Arani, S.H. and Kerachian, M.A. (2017) Rising rates of colorectal cancer among younger Iranians: is diet to blame?. Current Oncololgy 24(2):131-137.
Arisawa, T., Tahara, T., Shibata, T., Nagasaka, M., Nakamura, M., Kamiya, Y., et al. (2007) Genetic polymorphisms of molecules associated with inflammation and immune response in Japanese subjects with functional dyspepsia. International journal of molecular medicine 20(5): 717-723.
Azimzadeh, P., Romani, S., Mirtalebi, H., Fatemi, S.R., Kazemian, S., Khanyaghma, M., et al. (2013) Association of co-stimulatory human B-lymphocyte antigen B7-2 (CD86) gene polymorphism with colorectal cancer risk. Gastroenterology and Hepatology from Bed to Bench 6(2): 86.
Canedo, P., Durães, C., Pereira, F., Regalo, G., Lunet, N., Barros, H., et al. (2008) Tumor necrosis factor alpha extended haplotypes and risk of gastric carcinoma. Cancer Epidemiology, Biomarkers & Prevvention 17(9): 2416-2420.
Di Pasqua, A.J., Wallner, S., Kerwood, D.J. and Dabrowiak, J.C. (2009) Adsorption of the PtII anticancer drug carboplatin by mesoporous silica. Chemistry & Biodiversity 6(9): 1343-1349.
Fang, S.H., Efron, J.E., Berho, M.E. and Wexner, S.D., (2014) Dilemma of stage II colon cancer and decision making for adjuvant chemotherapy. Journal of the American College of Surgeons 219(5): 1056-1069.
Forat-Yazdi, M., Gholi-Nataj, M., Neamatzadeh, H., Nourbakhsh, P. and Shaker-Ardakani, H. (2015) Association of XRCC1 Arg399Gln polymorphism with colorectal cancer risk: a HuGE meta analysis of 35 studies. Asian Pacific Journal of Cancer Prevention 16(8): 3285-3291.
Geng, P., Zhao, X., Xiang, L., Liao, Y., Wang, N., Ou, J., et al. (2014) Distinct role of CD86 polymorphisms (rs1129055, rs17281995) in risk of cancer: evidence from a meta-analysis. Plos one 9(11): e109131.
González, C.A., Sala, N. and Capellá, G. (2002) Genetic susceptibility and gastric cancer risk. International Journal of Cancer 100(3): 249-260.
Hu, J.Y., Wang, S., Zhu, J.G., Zhou, G.H. and Sun, Q.B. (1999) Expression of B7 costimulation molecules by colorectal cancer cells reducestumorigenicity and induces anti-tumor immunity. World Journal of Gastroenterology 5(2): 147.
Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. and Forman, D. (2011) Global cancer statistics. A Cancer Journal for Clinicians 61(2):69-90.
Koido, S., Ohkusa, T., Homma, S., Namiki, Y., Takakura, K., Saito, K., et al. (2013) Immunotherapy for colorectal cancer. World journal of gastroenterology: World Journal of Gastroenterology 19(46): 8531.
Landi, D., Gemignani, F., Naccarati, A., Pardini, B., Vodicka, P., Vodickova, L., et al. (2008) Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis 29(3): 579-584.
Lenschow, D.J., Walunas, T.L. and Bluestone, J.A. (1996) CD28/B7 system of T cell costimulation. Annul Review of Immunology 14(1): 233-258.
Machado, J.C., Figueiredo, C., Canedo, P., Pharoah, P., Carvalho, R., Nabais, S., et al. (2003) A proinflammatory genetic profile increases the risk for chronic atrophic gastritis and gastric carcinoma. Gastroenterology 125(2): 364-371.
Milne, A.N., Carneiro, F., O’morain, C. and Offerhaus, G.J.A. (2009) Nature meets nurture: molecular genetics of gastric cancer. Human Genetic 126(5): 615-628.
Namazi, A., Forat-Yazdi, M., Jafari, M.A., Foroughi, E., Farahnak, S., Nasiri, R., et al. (2017) Association between polymorphisms of ERCC5 gene and susceptibility to gastric cancer: A systematic review and meta-analysis. Asian Pacific Journal of Cancer Prevention 18(10): 2611.
Namazi, A., Forat-Yazdi, M., Jafari, M., Farahnak, S., Nasiri, R., Foroughi, E., et al. (2018) Association of interleukin-10-1082 A/G (rs1800896) polymorphism with susceptibility to gastric cancer: meta-analysis of 6,101 cases and 8,557 controls. Arq Gastroenterol 55: 33-40.
Ohtani, H. (2007) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer. Cancer immunology 7(1).
Poorolajal, J., Moradi, L., Mohammadi, Y., Cheraghi, Z. and Gohari-Ensaf, F. (2020) Risk factors for stomach cancer: a systematic review and meta-analysis. Epidemiology and health 42.
Saeki, N., Saito, A., Choi, I.J., Matsuo, K., Ohnami, S., Totsuka, H., et al. (2011) A functional single nucleotide polymorphism in mucin 1, at chromosome 1q22, determines susceptibility to diffuse-type gastric cancer. Gastroenterology 140(3): 892-902.
Shademan, B., Masjedi, S., Karamad, V., Isazadeh, A., Sogutlu, F. and Nourazarian, A. (2022) CRISPR Technology in Cancer Diagnosis and Treatment: Opportunities and Challenges. Biochemical Genetics 1-25.
van der Merwe, P.A., Bodian, D.L., Daenke, S., Linsley, P. and Davis, S.J. (1997) CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. Journal of Experimental Medicine 185(3) : 393-404.
Wu, X., Zeng, Z., Chen, B., Yu, J., Xue, L., Hao, Y., et al. (2010) Association between polymorphisms in interleukin‐17A and interleukin‐17F genes and risks of gastric cancer. International Journal of Cancer 127(1): 86-92.
Yin, M., Hu, Z., Tan, D., Ajani, J.A. and Wei, Q. (2009) Molecular epidemiology of genetic susceptibility to gastric cancer: focus on single nucleotide polymorphisms in gastric carcinogenesis. American Journal of Translational Research 1(1): 44.
Zhuang, W., Wu, X.T., Zhou, Y., Liu, L., Liu, G.J., Wu, T.X., et al. (2010) Interleukin10-592 promoter polymorphism associated with gastric cancer among Asians: a meta-analysis of epidemiologic studies. Digestive Diseases and Sciences 55(6): 1525-1532.