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The interpolated variational iteration
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optimal control problems
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Abstract

Despite the variety of methods available to solve nonlinear optimal con-
trol problems, numerical methods are still evolving to solve these problems.
This paper deals with the numerical solution of nonlinear optimal control
affine problems by the interpolated variational iteration method, which was
introduced in 2016 to improve the variational iteration method. For this
purpose, the optimality conditions are first derived as a two-point bound-
ary value problem and then converted to an initial value problem with
the unknown initial values for costates. The speed and convergence of the
method are compared with the existing methods in the form of three ex-
amples, and the initial values of the costates are obtained by an efficient
technique in each iteration.
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1 Introduction

One of the important problems in the field of engineering [13, 6], robotics
[14, 11], biology [1, 16], and so on, is finding the best control strategy to
use available resources optimally. In practice, most of these problems are
formulated nonlinearly, which in general do not have analytical solutions, and
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225 The interpolated variational iteration method ...

one must look for reliable numerical solutions for them. Generally, consider
the following nonlinear control system:

ẋ(t) = A(x(t)) +B(t)u(t), t ∈ [t0, tf ],
x(t0) = x0, x(tf ) = xf ,

(1)

where x(t) and u(t) are n- and m-vector of state and control functions, re-
spectively. The aim is to minimize the objective functional

J [x, u] =
1

2

∫ tf

t0

(xT (t)Q(t)x(t) + uT (t)R(t)u(t))dt, (2)

subject to the dynamical system (1). Moreover, Q(t) is a positive semi-
definite real matrix, and R(t) is a positive definite real matrix.

There are two approaches to solving this problem. One is the direct
method of parameterizing the state and control functions and solving a non-
linear optimization problem. The other is the indirect method of using opti-
mality conditions, derived by the Pontryagin maximum principle (PMP) or
Hamilton–Jacobi–Bellman equation [3, 15]. The main topic of our discussion
in this paper is the optimality conditions derived by PMP, which results in
the following two-point boundary value problem (TPBVP) as

ẋ(t) = A(x(t)) +B(t)u(t),

λ̇(t) = −Q(t)x(t)−AT
x (x(t))λ(t),

x(t0) = x0, x(tf ) = xf , (3)

where λ(t) is an n-vector of co-state functions, AT
x (x(t)) = ∇xA

T (x(t)), and
the optimal control is given by

u(t) = −R−1BT (t)λ(t). (4)

In 2012, Berkani, Manseur, and Maidi [4] used the variational iteration
method (VIM) to solve this problem, for which the control variable can be
calculated in terms of state variables. They then turned the problem into a
variational problem and solved it with VIM. It is noteworthy that the VIM is
an analytical-approximate method for solving initial value problems (IVPs),
which was introduced by He [8] in 1999, and many researchers developed
the method to increase its efficiency and validity in recent years [20, 5]. For
solving (3), the author and Effati [24] used a combination of the shooting
method with VIM. However, the time-consuming and complex integration of
nonlinear functions reduces its efficiency, at each iteration.

Matinfar and Saeidy [17] applied a modified VIM (MVIM) that uses
He polynomials. Simultaneously, Saberi Nik, Effati, and Yildirim [22] used
a differential transformation method along with differential transformation
polynomials to solve (3). A comparison between the existing methods,
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MVIM, Homotopy perturbation method (HPM), and Adomian decomposi-
tion method was done in 2016 by Jafari. Ghasempour, and Baleanu [9].

Mirhosseini-Alizamini and Effati [19] extended the VIM for optimal delay
control problems. In 2020, the author and Effati [25] used the successive
approximation method (SAM) to solve (3), which has a very good computa-
tional speed but does not guarantee the convergence for problems with large
domains.

An improvement of VIM, called Interpolated VIM (IVIM) introduced by
Salkuyeh and Tavakoli [23], interpolates the VIM with the well-known spline
functions, which make the method suitable for approximating all types of
L2[t0, tf ] solutions, especially for control and state functions. This property
motivates us to apply the IVIM for solving optimal control problems. This
method has low computational time in comparison with VIM since it uses an
approximation for integration. It also maintains accuracy and convergence.

This paper is organized as follows. In Section 2, the basic ideas of IVIM
are briefly described. Then, the application of IVIM for solving nonlinear op-
timal control problems (NOCPs) is explained in Section 3. Several numerical
examples are illustrated in Section 4, which show the accuracy and efficiency
of the proposed method compared to the existing ones.

2 Basic ideas of the interpolated variational iteration
method

As stated earlier, the VIM is an analytical-approximate iterative method
for solving IVPs [8]. To explain this method, consider the following one-
dimensional IVP

ẏ(t) = f(t, y(t)), t ∈ [0, T ],
y(0) = y0,

(5)

where y(·) ∈ R and f satisfies the Lipschitz condition:

|f(t, y(t))− f(t, ỹ(t))| ≤ L|y(t)− ỹ(t)|, (6)

for any t ∈ [0, T ] and for some Lipschitz constant L > 0. We make the
following iterative formula, which is known as the VIM main formula:

ym+1(t) = ym(t)+

∫ t

0

Λ(s, t) (ẏm(s)− f(s, ym(s))) ds, m = 0, 1, 2, . . . , (7)

where Λ(s, t) is known as a Lagrange multiplier [2, 28], and y0(t) should be
chosen such that it satisfies y0(0) = y0. The VIM formula produces a se-
quence of functions {ym(t)}, which converges to the exact solution of (5),
under suitable conditions and does not require any linearization or pertur-
bation. Due to the attractiveness of the method for calculating accurate
solutions, many researchers have used it to solve difficult problems such as
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dispersive optimal solitons [7], coupled Burgers’ equation [26], fractional op-
tion pricing [18], fractal Fisher’s equation [27]. However, the integration of
nonlinear function f(t, y(t)) in all these researches may greatly reduce the
speed of the method or lead to the failure of the method. To overcome this
problem, first, we apply the integration by parts for (7) to get:

ym+1(t) = Gm(t)−
∫ t

0

Hm(s, t)ds, (8)

where
Gm(t) = (1 + Λ(t, t))ym(t)− Λ(0, t)ym(0),

and
Hm(s, t) =

∂Λ

∂s
(s, t)ym(s) + Λ(s, t)f(s, ym(s)).

Now, we interpolate ym(t) by first order B-spline functions [12], at equidis-
tance points ti, i = 1, . . . , n on [0, T ]. For any i = 2, 3, . . . , n − 1, let us
define

Bi(t) =
t− ti−1

h
χ[ti−1,ti)(t) +

ti+1 − t

h
χ[ti,ti+1)(t),

and
Bn(t) =

t− tn−1

h
χ[tn−1,tn)(t),

where χA is the characteristic function defined on a set A. Its value is 1 on
A and is 0 otherwise. It is obvious from the definition that Bi(ti) = 1 and
Bi(tj) = 0, for j ̸= i. Then, we employ the interpolant

ŷm(t) =

n∑
i=2

ym(ti)Bi(t).

Thus, ŷm(ti) = ym(ti), for i = 2, . . . , n. Now, we substitute the interpolant
ŷm into (7) and after some simplifications, we arrive at

ym+1(ti) = ŷm+1(ti)

= Gm(ti)− h

i−1∑
r=2

Hm(tr, ti)−
h

2
(Hm(t1, ti) +Hm(ti, ti)) . (9)

This is the main formula of IVIM, which overcomes the nonlinear integration
of VIM and will be used as a tool for solving NOCPs in the next section.

Now, we state the convergence of VIM and IVIM sequences as the next
two theorems, which were proved in [23].

Theorem 1. Let f be a continuous function on [0, T ]. If ym(t) ∈ C1([0, T ])
for m = 0, 1, 2, . . ., then the VIM sequence (7) converges to the exact solution
of (5).
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Theorem 2. Let f be a two times continuously differentiable function. If
the VIM sequence (7) is to the exact solution of (5), then so is the IVIM
sequence (9).

3 The application of IVIM for solving NOCPs

For the sake of simplicity, we rewrite the TPBVP in (3) as

ẋ = F(t, x, λ),

λ̇ = G(t, x, λ),
x(t0) = x0, x(tf ) = xf , (10)

where

F(t, x, λ) = A(x(t))−B(t)R−1BT (t)λ(t),

G(t, x, λ) = −Q(t)x(t)−AT
x (x(t))λ(t).

This nonlinear TPBVP has no analytical solution in general. Thus, re-
searchers are looking for reliable and almost accurate solutions to it. The
technique we are studying here is IVIM, which was described in Section 2.
Given that the above problem is TPBVP, we first convert it to an IVP as
follows [24]:

ẋ = F(t, x, λ),

λ̇ = G(t, x, λ), t ∈ [t0, tf ]
x(t0) = x0, λ(t0) = α,

(11)

where α is an n-vector unknown variable. This variable could be identified
after sufficient iterations of IVIM.

As Section 2, we create the VIM correction functional as follows:

xm+1(t) = xm(t) +

∫ t

t0

Λ1(t, s) {ẋm(s)−F(s, xm(s), λm(s))} ds, (12)

λm+1(t) = λm(t) +

∫ t

t0

Λ2(t, s)
{
λ̇m(s)− G(s, xm(s), λm(s))

}
ds, (13)

with x0(t) = x0, λ0(t) = α and m ≥ 0. To determine general multipliers
Λ1(t, s) and Λ2(t, s), we restrict the variations for F and G, that is, δF̃ =

δG̃ = 0. Therefore, the optimal multipliers become Λ1(t, s) = Λ2(t, s) = −1.
Compared with (8), consider G1(t) and H1(t) corresponding to x(t) and

G1,m(t) = (1 + Λ1(t, t))xm(t)− Λ1(0, t)x0,

H1,m(s, t) =
∂Λ1

∂s
(s, t)xm(s) + Λ1(s, t)F(s, xm(s), λm(s)).
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Similarly, consider G2(t) and H2(t) corresponding to λ(t) and

G2,m(t) = (1 + Λ2(t, t))xm(t)− Λ2(0, t)α,

H2,m(s, t) =
∂Λ2

∂s
(s, t)xm(s) + Λ2(s, t)G(s, xm(s), λm(s)).

For a given n ∈ N, assume ti = t0 + (i − 1)h, i = 2, 3, . . ., where h =
tf−t0
n−1 .

Then, the B-spline interpolants of xm+1(t) and λm+1(t) become

x
(h)
m+1(t) =

n∑
i=2

x̂m+1(ti)Bi(t),

λ
(h)
m+1(t) =

n∑
i=2

λ̂m+1(ti)Bi(t),

where the coefficients are calculated as

xm+1(ti) = x̂m+1(ti)

= G1,m(ti)− h

i−1∑
r=2

H1,m(tr, ti)−
h

2
(H1,m(t1, ti) +H1,m(ti, ti)) ,

(14)
λm+1(ti) = λ̂m+1(ti)

= G2,m(ti)− h

i−1∑
r=2

H2,m(tr, ti)−
h

2
(H2,m(t1, ti) +H2,m(ti, ti)) ,

(15)

for any i = 2, 3, . . . , n. We call these two equations as the IVIM main formu-
las. The convergence of the IVIM is a straightforward conclusion of Theorems
1–2, which we state in the next theorem.
Theorem 3. Let F and G be two times continuously differentiable functions
with respect to their first variable and let they satisfy the Lipschitz condition.
If xm(t), λm(t) ∈ C1([t0, tf ]), then the IVIM of (14)–(15) is convergent to
the exact solutions of (11), say x∗(t, α) and λ∗(t, α). Accordingly, x∗(t, α∗),
λ∗(t, α∗) are the exact solution of (10) when α∗ is the real root of x∗(tf , α) =
xf .
Proof. Since F and G are continuous on [t0, tf ], and xm(t), λm(t) ∈ C1([t0, tf ]),
Theorem 3 guarantees the convergence of the VIM formulas (12)–(13) to
the exact solution of (11). Besides, since F and G are two times contin-
uously differentiable functions, Theorem 4 ensures that the IVIM is con-
vergent to the exact solution of (11), say x∗(t, α) and λ∗(t, α). Clearly,
for every α, x∗(t0, α) = x0 and λ∗(t0, α) = α. Then, from (10), we have
x(tf ) = xf = x∗(tf , α). Therefore, to get the exact solution of (10), one
should solve x∗(tf , α) = xf for some appropriate real α.
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Theorem 4. Under the assumptions of Theorem 3, the sequences {um(t)}
and {Jm} defined by

um(t) = −R−1BT (t)λm(t), (16)

Jm =
h

2
(L(x0, um(t1)) + L(xm(tf ), 0)) + h

n−1∑
i=2

L(xm(ti), um(ti)), (17)

converge to the optimal control and optimal objective value, respectively,
where L(x, u) = 1

2 (x
TQx+ uTRu).

Proof. Taking limit from (16) and putting α = α∗ yield

u∗(t) := lim
m→∞

um(t) = −R−1BT (t) lim
m→∞

λm(t)

= −R−1BT (t)λ∗(t, α∗),

where u∗(t) is the optimal control function, since x∗(t, α∗) and λ∗(t, α∗) are
the exact solutions of extreme conditions in (10).

Now, taking limit from (17), as n,m → ∞, and using the trapezoidal
integration rule result in

lim
m→∞

lim
n→∞

Jm,n

= lim
m→∞

lim
n→∞

h

2
(L(x0, um(t1)) + L(xm(tf ), 0)) + h

n−1∑
i=2

L(xm(ti), um(ti))

= lim
m→∞

∫ tf

t0

L(xm(t), um(t))dt

= lim
m→∞

1

2

∫ tf

t0

(
xm(t)Q(t)xm(t) + um(t)TR(t)um(t)

)
dt

=
1

2

∫ tf

t0

(
lim

m→∞
xm(t)Q(t) lim

m→∞
xm(t) + lim

m→∞
uT
m(t)R(t) lim

m→∞
um(t)

)
dt

=
1

2

∫ tf

t0

(
x∗(t, α∗)Q(t)x∗(t, α∗) + u∗(t)TRu∗(t)

)
dt

= J∗.

It follows that J∗ is the optimal objective value and the proof is completed.

Now, we present an algorithm to summarize our proposed method. We
choose the stopping criterion

Ēm =

∣∣∣∣Jm − Jm−1

Jm

∣∣∣∣ < ϵ, (18)
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which maintains the accuracy of the objective value for any sufficiently small
tolerance limit ϵ > 0.

Algorithm of IVIM for solving nonlinear OCPs

Step 1. Let m := 1, x0(t) := x0, λ0(t) := α and ϵ > 0.
Step 2. Calculate state and costate functions, xm+1(t, α) and λm+1(t, α),
through the IVIM formulas (14)–(15).
Step 3. Solve xm+1(tf , α) = xf for α, to get α∗.
Step 4. Find the suboptimal control um+1(t, α

∗) and the suboptimal objec-
tive value Jm+1, by (16)–(17).
Step 5. If Ēm+1 < ϵ, then goto Step 6; otherwise let m := m+ 1 and goto
Step 2.
Step 6. Stop the Algorithm. um+1(t) and Jm+1 are the desired optimal
control and objective value.

Remark 1. If the state function has free final condition, then the costate
final condition λ(tf ) = 0 must be applied. Therefore, to calculate α in Step
3, the equation λm+1(tf , α) = 0 must be used instead of xm+1(tf , α) = xf .

4 Illustrative examples

In this section, we give two nonlinear examples to illustrate the reliability
and efficiency of our proposed method. In the first example, we describe the
algorithm process in detail. Also, we present the second the third example
to compare the method with some other existing methods. Since there are
no exact solutions for these three examples, we use criterion (18) to stop
the algorithm and check the accuracy of the method. Besides, we use the
Maple “dsolve” package as a reliable solution for comparison. The codes
were developed using symbolic software Maple 18 on a machine with Intel
Core 2 Due Processor 2.53 GHz and 4 GB RAM.

Example 1. Consider the following nonlinear control system [24, 25]:

ẋ =
1

2
x2(t) sinx(t) + u(t), t ∈ [0, 1],

x(0) = 0, x(1) = 0.5,

under which the following objective functional should be minimized:

J =

∫ 1

0

u2(t)dt.

Conforming to (3), we have
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ẋ(t) =
1

2
x2(t) sinx(t)− 1

2
λ(t), (19)

λ̇(t) = −λ(t)x(t) sinx(t)− 1

2
λ(t)x2(t) cosx(t), t ∈ [0, 1] (20)

x(0) = 0, x(1) = 0.5, (21)

and the control function is u(t) = − 1
2λ(t). We substitute the final state

condition x(1) = 0.5, by λ(0) = α to get

ẋ(t) =
1

2
x2(t) sinx(t)− 1

2
λ(t),

λ̇(t) = −λ(t)x(t) sinx(t)− 1

2
λ(t)x2(t) cosx(t), t ∈ [0, 1],

x(0) = 0, λ(0) = α,

where α is an unknown real variable. In view of (11), F and G are the right-
hand sides of (19)–(20), respectively. They are analytic functions with respect
to x and λ, and they satisfy the Lipschitz condition (6), with LF = 9/16 and
LG = 5/16, whenever |x| ≤ 0.5 and λ ≤ 1. Hence, Theorem 3 guarantees the
convergence of both VIM and IVIM formulas. The VIM formulas (12)–(13)
become

xm+1(t) =xm(t)−
∫ t

0

{ẋm(s)− 1

2
x2
m(s) sinxm(s) +

1

2
λm(s)}ds,

λm+1(t) =λm(t)−
∫ t

0

{λ̇m(s) + λm(s)xm(s) sinxm(s)

+
1

2
λm(s)x2

m(s) cosxm(s)}ds,

x0(t) =0, λ0(t) = α, m ≥ 0.

Now, interpolating VIM at tj = 0, 1
2 , 1, the IVIM formulas (14)–(15) give

the following results, after the first iteration:

x1(tj) = 0, −1

4
α− 1

128
α2 sin(1

4
α), − 1

64
α2 sin(1

4
α)− 1

2
α− 1

32
α2 sin(1

2
α),

λ1(tj) = α, α− 1

16
α2 sin(1

4
α)− 1

128
α3 cos(1

4
α),

α− 1

8
α2 sin(1

4
α)− 1

64
α3 cos(1

4
α)− 1

8
α2 sin(1

2
α)− 1

32
α3 cos(1

2
α).

The final state condition, x1(1) = 0.5, results in

− 1

64
α2 sin(1

4
α)− 1

2
α− 1

32
α2 sin(1

2
α) = 0.5, (22)
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Table 1: Calculation of α for n = 3 and m = 1, Example 1.

α Objective functional
−0.9659445089 0.2146370242
−1.023796574 0.2387946125

which obtains two real roots. These real roots along with their corresponding
objective values are summarized in Table 1. We suggest choosing the parame-
ter α, which gives a better objective value, that is, α = −0.9659445089. This
parameter could be a good starting point for root-finding iterative methods,
such as Newton, at the next iteration of the IVIM.
Table 2 shows the results of IVIM procedure up to m = 5 iterations with
n = 10 nodes.

Table 2: Simulation results for n = 10, Example 1.

m Jm Ēm CPU time α
1 0.22264786 - 0.000 -0.9717459824
2 0.23465678 5.1177E-02 0.016 -0.9985940802
3 0.23541609 3.2254E-03 0.078 -0.9997821239
4 0.23513137 1.2109E-03 0.359 -0.9991493164
5 0.23512939 8.4519E-06 2.266 -0.9991493164

To compare the IVIM with two recent methods, VIM [24] and Modal
series [10], we summarize their results in Table 3 after five iterations with the
same stopping criterion (18), with ϵ = 2×10−5. Clearly, the IVIM converges
rapidly, in contrast with VIM and Modal series, since it reaches a better
tolerance limit. Also, the suboptimal control and state of the proposed VIM
and Modal series methods are demonstrated in Figure 1.

Table 3: Comparing results of IVIM, VIM, Modal series, Example 1.

Method Jm Ēm

IVIM (m=5) 0.2351 8.5E-06
VIM (m=5) 0.2353 1.7E-03

Modal series method (m=5) 0.2346 1.3E-03

Example 2. Consider the nonlinear control system described by

ẋ1 = x2 + x1x2,
ẋ2 = −x1 + x2 + x2

2 + u,
x1(0) = −0.8, x2(0) = 0,

(23)

and the objective functional

Iran. j. numer. anal. optim., Vol. 13, No. 2, 2023,pp 224–242
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Figure 1: Suboptimal state and control functions, Example 1.

J =
1

2

∫ 1

0

(x2
1 + x2

2 + u2)dt. (24)

One can obtain the optimality conditions as

λ̇1 = −(x1 + λ1x2 − λ2),

λ̇2 = −(x2 + λ1(1 + x1) + λ2(1 + 2x2),
ẋ1 = x2 + x1x2,
ẋ2 = −x1 + x2 + x2

2 − λ2,
x1(0) = −0.8, x2(0) = 0,

and the optimal control law as u = −λ2. Since x1(t) and x2(t) are free at
t = 1, we use the Remark 1 and put λ1(1) = λ2(1) = 0.

Now, due to the polynomial nature of the system and their validity in the
assumptions of Theorem 3, we apply the proposed algorithm for ϵ = 10−3

to get an accurate optimal objective value. It is worth noting that for some
iterations, m = 2, solving λ1,m(1, α) = 0 and λ2,m(1, α) = 0, results in
different values of α. In these cases, as shown in Table 4, we clearly select
the vector α that yields the minimum objective functional, that is, α1 =
−1.227402971 and α2 = 0.5053886518.

Table 4: Calculation of α for m = 2, Example 2.

α1 α2 Objective functional
-1.227402971 0.5053886518 0.4113400952
4.538547207 -1.207206466 2.664175385
1.875104138 -1.907110672 4.484594474
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Table 5: Simulation results for different iterations, Example 2.

m VIM SAM IVIM
(Itr.) Jm Ēm Time Jm Ēm Time Jm Ēm Time
1 0.8533 - 0.031 0.5357 - 0.015 0.8560 - 0
2 0.4108 1.1E-0 0.031 0.7575 2.9E-1 0.031 0.4113 1.1E-0 0.015
3 0.4325 5.0E-2 0.046 0.9930 2.4E-1 0.063 0.4340 5.2E-2 0.078
4 0.4395 1.6E-2 0.125 0.6750 4.7E-1 0.046 0.4413 1.7E-2 0.124
5 0.4422 6.1E-3 1.544 0.3503 9.3E-1 0.094 0.4443 6.9E-3 0.296
6 0.4430 1.8E-3 45.693 0.4245 1.7E-1 0.078 0.4453 2.3E-3 1.279
7 - - >1800 0.6025 3.0E-1 0.078 0.4456 6.1E-4 7.504

Then, one can use these α1 and α2 as initial guesses for solving λ1,3(1, α) =
0 and λ2,3(1, α) = 0. This technique greatly improves system speed and
reduces computational complexity.

The objective values, relative errors and the CPU time of the algorithm
iterations are summarized in Table 5. Moreover, to clarify the reliability
of the algorithm, we compare the results with VIM [24] and SAM [25]. As
shown in Table 5, SAM has a divergent behavior, and although it has less
computational time than the other two methods, it does not reach the desired
tolerance limit. Also, the VIM requires more than 1800 seconds of computa-
tional time for m = 7 and does not reach the desired tolerance. This is while
the IVIM reaches the desired tolerance limit after m = 7 iterations, and it
only takes 7.504 seconds of CPU time.

From the beginning of the algorithm, if we considered ϵ = 5× 10−3, both
IVIM and VIM would get the desired solutions after m = 6 iterations, but
IVIM in 1.279 seconds and VIM in 45.693 seconds of CPU time, which clearly
shows the speed of convergence of IVIM.

Figure 2 shows the solutions after m = 7 algorithm iterations, in compar-
ison with “dsolve” package of Maple as the exact solutions.

Example 3. Consider the optimal maneuvers of a rigid asymmetric space-
craft given by [21]

ẋ1(t) = −I3 − I2
I1

x2(t)x3(t) +
1

I1
u1(t),

ẋ2(t) = −I1 − I3
I2

x1(t)x3(t) +
1

I2
u2(t), (25)

ẋ3(t) = −I2 − I1
I3

x1(t)x2(t) +
1

I3
u3(t),

with the boundary conditions

x1(0) = 0.01 r/s, x2(0) = 0.005 r/s, x3(0) = 0.001 r/s,

x1(100) = x2(100) = x3(100) = 0 r/s, (26)

Iran. j. numer. anal. optim., Vol. 13, No. 2, 2023,pp 224–242



Shirazian 236

Figure 2: The optimal trajectories and control of Example 2.

where x1, x2, and x3 are angular velocities of the spacecraft, u1, u2, and u3

are control torques, I1 = 86.24, I2 = 85.07, and I3 = 113.59 kg m2 are the
spacecraft principle inertia. The controls ui(t), i = 1, 2, 3, should be chosen
to minimize the following quadratic performance index:

J [x, u] =
1

2

∫ 100

0

(u2
1(t) + u2

2(t) + u2
3(t))dt, (27)

In view of (1)–(2), we have:

A(x(t)) =

− I3−I2
I1

x2(t)x3(t)

− I1−I3
I2

x1(t)x3(t)

− I2−I1
I3

x1(t)x2(t)

 .

Also, B(t) = diag(
1

I1
,
1

I2
,
1

I3
), Q(t) = O3×3, and R(t) = I3×3. Then, the

optimality conditions become

ẋ1(t) = −I3 − I2
I1

x2(t)x3(t)−
λ1(t)

I21
,
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ẋ2(t) = −I1 − I3
I2

x1(t)x3(t)−
λ2(t)

I22
,

ẋ3(t) = −I2 − I1
I3

x1(t)x2(t)−
λ3(t)

I23
,

λ̇1(t) =
I1 − I3

I2
x3(t)λ2(t) +

I2 − I1
I3

x2(t)λ3(t),

λ̇2(t) =
I3 − I2

I1
x3(t)λ1(t) +

I2 − I1
I3

x1(t)λ3(t),

λ̇3(t) =
I3 − I2

I1
x2(t)λ1(t) +

I1 − I3
I2

x1(t)λ2(t),

with the boundary conditions (26), and the optimal control laws are given
by

u∗
i (t) = −λi(t)

Ii
, i = 1, 2, 3, t ∈ [0, 100]. (28)

By using the proposed algorithm with ϵ = 10−6, we reach the desired solution
after m = 6 iterations.

Table 6: Simulation results for n = 10, Example 3.

m Jm Ēm α1 α2 α3

1 0.00468914 - 0.7314359 0.3851119 0.1356719
2 0.00468570 7.3285E-04 0.7453951 0.3581385 0.1272553
3 0.00468711 2.9978E-04 0.7437911 0.3617697 0.1281838
4 0.00468791 1.7023E-04 0.7437022 0.3619104 0.1291345
5 0.00468782 1.9383E-05 0.7437007 0.3619099 0.1290549
6 0.00468781 7.9781E-07 0.7437039 0.3619034 0.1290513

The simulation results along with the estimation of unknown parameters
αi, i = 1, 2, 3, are given in Table 6.

Table 7: The maximum error of x1(t) in comparison to HPM [21], Example 3.

m HPM IVIM
(Itr.) Max Error CPU time Max Error CPU time
2 7.3102E-05 7.328 9.7727E-06 0.031
3 9.2612E-06 12.542 5.7522E-07 0.109
4 1.9301E-06 18.664 4.4215E-08 0.188
5 2.2560E-07 36.729 3.7427E-08 0.655
6 3.1420E-08 46.401 1.6156E-08 3.994

To compare the solutions with HPM [21], we have summarized the maxi-
mum error of x1(t) in both methods compared to “dsolve” package of Maple
as the exact solution, In Table 7. As is evident, the IVIM is faster and
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more accurate than HPM, so as to reach the error of 5 × 10−8, HPM needs
m = 6 iterations with 46.401 seconds of calculation time, but IVIM, needs 4
iterations with 0.188 seconds of calculation time.

Figure 3: The optimal states x1(t),x2(t), and x3(t), Example 3.

Figures 3–4 show the optimal states and controls of IVIM for m = 6
iterations compared to “dsolve” solutions. The maximum errors of our pro-
posed method are 1.6156×10−8, 1.0231×10−8, and 1.39963×10−8, for state
functions x1, x2, and x3, respectively, and 3.4660× 10−7, 6.8377× 10−7, and
2.1526× 10−7, for control functions u1, u2, and u3, respectively. Meanwhile,
only 3.994 seconds are needed to perform this operation.

5 Conclusions

In this paper, the interpolated VIM was used to solve NOCPs. This method
used basic spline functions as interpolants, which is desirable for the approxi-
mate calculation of state and control functions. This method did not require
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Figure 4: The optimal controls u1(t),u2(t), and u3(t), Example 3.

complex analytical integrations and therefore was faster than VIM. Further-
more, the convergence range of the IVIM was wider, compared to the new
SAM. In each iteration of the method, the co-state initial value was quickly
calculated with an efficient technique described in the Examples section. Fi-
nally, the efficiency and reliability of the method were discussed, and the
“dsolve” package of Maple 18 was used as the exact solution to check the
validity of the method.
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