org/10.1038/nclimate2893.
- Van den Brink, H., Können, G., Opsteegh, J., Van Oldenborgh, G., & Burgers, G. (2005). Estimating return periods of extreme events from ECMWF seasonal forecast ensembles. International Journal of Climatology: A Journal of the Royal Meteorological Society 25(10): 1345-1354.
- White, G.F. (1945). Human adjustment to floods. A Geographical Approach to the Flood Problem in the United States. In: Chicago, T.U.O., Ed., Research Paper No. 29, The University of Chicago, Chicago.
- Yang, X., Ren, L., Singh, V., Liu, X., Yuan, F., Jiang, S., & Yong, B. (2012). Impacts of land use and land cover changes on evapotranspiration and runoff at Shalamulun River watershed, China. Hydrology Research 43: 23-37. https://doi.org/10.2166/nh.2011.120.
|