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Abstract

In this paper, a generalized version of the auto-convolution Volterra inte-
gral equation of the first kind as an ill-posed problem is studied. We apply
the piecewise polynomial collocation method to reduce the numerical solu-
tion of this equation to a system of algebraic equations. According to the
proposed numerical method, for n = 0 and n = 1, . . . , N − 1, we obtain a
nonlinear and linear system, respectively. We have to distinguish between
two cases, nonlinear and linear systems of algebraic equations. A double
iteration process based on the modified Tikhonov regularization method is
considered to solve the nonlinear algebraic equations. In this process, the
outer iteration controls the evolution path of the unknown vector Uδ

0 in the
selected direction ũ0, which is determined from the inner iteration process.
For the linear case, we apply the Lavrentiev m̃ times iterated regulariza-
tion method to deal with the ill-posed linear system. The validity and
efficiency of the proposed method are demonstrated by several numerical
experiments.
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1 Introduction

Auto-convolution equations have been investigated by mathematicians in var-
ious fields. Some of the applications of auto-convolution equations are in
spectroscopy, stochastic, and probability theory. In 1990, for a deeper un-
derstanding of mathematics and applied numerical analysis of stochastic [19],
inverse deconvolution problems were made as a class of problems in continu-
ous spaces. Auto-convolution Volterra integral equations (AVIEs) of the first
kind,

g(t) =

∫ t

0

u(t− s)u(s)ds, (1)

as an ill-posed problem, have been studied in [3, 5, 6, 9]. Conditions for the
compactness, injectivity, and weakly closed of the associated integral operator
in (1) have been studied in [9]. Also, the authors applied the Tikhonov regu-
larization for the nonlinear ill-posed problem (1) together with an approach
to defining different levels and degrees of ill-posedness in Hilbert spaces. In
[3], the authors have developed a local regularization theory for the nonlinear
inverse auto-convolution problem (1), which provides regularization methods
to preserve the causal nature of the auto-convolution problem. Also, they
investigated the convergence of the regularized solutions to the true solution
as the noise level in the data shrank to zero and supplied convergence rates
for the cases of both L2 and continuous data. For confluent hypergeometric
functions, a class of auto-convolution equations of the first kind was derived
in [23] and a further class of auto-convolution equations of the first kind with
Mittag-Leffler type functions as solutions was treated. In [5], the authors
have presented new results concerning the ill-posedness character of the non-
linear auto-convolution equation (1) and discussed quasi-solutions restricted
to specific (relatively) compact subsets together with limitations of Fourier
transform techniques for analyzing the auto-convolution problem. Some reg-
ularization methods and specific numerical approximations applied to the
first kind of integral equations as well as the equation (1) were also discussed
in [10, 11, 12, 7, 18, 2, 22, 3, 1, 24, 26, 28, 29, 30, 4, 13, 25, 16]. The auto-
convolution equation (1) is an interesting example of a nonlinear ill-posed
operator equation with interesting properties. We can consider important
properties from [9] in the following form:

The auto-convolution operator F : L2(0, 1) −→ L2(0, 1) is defined by

[F (u)](t) :=

∫ t

0

u(t− s)u(s)ds, 0 ≤ t ≤ 1,

with a domain

D(F ) := {u ∈ L2(0, 1) : u(t) ≥ 0 a.e. on [0, 1]}. (2)
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The operator F is continuous, weakly closed but not compact; see [9]. On
the other hand, for all u∗ ∈ D(F ), the Fréchet derivative of F as a compact
linear operator can be defined by

[F ′(u∗)u](t) := 2

∫ t

0

u∗(t− s)u(s)ds, 0 ≤ t ≤ 1,

and also, we have

∥F (u)− F (u∗)− F ′(u∗)(u− u∗)∥L2(0,1) ≤ ∥u− u∗∥2L2(0,1).

Using the Titchmarsh convolution theorem [20], the injectivity of the
auto-convolution operator F and solutions of (1) can be given by the following
theorem.

Theorem 1. [6] For any u ∈ L2(0, 1), let

ε(u) := sup{0 ≤ ϵ ≤ 1 : u(t) = 0 a.e. on [0, ϵ]}.

Then the auto-convolution equation (1) together with (2) has a unique solu-
tion if and only if ε(g) = 0. If u∗ ∈ D(F ) is the uniquely determined solution,
then it fulfills the condition ε(u∗) = 0.

In this paper, we consider the generalized AVIEs of the first kind as∫ t

0

K(t, s)u(t− s)u(s)ds = g(t), t ∈ I := [0, 1], (3)

where g,K are given functions and u(t) is unknown function. Recently, in
[8], the authors have studied an ill-posed inverse problem of auto-convolution
equation such that this inverse problem occurs in nonlinear optics in the con-
text of ultrashort laser pulse characterization. They applied an iterative
regularization approach, which is specifically adapted to the physical situ-
ation in pulse characterization, using a nonstandard stopping rule for the
iteration process of computing regularized solutions. In [27], an AVIE of the
second kind was solved by using the collocation method according to piece-
wise polynomials, and the (super) convergence of the mentioned method has
been studied. However, as far as we know, it seems to be an open problem
under what conditions we can consider for the kernel in the integral equation
(3) to investigate the solutions of this equation similar to Theorem 1.

Here, we consider the numerical collocation method based on piecewise
polynomials to solve (3). According to the proposed numerical method, we
have to distinguish between two cases, nonlinear and linear systems. Since the
auto-convolution problem (3) is ill-posed, for given g, the solutions u need
not be uniquely determined and mainly small perturbations in the right-
hand side g caused by noisy data may lead to arbitrarily large errors in
the solution. To overcome the negative consequences of ill-posedness, we
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consider a novel double iteration process from [21] and the Lavrentiev m̃
times iterated regularization method [14] to deal with the ill-posed nonlinear
and linear algebraic systems, respectively.

2 Collocation methods

Let Πh be a uniform partition of the interval I with grid points

tn = nh, n = 0, . . . , N,

and let h be the stepsize. We consider polynomial spline approximations
uh(t) of the exact solution u(t) in the spline space

S−1
m−1(Πh) = {v : v|σn

∈ πm−1(0 ≤ n ≤ N − 1)}, (4)

where v|σn
is the restriction of v to the subinterval σn = [tn, tn+1], and

πm−1(m ≥ 1) denotes the set of real polynomials of degree not exceeding
m − 1. Let the collocation parameters be 0 < c1 < c2 < · · · < cm ≤ 1 and
let the collocation points be tnj = tn + cjh, j = 1, . . . ,m, n = 0, . . . , N − 1.
Hence, our collocation solution uh ∈ S−1

m−1(Πh) is determined by

g(t) =

∫ t

0

K(t, s)uh(t− s)uh(s)ds, (5)

where the collocation equation is satisfied for t = tnj , j = 1, . . . ,m, n =
0, . . . , N − 1. We consider the approximate solution on the subinterval σn as

uh|σn = un
h(tn + sh) =

m∑
j=1

Lj(s)Un,j , s ∈ (0, 1], (6)

where Un,j := uh(tn + cjh) and

Lj(s) :=

m∏
i=1,i ̸=j

s− ci
cj − ci

, j = 1, . . . ,m.

Inserting (6) into (5), we obtain

g(tn,i) =

∫ tn,i

0

K(tn,i, s)uh(tn,i − s)uh(s)ds

=

∫ tn,i

tn

K(tn,i, s)u
0
h(tn,i − s)un

h(s)ds

+

n−1∑
k=0

∫ tk,i

tk

K(tn,i, s)u
n−k
h (tn,i − s)uk

h(s)ds
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+

n−1∑
k=0

∫ tk+1

tk,i

K(tn,i, s)u
n−k−1
h (tn,i − s)uk

h(s)ds. (7)

System (7) for n = 0 is a nonlinear system, and for n = 1, . . . , N − 1, it is
a linear system. Then we have to distinguish between two cases, n = 0 and
n = 1, . . . , N − 1.

2.1 Double iteration process to solve ill-posed nonlinear
algebraic systems

Case I: n = 0. Now (7) becomes

g(cih) =

∫ cih

0

K(cih, s)u
0
h(cih− s)u0

h(s)ds

=h

∫ ci

0

K(cih, sh)u
0
h((ci − s)h)u0

h(sh)ds

=h

m∑
j,k=1

∫ ci

0

K(cih, sh)Lj(ci − s)Lk(s)ds u0
h(cjh)u

0
h(ckh)

=h

m∑
j,k=1

α
(i)
jku

0
h(cjh)u

0
h(ckh) = h

m∑
j,k=1

α
(i)
jkU0,jU0,k, (8)

where
α
(i)
jk =

∫ ci

0

K(cih, sh)Lj(ci − s)Lk(s)ds.

Nonlinear system (8) can be written as

f(U0)−G0 = 0, or F (U0) = 0, (9)

where

U0 = (U0,1, . . . , U0,m)
T ∈ Rm, G0 = (g(c1h), . . . , g(cmh))

T
.

Let us assume that gδ is an available approximation of g satisfying

∥gδ − g∥ ≤ δ,

where δ is a given noise level.
Now, we consider a novel double iteration process from [21] to deal with

the ill-posed nonlinear algebraic equation system (9). The proposed method
combines the residual norm based algorithm and the modified Tikhonov’s
regularization method. For the outer iteration process, the evolution path
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of the unknown vector follows the searching direction determined from the
inner iteration process, and the process requires the path falls on the space-
time manifold such that the convergence rate can be guaranteed. For the
inner iteration, the direction of evolution ũ is determined by solving a linear
algebraic equation

BTBũ = BTF,

where B is the Jacobian matrix. For an ill-posed system, this linear algebraic
equation is very difficult to solve since the resulting leading coefficient matrix
is ill-posed in nature. The modified Tikhonov’s regularization method [15] is
adapted to solve the ill-posed linear algebraic equation. However, for ill-posed
problems to really find the solution of ũ may require too many iteration steps
for the modified Tikhonov’s regularization method, which makes the whole
numerical process not economical at all. Therefore, the inner iteration process
stops while the direction ũ makes the value of ã0 smaller than the selected
margin ãc or when the number of inner iteration steps exceeds the maximum
tolerance Ĩmax. For the outer iteration process, it terminates once the root
mean square error for the residual is less than the convergence criterion ε
or when the number of inner iteration steps exceeds the maximum tolerance
Ĩmax.

Now, first, we consider a perturbed version of the system (9) as

F δ(U δ
0 ) = 0, (10)

where F δ(U δ
0 ) = f(U δ

0 )−Gδ
0. Then, we proposed a double iteration process

for system (9) based on the following algorithm.

Remark 1. Let θ1 = (x1, . . . , xn)
T and let θ2 = (y1, . . . , yn)

T . Then the
root mean squared error (RMSE) is defined as

REMS(θ1, θ2) =

√√√√ 1

n

n∑
i=1

(xi − yi)2.

Remark 2. From [21], the value of ãc is suggested to be in the range of
2.5 to 4, and the value of Ĩmax actually depends on the selection of ãc such
that it is suggested to be in the range of 30,000 to 80,000. The selection
of ε depends on the system we want to solve. If the system is a well-posed
system, then the value of ε can be very small, and also, if the system is an
ill-posed system, then the value of ε should not be very big.

Iran. j. numer. anal. optim., Vol. 13, No. 2, 2023,pp 205–223
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Algorithm 1 Double Iteration Process (DIP)

Step 1. Give initial guess U δ,0
0 and ε , α, Ĩmax, ãc.

Step 2.Outer Iteration: For k = 0, 1, 2, . . . Repeat

Compute F δ
k = F δ(U δ,k

0 ) and the Jacobian matrix Bk = B(U δ,k
0 ).

Step 3. Inner Iteration: Give the initial guess of ũ as ũ0 =
BT

k F
δ
k

||BT
k F

δ
k ||

,

For p = 1, 2, . . . , Ĩmax, solve ũp+1 by (BT
k Bk+αI)ũp+1 = BT

k F
δ
k +αũp,

Compute ṽp+1 = Bkũp+1,

ηp+1 =
||F δ

k ||2||ṽp+1||2

((F δ
k )T ṽp+1)2

,

(a) If ηp+1 ≤ ãc, then ηk = ηp+1, ũk = ũp+1, ṽk = ṽp+1 and one ter-
minates the inner iteration; otherwise, continue.

(b) If p = Ĩmax, then terminate the whole process.

Step 4. End of Inner Iteration:

Calculate rk = ||1− ηk
2
||,

U δ,k+1
0 = U δ,k

0 − (1− rk)
(F δ

k )
T ṽk

||ṽk||2
ũk.

If RMSE ≤ ε or (b) is true, then the outer iteration process
stop; otherwise, continue.

End of Iteration Process.

2.2 The Lavrentiev regularization method to solve
ill-posed linear algebraic system

Case I: For n = 1, . . . , N − 1, we can rewrite system (7) as

g(tn,i) =h

∫ ci

0

K(tn,i, tn + sh)u0
h((ci − s)h)un

h(tn + sh)ds (11)

+ h

∫ ci

0

K(tn,i, sh)u
n
h(tn + (ci − s)h)u0

h(sh)ds
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+ h

n−1∑
l=1

∫ ci

0

K(tn,i, tl + sh)un−l
h (tn−l + (ci − s)h)ul

h(tl + sh)ds

+ h

n−1∑
l=0

∫ 1

ci

K(tn,i, tl + sh)un−l−1
h (tn−l + (ci − s)h)ul

h(tl + sh)ds.

Using (6), we have

h

m∑
j,k=1

∫ ci

0

K(tn,i, tn + sh)Lj(ci − s)Lk(s)dsU0,jUn,k (12)

+ h

m∑
j,k=1

∫ ci

0

K(tn,i, sh)Lj(s)Lk(ci − s)dsU0,jUn,k

= g(tn,i)− h

n−1∑
l=1

m∑
j,k=1

∫ ci

0

K(tn,i, tl + sh)Lj(ci − s)Lk(s)dsUn−l,jUl,k

− h

n−1∑
l=0

m∑
j,k=1

∫ 1

ci

K(tn,i, tl + sh)Lj(1 + ci − s)Lk(s)dsUn−l−1,jUl,k.

Linear system (12) can be written as

AnUn = Yn, (13)

where

Un = (Un,1, . . . , Un,m)
T ∈ Rm, Gn = (g(tn,1), . . . , g(tn,m))

T
,

and Yn = f̂(U0, . . . , Un−1)+Gn. Since U0, . . . , Un−1 have been determined in
the previous steps, then Yn is a definite m-dimensional vector. A perturbed
version of the discrete system (13) may be considered as follows:

(An + ᾱnI)U
δ
n = Y δ

n . (14)

Now , we apply the Lavrentiev m̃ times iterated regularization method [14]
for the fixed integer m̃ ≥ 1, and the regularization parameter ᾱn > 0 for the
equation (13), which determines U δ

n based on the following algorithm.
Further issues related to theoretical analysis of the Lavrentiev-iterated

method can be found in the references [14, 17].

3 Numerical results

Two examples are considered in this section, which provides evidence of the
effectiveness of the proposed numerical methods applied to the first-kind
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Algorithm 2 The Lavrentiev m̃ times iterated regularization method
Step 1. Give N , m̃.

Step 2.Outer Iteration: For n = 1, 2, . . . , N − 1 Repeat

Determine An and Y δ
n

Choose initial guess U δ,0
n and ᾱn .

Step 3. Inner Iteration: For p = 1, 2, . . . , m̃,

solve U δ,p
n by (An + ᾱnI)U

δ,p
n = ᾱnU

δ,p−1
n + Y δ

n

If RMSE(U δ,p, U δ,p−1) ↛ 0, then stop the iteration, change ᾱn, and consider
the inner iteration with the new ᾱn.
Step 4. End of Inner Iteration:

put U δ
n = U δ,m̃

n

End of Iteration Process.

5 10 15 20 25 30
-12

-10

-8

-6

-4

-2

0

Number of iteration steps for the outer loop

L
o
g
[R
M
S
E
]

5 10 15 20 25 30
0.5

1.0

1.5

2.0

2.5

Number of iteration steps for the outer loop

η

Figure 1: Log[RMSE] versus the number of iteration steps with N = 4, δ = 0 for the
outer loop in Example 1 (left). The value of η never exceeds the critical value ãc = 2.5
in Example 1 (right).

auto-convolution equation. We produce the perturbed data gδ by adding
uniformly distributed noise from the interval [−δg, δg] to the discrete values
of g(t) for t = tn,i, n = 0, . . . , N − 1, i = 1, . . . ,m. All the computations were
performed by Wolfram Mathematica 10.0. �

Example 1. Consider the AVIE of the first kind as follows:
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Figure 2: Log[RMSE] versus the number of iteration steps with N = 8, δ = 0 for the
outer loop in Example 1 (left). The value of η never exceeds the critical value ãc = 2.5

in Example 1 (right).
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Figure 3: Log[RMSE] versus the number of iteration steps with N = 4, δ = 10−6 for the
outer loop in Example 1 (left). The value of η never exceeds the critical value ãc = 2.5
in Example 1 (right).

g(t) =

∫ t

0

cos(t− s)u(t− s)u(s)ds, t ∈ [0, 1], (15)

where g(t) = −2500e−t(t + t cos t − 2 sin t) and the exact solution u(t) =
50te−t.

Let m = 3, let N = 4, 8 and let the collocation parameters be c1 =
0.4, c2 = 0.6, c3 = 1. For n = 0, we have the following nonlinear system:

gδ(cih) = h

3∑
j,k=1

α
(i)
jkU

δ
0,jU

δ
0,k, i = 1, 2, 3, (16)
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Figure 4: Log[RMSE] versus the number of iteration steps with N = 8, δ = 10−6 for the
outer loop in Example 1 (left). The value of η never exceeds the critical value ãc = 2.5

in Example 1 (right).
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Figure 5: The absolute errors with N = 4, δ = 0 at the grid-points in Example 1 (left).
The absolute errors with N = 8, δ = 0 at the grid-points in Example 1 (right).

where

α
(i)
jk =

∫ ci

0

cos(cih− sh)Lj(ci − s)Lk(s)ds, i, j, k = 1, 2, 3.

For δ = 0, 10−6, we use the double iteration process (Algorithm 1) to solve
this problem with the initial guess U δ,0

0 = (1, 1, 1)T and the parameters
α = 0.1, Ĩmax = 30000, ãc = 2.5 and ϵ = 10−4. Figures 1–4 show that
for N = 4 and N = 8 with δ = 0, 10−6 the process terminates after 29 and 43
steps for the outer loop, respectively. Also, we observe that η never exceeds
the critical value ãc = 2.5, which once more shows that this method really
can guarantee the trajectory of the solution vector falls on the manifold. We
report the solutions of system (16) in Table 1 and use these values to solve
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Figure 6: The absolute errors with N = 4, δ = 10−6 at the grid-points in Example 1
(left). The absolute errors with N = 8, δ = 10−6 at the grid-points in Example 1 (right).
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Figure 7: Log[RMSE] versus the number of iteration steps with N = 4, δ = 0 for the
outer loop in Example 2 (left). The value of η never exceeds the critical value ãc = 2.5

in Example 2 (right).

the following linear system by the Lavrentiev m̃ times iterated regularization
method, for n = 1, . . . , N − 1:

h

3∑
j,k=1

∫ ci

0

cos[tn,i − (tn + sh)]Lj(ci − s)Lk(s)dsU
δ
0,jU

δ
n,k (17)

+ h

3∑
j,k=1

∫ ci

0

cos[tn,i − sh]Lj(s)Lk(ci − s)dsUδ
0,jU

δ
n,k

= gδ(tn,i)− h

n−1∑
l=1

3∑
j,k=1

∫ ci

0

cos[tn,i − (tl + sh)]Lj(ci − s)Lk(s)dsU
δ
n−l,jU

δ
l,k
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Figure 8: Log[RMSE] versus the number of iteration steps with N = 8, δ = 0 for the
outer loop in Example 2 (left). The value of η never exceeds the critical value ãc = 2.5

in Example 2 (right).
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Figure 9: Log[RMSE] versus the number of iteration steps with N = 4, δ = 10−4 for the
outer loop in Example 2 (left). The value of η never exceeds the critical value ãc = 2.5

in Example 2 (right).

− h

n−1∑
l=0

3∑
j,k=1

∫ 1

ci

cos[tn,i − (tl + sh)]Lj(1 + ci − s)Lk(s)dsU
δ
n−l−1,jU

δ
l,k,

i = 1, 2, 3.

In Algorithm 2, we choose initial guess U δ,0
n = (0, 0, 0)T , ᾱn = 0.01 and

m̃ = 20. The maximum absolute errors for N = 4, 8 and δ = 0, 10−6 have
been reported in Table 2. Also, Figures 5 and 6 show the absolute errors at
the grid-points for N = 4, 8 and δ = 0, 10−6.

Now, we consider a special case of (3) with K(t, s) = 1 from [3] as follows.

Example 2. [3] Consider the AVIE of the first kind as follows:
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Figure 10: Log[RMSE] versus the number of iteration steps with N = 8, δ = 10−4

for the outer loop in Example 2 (left). The value of η never exceeds the critical value
ãc = 2.5 in Example 2 (right).
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Figure 11: The absolute errors with N = 4, δ = 0 at the grid-points in Example 2 (left).
The absolute errors with N = 8, δ = 0 at the grid-points in Example 2 (right).

N = 4 N = 4 N = 8 N = 8

δ = 0 δ = 10−6 δ = 0 δ = 10−6

U δ
0,1 4.52533 4.52527 2.37834 2.37832

U δ
0,2 6.46103 6.46100 3.47984 3.47980

U δ
0,3 9.68703 9.68729 5.50843 5.50838

Table 1: The solution of system (16) in Example 1

g(t) =

∫ t

0

u(t− s)u(s)ds, t ∈ [0, 1], (18)
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Figure 12: The absolute errors with N = 4, δ = 10−4 at the grid-points in Example 2
(left). The absolute errors with N = 8, δ = 10−4 at the grid-points in Example 2 (right).
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Figure 13: The absolute errors obtained by method 1 [3] with N = 50, r = 4, δ = 0 at
the grid-points in Example 2 (left). The absolute errors obtained by method 1 [3] with
N = 100, r = 4, δ = 0 at the grid-points in Example 2 (right).

N δ = 0 δ = 10−6

4 4.74× 10−2 4.74× 10−2

8 6.54× 10−3 1.83× 10−2

Table 2: The maximum absolute errors in Example 1

where g(t) = 3
10 t

5 − 3
2 t

4 + t3 + 3
4 t

2 + 1
16 t and the exact solution u(t) =

1− 3(t− 1
2 )

2.

In Example 2, assume that m = 2, N = 4, 8, δ = 0, 10−4, and the col-
location parameters as c1 = 0.6, c2 = 1. For n = 0, we solve the obtained
nonlinear system by the double iteration process (Algorithm 1) with the ini-
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Figure 14: The absolute errors obtained by method 1 [3] with N = 50, r = 4, δ = 10−4

at the grid-points in Example 2 (left). The absolute errors obtained by method 1 [3]
with N = 100, r = 4, δ = 10−4 at the grid-points in Example 2 (right).

tial guess U δ,0
0 = (1, 1)T and the parameters α = 0.1, Ĩmax = 30000, ãc = 2.5

and ϵ = 10−4. In what follows, for n = 1, . . . , N − 1, we solve the obtained
linear system by the Lavrentiev m̃ times iterated regularization method with
initial guess U δ,0

n = (0, 0)T , ᾱn = 0.01 and m̃ = 20. The maximum absolute
errors for N = 4, 8 and δ = 0, 10−4 have been reported in Table 3.

N δ = 0 δ = 10−4

4 3.42× 10−2 3.56× 10−2

8 8.22× 10−3 9.76× 10−3

Table 3: The maximum absolute errors in Example 2

We also consider a local regularization technique from [3] by method 1 for
the auto-convolution integral equation of the first kind (18) and report the
maximum absolute errors for N = 50, 100, r = 4 and δ = 0, 10−4 in Table 4.

N δ = 0 δ = 10−4

50 3.42× 10−2 3.43× 10−2

100 1.71× 10−2 3.01× 10−2

Table 4: The maximum absolute errors obtained by method 1 [3] in Example 2

Similar to Example 1, in Figures 7–10, we show the number of the termi-
nation of the process in the outer loop and observe that η never exceeds the
critical value ãc = 2.5. Also, Figures 11 and 12 represent the absolute errors
at the grid-points for N = 4, 8 and δ = 0, 10−4. The absolute errors obtained
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by method 1 [3] with N = 50, 100, r = 4, δ = 0, 10−4 at the grid-points are
shown in Figures 13 and 14.

4 Conclusion

In this paper, we considered the numerical collocation method based on piece-
wise polynomials to solve the generalized version of the AVIE of the first kind
as an ill-posed problem. We obtained two ill-posed nonlinear and linear sys-
tems. The double iteration process and the Lavrentiev m̃ times iterated
regularization method have been considered nonlinear and linear systems,
respectively. Numerical examples demonstrated the validity and efficiency of
the proposed method. In our future work, we will investigate the existence,
uniqueness, and structure of the solution related to the generalized version
of the first-kind AVIEs similar to Theorem 1.
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