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Abstract

In this paper, we present an efficient method to solve linear time-delay
optimal control problems with a quadratic cost function. In this regard,
first, by employing the Pontryagin maximum principle to time-delay sys-
tems, the original problem is converted into a sequence of two-point bound-
ary value problems (TPBVPs) that have both advance and delay terms.
Then, using the continuous Runge–Kutta (CRK) method, the resulting
sequences are recursively solved by the shooting method to obtain an opti-
mal control law. This obtained optimal control consists of a linear feedback
term, which is obtained by solving a Riccati matrix differential equation,
and a forward term, which is an infinite sum of adjoint vectors, that can
be obtained by solving sequences of delay TPBVPs by the shooting CRK
method. Finally, numerical results and their comparison with other avail-
able results illustrate the high accuracy and efficiency of our proposed
method.
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1 Introduction

In recent years, optimization and control of systems with time delay have
been considered in much research because the time delay in many processes
cannot be ignored. To more accurately express the behavior of a natural
phenomenon, we need a more complex system. Some of the applications of
these issues are in the chemical, electronic, medicine, engineering, biological,
economy, and so on [22, 19, 12, 7, 8, 41].

In general, two methods are provided to solve optimal control problems
(OCPs). The first approach involves the use of necessary and (or) sufficient
conditions of optimality by applying the Pontryagin minimum (maximum)
principle or optimality principle. The minimum principle was presented in
1956 by the Russian mathematician Lev Pontryagin and his students, and
its primary application was to maximize the terminal velocity of a rocket.
This result was obtained using the classical ideas of variational calculus.
The equations obtained from these conditions can be solved numerically.
This approach yields indirect methods, which are known as analytical-based
methods; see [39, 43, 17, 13].

In another approach, an OCP is considered an optimization problem. in-
stead of using the optimality conditions, the dynamic constraints are trans-
formed into an algebraic equations system by discretizing the time interval
and parameterizing the variables of the problem. Therefore, the OCP be-
comes a nonlinear programming problem of dimension finite. The result-
ing nonlinear programming problem can then be solved using optimization
techniques. This approach yields direct methods. We refer the reader to
[11, 2, 18, 26, 8]. Since direct methods do not need to calculate the opti-
mality conditions, they can be used for a wide range of OCPs. However,
the lack of guarantee for the optimal solution and the high amount of mem-
ory resources and time for producing a close approximation is among the
disadvantages of these methods.

In the case of time-delay OCPs, in 1963, Oǧuztöreli [35] was one of the
pioneers in the analytical-based approach (also, see [36]). For the first time,
Kharatishvili [24] generalized the Pontryagin maximum principle for OCPs
with a constant delay in the state variable. Then in [25], he gave similar
results on OCPs with delay in the control variable. After that, in 1968, a
maximum principle for OCPs with multiple constant delays in state and con-
trol was proved by Halanay [16]. In 1972, Ray and Soliman [42] also obtained
similar results. Guinn [14] transformed the delayed OCP with constant delay
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in the state variable into a higher-dimensional undelayed OCP. Banks [3] de-
rives a maximum principle for control systems with a time-dependent delay
in the state variable.

The system resulted from the necessary conditions that Kharatishvili
provided, which was a two-point boundary value problem involving both
advance and delay terms. This type of problem does not have an exact
solution, except in exceptional cases. Therefore, there are many attempts
available in the literature to approximately solve this problem; for example,
see [29, 44, 30, 31, 32, 20, 21, 6].

The following articles can be mentioned as the latest studies. For OCPs
with time-invariant delayed systems, Mirhosseini-Alizamini, the second au-
thor, and Heydari [32] applied the variational iteration method and then
obtained a suboptimal solution for the two-point boundary value problem
(TPBVP). Moreover, Mirhosseini-Alizamini and the second author [31] in-
vestigated infinite horizon OCPs with time-variant delayed systems. Also,
using a Hermite interpolation polynomial for delay terms and employing a
second-order finite difference formula for the first-order derivatives, Jajarmi
and Hajipour [21] converted the TPBVP obtained from the time-delay OCP
into a system of linear algebraic equations and then solved it. Recently, using
an algorithm based on the forward and backward difference approximation,
Bouajaji et al. [6] solved the system obtained from the application of the
Pontryagin maximum principle to a delayed OCP.

In this work, we investigate a family of time-delay OCPs with a quadratic
cost functional that should be minimized subject to a linear time-delay system
with constant delay in the state variable. Using the Pontryagin minimum
principle for delayed systems from [24] and then applying continuous Runge–
Kutta (CRK) methods, we convert a time-delay OCP into a sequence of
linear TPBVPs and thereafter solve it recursively by the shooting method to
obtain the optimal control law.

The rest of the paper is organized as follows: The CRK methods are pre-
sented in Section 2. After that, in Section 3, we introduce the Shooting CRK
(SCRK) method and apply it to a delayed TPBVP. Then, in the continua-
tion of this section, we present a basic algorithm for the proposed method.
In the next section, we will use a generalization of this algorithm to solve a
time-delay OCP. Section 4 describes the Pontryagin maximum principle for
our delayed OCP and designs an algorithm based on the previous algorithm
defined in Section 3 for solving the final system. In Section 5, we give sev-
eral numerical examples to demonstrate the effectiveness and accuracy of the
proposed technique. Finally, with the conclusion in Section 6, we end the
article.
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2 CRK methods

In this section, we describe the CRK methods. Consider f(t, x(t)) ∈
C0([t0, tf ] × Rd,Rd). The CRK methods were originally designed to treat
the initial value problem for the following ordinary differential equation:{

ẋ(t) = f(t, x(t)), t0 ≤ t ≤ tf ,

x(t0) = x0.
(1)

Some of the implicit Runge–Kutta methods are equivalent to collocation
methods; see [46]. Thus, they sequentially provide a continuous extension
of the approximate solution without any additional evaluation of f . Indeed,
the next question is whether there is such a continuous extension for each
Runge–Kutta process that is given sequentially by the method itself?

Nørsett and Wanner partially answered this question by proving that a
large number of Runge–Kutta methods are the same as the somewhat per-
tubed collocation method that is somewhat perturbed. After that, Zennaro
[47] presented a continuous extension of the solution provided by a Runge–
Kutta method, which includes the collocation solution if it is equivalent to
collocation and behaves similarly in other cases.
Let ∆ = {t0, . . . , tn, . . . , tN = tf} be an arbitrary mesh. Then for the nu-
merical solution of the ordinary differential equation (1), an s-stage discrete
Runge–Kutta method has the form

xn+1 = xn + hn+1

s∑
i=1

biki, (2)

ki = f(tin, xn + hn+1

s∑
j=1

aijkj), i = 1, . . . , s, (3)

where ci =
∑s

j=1 aij , t
i
n = tn + cihn+1, i = 1, . . . , s, and hn+1 = tn+1 − tn.

In addition, the Runge–Kutta method (2) and (3) is denoted by (A, b). Let
the solution have advanced to the point t = tn. Zennaro [47] showed that
for this s-stage Runge–Kutta method of order p, there is a CRK method of
degree d, if there exist s polynomials bi(θ), i = 1, . . . , s, of degree less than
or equal to d, independent of f . This method reads as follows:

η(tn + θhn+1) = xn + hn+1

s∑
i=1

bi(θ)ki, 0 ≤ θ ≤ 1, (4)

ki = f(tin, xn +

s∑
j=1

aijkj), i = 1, . . . , s, (5)

where
η(tn) = xn, η(tn + hn+1) = xn+1,
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and xn is an approximate solution obtained by applying the Runge–Kutta
method for x(tn). This method, which is usually expressed as (A, b(θ)), can
also be related to the following CRK tableau:

C A
bT (θ)

.

In fact, {ci, aij}’s are the same as the coefficients of the discrete Runge–Kutta
method. Now, we recall the consistency of the discrete Runge–Kutta method
from [5].

Definition 1. [5, Definition 5.1.3] Consider p ≥ 1 the largest integer having
the following property: For every mesh point and Cp-continuous right-hand-
side function f(t, x) in (1), the local solution zn+1(t) to the local problem{

z
′

n+1(t) = f(t, zn+1(t)), tn ≤ t ≤ tn+1,

zn+1(t) = x∗
n,

(6)

satisfies
∥zn+1(tn+1)− xn+1∥ = O(hp+1

n+1)

uniformly with respect to x∗
n belonging to a bounded subset of Rd and re-

spect to n = 0, . . . , N−1, Then we say that the discrete Runge–Kutta method
(A, b) is consistent with order p.

Similarly, with the above notations, we say that the continuous extension
(4) is consistent with uniform order q if q ≥ 1 is the largest integer having
the following property:

max
tn≤t≤tn+1

∥zn+1(t)− η(t)∥ = O(hq+1
n+1),

for every mesh point and Cq-continuous right-hand-side function f(t, x) in
(1).

According to Definition 1, the convergence results in discrete and CRK
methods for ordinary differential equations have been proved in the following
theorem; see [5].

Theorem 1. [5, Theorem 5.1.4] Suppose that the Runge–Kutta method (2)
and (3) is consistent with order p and that f(t, x) defined in (1) is a right-
hand-side Cp-continuous function. Then, on any bounded interval [t0, tf ],
the method has discrete global order (or, equivalently, is convergent of order)
p. In other words,

max
1≤n≤N

∥x(tn)− xn∥ = O(hp),
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in which h = max
1≤n≤N

hn.
Moreover, let the continuous extension (4) have the uniform order q. Then

the CRK method (4) and (5) has the uniform global order (or, equivalently,
uniformly convergent of order) q′ = min (q + 1, p), which means that

max
t0≤t≤tf

∥x(t)− η(t)∥ = O(hq′).

Then, Baker and Paul [1] generalized this idea for a CRK method to delay
differential equations with a general delay differential equation of the form{

ẋ(t) = f(t, x(t), x(t− τ(t)), t > t0,

x(t) = ϕ(t), t0 − τ(t0) ≤ t ≤ t0,
(7)

in which f : R×Rn×Rn → Rn and τ(t) ≥ 0. Moreover, ϕ ∈ C0[t0−τ(t0), t0]
denotes the initial information of the state variable x. For delay differential
equations, Baker and Paul [1] modified (4) and (5) as follows :

η(tn + θhn+1) = xn + hn+1

s∑
i=1

bi(θ)ki, 0 ≤ θ ≤ 1, (8)

ki = f(tin, Xi, η(t
i
n − τ(tin))), i = 1, . . . , s, (9)

Xi = xn + hn+1

s∑
j=1

aijkj , i = 1, . . . , s. (10)

When the delay is constant and hn+1 ≤ τ , then η(tin − τ) is known for any i
(0 ≤ ci ≤ 1). In this case, η(tin−τ) is available from the past, so this method
is an explicit CRK method. The pair formed by (A, b) and (A, b(θ)) is called
the underlying CRK method.

Theorem 2. [5, Theorem 6.3.1] Assuming the delay differential equation (7),
suppose that f(t, x, y) ∈ [t0, tf ]×Rn×Rn is a Cp-continuous function. Then
the delay τ(t) ∈ [t0, tf ]×Rn is a Cp-continuous function and ϕ(t) is the initial
Cp-continuous function. In addition, let ∆ = {t0, t1, . . . , tn, . . . , tN = tf} be
the mesh containing all points of discontinuity with the order less than or
equal to p being in [t0, tf ]. Also, assume that the underlying CRK method
has the uniform and discrete orders q and p, respectively. Then for the delay
differential equation, the CRK method (8), (9), and (10) has uniform global
and discrete global orders q′ = min (p, q + 1). In other words,

max
1≤n≤N

∥x(t)− η(t)∥ = O(hq′),

and
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max
1≤n≤N

∥x(tn)− xn∥ = O(hq′),

where h = max
1≤n≤N

hn.

3 Outline of SCRK method for a delay TPBVP

In the present section, we first state details of the proposed method on a
TPBVP with only a time-delay term. Therefore, consider the following basic
form of a first-order TPBVP with a time delay:

ẋ(t) = f1(t, x(t), y(t), x(t− τ), y(t− τ)), t0 ≤ t ≤ tf ,

ẏ(t) = f2(t, x(t), y(t), x(t− τ), y(t− τ)), t0 ≤ t ≤ tf ,

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0,

y(tf ) = β.

(11)

For solving this problem, we need to use the solutions to a sequence of ini-
tial value problems that are made by substituting the initial guess y(t0) = z
instead of the terminal condition y(tf ) = β in (11).

To approximate a solution to the boundary value problem (11), we involve
a parameter z, by choosing the parameters z = zk such that

lim
k→∞

y(tf , zk) = y(tf ) = β,

where y(t) is the solution to the boundary value problem (11) and y(t, zk)
denotes the solutions to the constructed initial value problem with initial
conditions x(t) = ϕ(t), t0 − τ ≤ t ≤ t0 and y(t0) = zk.

This technique is called the Shooting method. For starting, we choose
a parameter z1 such that it determines the initial evaluation at which the
object is fired from the point (t0, ϕ(t0)) and along the curve indicated by the
solution to the problem

ẋ(t) = f1(t, x(t), y(t), x(t− τ), y(t− τ)), t0 ≤ t ≤ tf ,

ẏ(t) = f2(t, x(t), y(t), x(t− τ), y(t− τ)), t0 ≤ t ≤ tf ,

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0,

y(t0) = z1.

(12)

If y(tf , z1) is not sufficiently close to β, then we correct the approximation
by choosing elevations z2, z3, and so on, until y(tf , zk) is sufficiently close to
β.

For determining the parameters zk, we must solve this problem:

y(tf , z)− β = 0. (13)
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To solve this nonlinear equation, we use the secant method. For this method,
we need to choose initial approximations z1 and z2 and then generate the
remaining terms of the sequence by the following formula:

zk+1 = zk − y(tf , zk)− β

y(tf , zk)− y(tf , zk−1)
(zk − zk−1), k = 3, 4, . . . . (14)

To obtain y(tf , z1) in (12), we use the CRKmethod (8), (9), and (10) for a sys-
tem of delay differential equations. For a given mesh∆ = {t0, . . . , tn, . . . , tN =
tf}, let h =

tf−t0
N . In each underlying mesh interval [tn, tn+1], CRK formulas

for (12) are as follows:

k1,i = f1(t
i
n, Xi, Yi, ηx(t

i
n − τ1), ηy(t

i
n − τ2)), i = 1, . . . , s,

k2,i = f2(t
i
n, Xi, Yi, ηx(t

i
n − τ1), ηy(t

i
n − τ2)), i = 1, . . . , s,

Xi = xn + h
∑s

j=1 aijk1,j , i = 1, . . . , s,

Yi = yn + h
∑s

j=1 aijk2,j , i = 1, . . . , s,

ηx(tn + θh) = xn + h
∑s

i=1 bi(θ)k1,i, 0 ≤ θ ≤ 1,

ηy(tn + θh) = yn + h
∑s

i=1 bi(θ)k2,i, 0 ≤ θ ≤ 1,

(15)

Note that at the endpoint of the interval, the stop condition must be
checked. In the following algorithm, we describe an SCRK method for a
time-delay TPBVP.

Example 1. Consider the following second-order delay boundary value prob-
lem: 

x
′′
(t) = − 1

16 sinx(t)− (t+ 1)x(t− 1) + t, 0 ≤ t ≤ 2,

x(t) = t− 1
2 , t ≤ 0,

x(2) = − 1
2 .

(16)

With the new condition x
′
(0) = z, instead of solving (16), we need to solve

a sequence of initial value problems of the form
x

′′
(t) = − 1

16 sinx(t)− (t+ 1)x(t− 1) + t, 0 ≤ t ≤ 2,

x(t) = t− 1
2 , t ≤ 0,

x
′
(0) = z.

(17)

Now, we try to make the value of y(2, z) as close to β = − 1
2 as possible by

adjusting the value of z. Before that, by assuming y(t) = x
′
(t), we turn the

delay second-order system (17) into a delay first-order system as follows:
x

′
(t) = y(t), 0 ≤ t ≤ 2,

y
′
(t) = − 1

16 sinx(t)− (t+ 1)x(t− 1) + t,

x(t) = t− 1
2 , t ≤ 0,

y(0) = z.

(18)
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Algorithm 1 SCRK method for time-delay TPBVP

Step 1. Set N (the number of subintervals), h =
tf−t0

N
, K = 1, M (the maximum number

of iterations), and s (the number of stages of the CRK method), and choose z1, z2,
and tolerance error bound ϵ.

Step 2. While L ≤ M , do
• Set x0 = α and y(t0) = z1,

Step 3. For k = 1, 2, · · · ,
• solve (12), using the CRK method (15).
• Set x0 = α and y(t0) = z1,

Step 4. Check the stop condition,
• If |yN − β| < ϵ, then the procedure is complete, and jump to Step 7,
• else, go to the next step.

Step 5. If k = 1, then set y(t0) = z2 and back to Step 3,
• else, go to the next step,

Step 6. Calculate the next approximation for zk+1 from (14), set y(t0) = zk+1, and back
to Step 3.

• end for
Step 7. Stop the algorithm and output (tn, xn, yn).

• end while
Step 8. Output (maximum number of iterations exceeded).

• Stop

We solve this problem by applying Algorithm 1. For this purpose, we use the
explicit Runge–Kutta of discrete order p = 4 with the following coefficients:

0 0
1
2

1
2 0

1
2 0 1

2 0
1
2 0 0 1 0

1
6

1
3

1
3

1
6

Moreover, we set

b1(θ) =
1

2
θ2 +

2

3
θ, b3(θ) =

1

3
θ,

b2(θ) =
1

3
θ, b4(θ) =

1

2
θ2 − 1

3
θ.
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Table 1 indicates a comparison between the approximate result of our
SCRK method and the results obtained in [34].

Table 1: Approximation values of x(t) in Example 1

xn(1) xn(1.5) xn(2)
n Ref. [34] Proposed method Ref. [34] Proposed method Ref. [34] Proposed method
4 -1.854384 -1.983957 -1.719174 -1.884111 -0.499976 -0.499999
6 -2.018854 -2.032385 -1.896332 -1.922809 -0.499999 -0.500000
8 -2.066385 -2.052802 -1.946231 -1.939199 -0.499999 -0.500000
10 -2.078723 -2.063029 -1.959110 -1.947469 -0.499999 -0.500000
12 -2.081821 -2.068830 -1.962343 -1.952141 -0.500000 -0.500000

4 Design of SCRK method for an OCP with time delay
in state variable

In this section, we first use the Pontryagin maximum principle to solve our
delayed OCP. Then, for solving the final system, we describe an algorithm
based on Algorithm 1. Through this section, by PC1([t0, tf ],Rn) we de-
note the class of continuous functions from [t0, tf ] into Rn whose first-order
derivatives are piecewise continuous, and similarly, PC([t0, tf ],Rn) denotes
the class of piecewise continuous functions from [t0, tf ] into Rn.

Consider the linear system with delay in the state variable{
ẋ(t) = Ax(t) +A1x(t− τ) +Bu(t), t0 ≤ t ≤ tf ,

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0,
(19)

where u(t) in PC([t0, tf ],Rn) and x(t) in PC1([t0−τ, tf ],Rn) are the control
and state variables, respectively. In fact, the parameter τ > 0 is nonnegative
and indicates the time delay. Furthermore, the initial state function ϕ(t) is
continuous in C([t0 − τ, t0],Rn), and finally, the matrices A, B, and A1 are
real constants with appropriate dimensions. For t ∈ [t0, tf ], our aim is to
obtain, u∗(t), the optimal control law minimizing the quadratic cost function

J =
1

2

∫ tf

t0

(uT (t)Ru(t) + xT (t)Qx(t))dt+
1

2
xT (tf )Qfx(tf ), (20)

in which R ∈ Rm×n is a positive definite matrix and Q and Qf ∈ Rn×n are
positive semi-definite matrices.

For time-delay OCPs, it follows from [24] that the pontryagin maximum
principle provides the necessary conditions of optimality for the problem (19)
and (20) as follows:
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ẋ(t) = Ax(t) +A1x(t− τ)−BR−1BTλ(t), t0 ≤ t ≤ tf ,

λ̇(t) =

{
−Qx(t)−ATλ(t)−AT

1 λ(t+ τ), t0 ≤ t ≤ tf − τ,

−Qx(t)−ATλ(t), tf − τ < t ≤ tf ,

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0,

λ(tf ) = Qfx(tf ).

(21)
The Hamiltonian function from which the above conditions are derived is

H(x, u, λ, t) = λT (t)[Ax(t) +Bu(t) +A1x(t− τ) +
1

2
xT (t)Qx(t)+

1

2
uT (t)Ru(t)], (22)

where λ(t) ∈ PC1([t0, tf ],Rn) is called co-state vector. Moreover,

u∗(t) = −R−1BTλ(t), (23)

for t0 ≤ t ≤ tf , is the optimal control law. We recall that the system (21)
is a TPBVP with both time-advance and time-delay terms. Unfortunately,
in general, this problem does not have any analytical solution. Therefore,
providing an efficient method for solving this difficult problem numerically is
very important.

At first, we produce a sequence of TPBVP as

ẋ(k)(t) = −Sλ(k)(t) +Ax(k)(t) +A1x
(k)(t− τ), t0 ≤ t ≤ tf ,

λ̇(k)(t) =

{
−ATλ(k)(t)−Qx(k)(t)−AT

1 λ
(k−1)(t+ τ), t0 ≤ t ≤ tf − τ,

−ATλ(k)(t)−Qx(k)(t), tf − τ < t ≤ tf ,

x(k)(t) = ϕ(t), t0 − τ ≤ t ≤ t0,

λ(k)(tf ) = Qfx
(k)(tf ),

x(0)(t) ≡ 0, λ(0)(t) ≡ 0, t0 ≤ t ≤ tf ,

(24)
where S = BR−1BT and k = 1, 2, . . .. Therefore,

u(k)(t) = −R−1BTλ(k)(t) (25)

is the sequence of controls. Now, we are ready to obtain a closed-loop optimal
control. We can define the co-state vector by

λ(k)(t) = g(k)(t) + P (t)x(k)(t), (26)

in which g(k)(t) ∈ Rn is the kth adjoint vector and P (t) ∈ Rn×n is an
unknown function matrix with positive-definite property [45, 44].
Consider the following extended sequence of the TPBVP (24):
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ẋ(k)(t) = [A− SP (t)]x(k)(t)− Sg(k)(t) +A1x
(k)(t− τ), t0 ≤ t ≤ tf ,

ġ(k)(t) =


−P (t)A1x

(k)(t− τ)− [A− SP (t)]T g(k)(t)

−AT
1 P (t+ τ)x(k−1)(t+ τ)−AT

1 g
(k−1)(t+ τ), t0 ≤ t ≤ tf − τ,

−P (t)A1x
(k)(t− τ)− [A− SP (t)]T g(k)(t), tf − τ < t ≤ tf ,

x(k)(t) = ϕ(t), t0 − τ ≤ t ≤ t0,

g(k)(tf ) = 0,

x(0)(t) ≡ 0, g(0)(t) ≡ 0, t0 ≤ t ≤ tf .

(27)

We note that by substituting (26) into the first equation of (24), the kth
optimal closed-loop system is constructed, which is the first equation of the
system (27). Similarly, substituting (26) in the second equation of (24) and
comparing the result with the derivative of (26), we obtain the second equa-
tion of the system (27). Also,

−Ṗ (t) = P (t)A+ATP (t)− P (t)BR−1BTP (t) +Q,

P (tf ) = Qf , (28)

is a Riccati matrix differential equation.
Moreover, from (25) and (26), the sequence of controls is converted to

u(k)(t) = −R−1BT (P (t)x(k)(t) + g(k)(t)), k = 1, 2, . . . . (29)

The system (27) is similar to (11), except that (27) has advance terms in
addition to the delay terms. Now, we want to use Algorithm 1 to solve this
advance-delay TPBVP. By using the SCRK method, we have the following
CRK iteration formula of (27) in the mesh interval [tn, tn+1]:

η(k)x (tn + θh) =x(k)
n + h

s∑
i=1

bi(θ)[Ψ(tin)(x
(k)
n + h

s∑
j=1

aijk1,j)

− S(g(k)n + h

s∑
j=1

aijk2,j) +A1η
(k)
x (tin − τ)], t0 ≤ t ≤ tf ,

(30)

η(k)g (tn + θh) =



g
(k)
n + h

∑s
i=1 bi(θ)[−ΨT (tin)(g

(k)
n + h

∑s
j=1 aijk2,j)

−P (tin)A1η
(k)
x (tin − τ)−AT

1 P (tin + τ)x(k−1)(tin + τ)

−AT
1 g

(k−1)(tin + τ)], t0 ≤ t ≤ tf − τ,

g
(k)
n + h

∑s
i=1 bi(θ)[−ΨT (tin)(g

(k)
n + h

∑s
j=1 aijk2,j)

−P (tin)A1η
(k)
x (tin − τ)], tf − τ < t ≤ tf ,

(31)

where tin = tn + cih, Ψ(tin) = A− SP (tin), and 0 ≤ θ ≤ 1. Also,
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x(k)(t) = ϕ(t), t0 − τ ≤ t ≤ t0,

g(k)(tf ) = 0,
(32)

are the known initial and final conditions.
As already mentioned, for the constant delay, if 0 ≤ ci ≤ 1 and h ≤ τ ,

then η(tin−τ) is known for any i. Hence, ηx(tin−τ) in (30) and (31) is known,
and there is no so-called overlapping. On the other hand, x(k−1)(tin + τ) and
g(k−1)(tin + τ) are obtained from the previous iteration by the assumptions
x(0)(t) ≡ 0 and g(0)(t) ≡ 0.

Theorem 3. Consider TPBVP (27).

i) Assume that the right-hand-side functions corresponding to ẋ(k)(t) and
ġ(k)(t) and the initial function ϕ(t) are Cp-continuous in their domains
(p is the discrete order of the underlying CRK method). Then the
sequences {η(k)x (t)} and {η(k)g (t)} obtained from CRK formulas (30)
and (31) with initial and boundary conditions (32), converge uniformly
to the solution of TPBVP (27).

ii) Under the assumptions of part (i), the sequences {u(k)(t)} and {J (k)},
which are defined as follows

u(k)(t) = −R−1BT [P (t)η(k)x (t) + η(k)g (t)], (33)

J (k) =
1

2
(η(k)x (tf ))

TQfη
(k)
x (tf ) +

1

2

∫ tf

t0

[(η(k)x (t))TQη(k)x (t)

+ (u(k)(t))TRu(k)(t)]dt, (34)

converge to optimal control u∗(t) and the optimal value of objective
function, J∗, respectively.

Proof. i) Consider the vector function F as follows:

F (t, x, g, u, v, w, z) = (ẋ(t), ġ(t))T , t0 ≤ t ≤ tf ,

and u, v, w, z denote delay and advance terms corresponding to the vari-
ables x(t) and g(t). Also, ẋ(t) and ġ(t) are the functions defined in (27).
Because F and ϕ are Cp-continuous functions and τ is a constant delay,
according to Theorem 2, the sequences {η(k)x (t)} and {η(k)g (t)} from the
CRK method are uniformly convergence to the exact solutions of (27).

ii) Suppose that {η(k)x (t)} and {η(k)g (t)} are solution sequences produced
by the CRK method, which are convergence to η̂x(t) and η̂g(t) under
the assumptions of part (i). We take the limit from the (33) as k → ∞,

û(t) := lim
k→∞

u(k)(t) = −R−1BT [P (t)( lim
k→∞

η(k)x (t)) + lim
k→∞

η(k)g (t)]
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= −R−1BT [P (t)η̂x(t) + η̂g(t)].

Since η̂x(t) and η̂g(t) are the exact solutions of necessary conditions
(27), so û(t) is the optimal control u∗(t).
Similarly, we take the limit from the (34) as follows:

Ĵ := lim
k→∞

J (k)

= lim
k→∞

((
1

2
(η(k)x (tf ))

TQfη
(k)
x (tf ))

+
1

2
lim
k→∞

(

∫ tf

t0

[(η(k)x (t))TQη(k)x (t) + (u(k)(t))TRu(k)(t)]dt)

=
1

2
( lim
k→∞

(η(k)x (tf ))
TQf ( lim

k→∞
η(k)x (tf ))

+
1

2

∫ tf

t0

[( lim
k→∞

(η(k)x (t))T )Q( lim
k→∞

η(k)x (t))

+ ( lim
k→∞

(u(k)(t))T )R( lim
k→∞

u(k)(t))]dt

=
1

2
η̂Tx (tf )Qf η̂x(tf ) +

1

2

∫ tf

t0

[η̂Tx (t)Qη̂x(t) + ûT (t)Rû(t)]dt,

so, Ĵ is the optimal value of the performance index J .

According to Theorem 3, it can be concluded that for enough iterations
of the CRK method, for example, N iterations, where N depends on a given
error criterion, we can obtain a suboptimal control as follows:

u(N)(t) = −R−1BT [P (t)η(N)
x (t) + η(N)

g (t)]. (35)

In this case, the continuous suboptimal state function is as ηx(t) ∼= η
(N)
x (t).

To calculate a more accurate state function, the suboptimal control function
resulting from equation (35), can be placed in (19), and we then solve the
obtained initial value problem. Finally, by placing this pair of suboptimal
control and state in the objective function, we have

J (N) =
1

2
(η(N)

x (tf ))
TQfη

(N)
x (tf ) +

1

2

∫ tf

t0

((η(N)
x (t))TQη(N)

x (t)

+ (u(N)(t))TRu(N)(t))dt. (36)

For given ε > 0, if the stop condition,∣∣∣J (N) − J (N−1)

J (N)

∣∣∣ < ε,
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is satisfied, then the suboptimal control (35) will have the desired accuracy.
Now, to implement the above method, we provide the following simple algo-
rithm.

Algorithm 2 SCRK method for time-delay OCPs

Step 1. Solve P (t) from (28).
Step 2. Put k = 1, x(0) ≡ 0, and g(0) ≡ 0. Then obtain a continuous approximation for

x(k)(t) and g(k)(t) from the kth TPBVP (30), (31), and (32) with the shooting
method (Algorithm 1).

Step 3. Let N = k and obtain u(N)(t) from (35).
Step 4. Obtain J(N) from (36).
Step 5. If

∣∣∣J(N)−J(N−1)

J(N)

∣∣∣ < ε, then the procedure is complete, and go to the next step;

• else, let k := k + 1, and back to Step 2.
Step 6. Stop the algorithm and consider the output u(N)(t) as the desired closed-loop

suboptimal control law.

5 Numerical examples

Now, we are ready to present several examples for showing the efficiency of
the SCRK method.

Example 2. Consider the delay system{
ẋ = x(t) + u(t) + x(t− 1), t ≥ 0,

x(t) = 1, −1 ≤ t ≤ 0,
(37)

to minimize this quadratic cost functional

J =
3

2
x2(2) +

1

2

∫ 2

0

u2(t)dt. (38)

It follows from [4] that the exact solution for u(t) is

u∗(t) =

{
δ(e2−t + (1− t)e1−t), 0 ≤ t ≤ 1,

δe2−t, 1 ≤ t ≤ 2,
(39)

and that J∗ = 3.1017, where δ = −0.3932. According to (37) and (38), we
have Q = 0, R = 1, Qf = 3, A = 1, B = 1, and A1 = 1. Hence, (28) can be
rewritten as {

ṗ(t) + 2p(t)− p2(t) = 0,

p(2) = 3,
(40)

which has the unique solution
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p(t) =
6e4−2t

2− 3(1− e4−2t)
. (41)

For the first time, Banks and Burns [4] proposed a numerical method to
solve this problem based on averaging approximations. Then Pananisamy
and Rao [38] solved it by using the Walsh functions. After that, Mirhosseini-
Alizamini, the second author, and Heydari [32] used the variational iteration
method. Furthermore, Jajarmi and Hajipour [20] employed a finite difference
method for solving this problem. We apply our proposed method according
to Algorithm 2 to this example. Comparison results of the optimal values
of J obtained by our proposed technique and other mentioned methods are
listed in Table 2. The curves depicted from the obtained approximations for
the state and control variables of problems (37) and (38) are shown in Figure
6.

Table 2: Value of cost functional for various methods in Example 2

Method J
Banks and Burns [4] 3.0833

Pananismay and Rao [38] 3.0879
Mirhosseini-Alizamini, Effati, and Heydari [32] 3.1091

Jajarmi and Hajipour [20] 3.101717
Proposed SCRK method 3.101667

Optimal cost J∗ 3.1017

(a) State variable x(t) (b) Control variable u(t)

Figure 1: Simulated curves of (a) state variable and (b) approximation and exact values
of control variable for Example 2

Now, we give another example.

Example 3. Consider the time-delay system
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ẋ = u(t)− x(t− 1), 0 ≤ t ≤ 1,

x(t) = 1, −1 ≤ t ≤ 0,
(42)

to minimize this quadratic cost functional

J =

∫ 1

0

[
1

2
x2(t) +

1

2
u2(t)]dt. (43)

Now, our aim is to obtain the optimal control, u(t), subject to (42) that
minimizes (43). Moreover, the Riccati equation for this example is{

ṗ(t)− p2(t) + 1 = 0,

p(1) = 0,
(44)

and has the unique solution

p(t) = − tanh(t− 1) (45)

The exact solutions for u(t) and x(t) are, respectively, obtained as follows:

u∗(t) = 1 +
1

cosh(1)
(sinh(t− 1)− cosh(t)), (46)

x∗(t) =
1

cosh(1)
(cosh(t− 1)− sinh(t)). (47)

Moreover, it follows from [33] that the optimal value of cost functional
is J∗ = 0.1480542786. It can be shown that the approximate value of the
cost functional calculated by the proposed SCRK method is equal to J =
0.1480542988. It is clear that the approximate value of J is very close to the
optimal value. Also, we depict the simulation curves of the trajectory of x(t),
control variable u(t), and their exact values in Figure 2.

For the first time, Eller, Aggarwal, and Banks [10] presented the next
example and then studied by other authors in [23, 37, 9, 40].

Example 4. Consider the linear time-varying delay system{
ẋ = x(t) + u(t) + x(t− 1), 0 ≤ t ≤ 2,

x(t) = 1, −1 ≤ t ≤ 0,
(48)

to minimize this quadratic functional

J =

∫ 2

0

[x2(t) + u2(t)]dt. (49)

Therefore, the Riccati equation for this example is
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(a) State variable x(t) (b) Control variable u(t)

Figure 2: Approximation and exact values of state and control variables for Example
3

{
ṗ(t) + 2p(t)− 1

2p
2(t) + 2 = 0,

p(2) = 0,
(50)

and the unique solution for this Riccati equation is

p(t) = 2− 2
√
2 tanh(

√
2t+ tanh−1(

√
2

2
)− 2

√
2). (51)

In Table 3, we compare the results of the suggested method with the reported
results in [10, 23, 37, 9, 40, 21]. Figure 3 shows the approximate values of
the state and control variables of the problem (48) and (49).

Table 3: Values of cost functional for various methods in Example 4

Method J
Eller, Aggarwal, and Banks [10] 6.45

Dadebo and luus [9] 6.26775
Oh and Luus [37] 6.23711

Jamshidi and malek-Zavarei [23] 6.5
Santos and Sanchez-Diaz [40] 6.97
Jajarmi and Hajipour [21] 6.219615
Proposed SCRK method 6.200623

Example 5. In this example, we want to minimize the cost functional

J = 5x2
1(2) +

1

2

∫ 2

0

u2(t)dt, (52)
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(a) State variable x(t) (b) Control variable u(t)

Figure 3: Simulated curves of (a) state and (b) control variables for Example 4

with the following two-dimensional delay system:
ẋ1(t) = x2(t), 0 ≤ t ≤ 2,

ẋ2(t) = −x1(t)− x2(t− 1) + u(t), 0 ≤ t ≤ 2,

x1(0) = 10, x2(0) = 0, −1 ≤ t ≤ 0.

(53)

Now, our aim is to obtain the optimal control u∗(t) subject to (53) that
minimizes (52). It follows from [4] that this problem has the exact solution

u∗(t) =

{
δ sin(2− t) + δ

2 (1− t) sin(t− 1), 0 ≤ t ≤ 1,

δ sin(2− t), 1 ≤ t ≤ 2,
(54)

in which the optimal cost is J∗ = 3.3991 and δ = 2.5599. In this two-
dimensional example, we have A =

[
0 1
−1 0

]
, A1 =

[
0 0
0 −1

]
, B =

[
0
1

]
, Q =[

0 0
0 0

]
, Qf =

[
10 0
0 0

]
, and R = 1.

Thus, instead of the Riccati equation, we have a system consisting of four
equations and four variables. After applying the proposed method to this
example, we obtained the minimum value of J = 3.3993. In Table 4, the
comparison of the result obtained with our proposed method and the result
based on the techniques presented in [4, 28, 27, 15, 32] is shown. Also, Figures
3 and 5 show the corresponding state trajectories of x1(t), x2(t) and control
variable u(t), respectively.
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Table 4: Cost functional values of various methods for Example 5

Method J
Banks and Burns [4] 3.2587

Lee [28] 3.4827
Khellat [27] 3.43254

Haddadi, Ordokhani, and Razzaghi [15] 3.21663
Mirhosseini-Alizamini, Effati, and Heydari [32] 3.3991

Proposed SCRK method 3.3993

(a) State variable x1(t) (b) State variable x2(t)

Figure 4: Simulated curves of state variables for Example 5

Figure 5: Control variable u(t) for Example 5

6 Conclusion

We employed The CRK method to solve a class of time-delay OCPs with
delay in the state variable and with quadratic cost functional in this paper. At
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first, by employing the Pontryagin maximum principle for time-delay systems,
the delay OCP was converted to a sequence of TPBVPs that have both
delays and advance terms. After that, by applying the CRK method together
with the shooting method, we constructed two sequences in which the delay
and advance terms are known. Then we showed that by establishing the
continuity condition, these sequences converge to the exact solution of the
problem. The numerical results were presented to illustrate the high accuracy
and efficiency of our proposed approach. Further research can be done on
the extension of the SCRK method for solving time-delay OCPs with time-
dependent delays in the control and state variables.
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