- Agusto, L., Jacqu, R., Binkely, D., & Rothe, A. (2002). Impact of European temperate forests on soil fertility. Annals of Forest Science 59: 233-253. https://doi.org/10.1051/forest:2002020.
- Anderson, J.P.E., & Domsch, K.H. (1975). Measurement of bacterial and fungal contribution to the respiration of selected agricultural soils. Canadian Journal of Microbiology 21: 314–322.
- Anderson, T.H., & Domsch, K.H. (1985). Maintenance carbon requirements of actively-metabolizing microbial populations under in situ conditions. Soil Biology and Biochemistry 17(2): 197-203. https://doi.org/10.1016/0038-0717(85)90115-4.
- Avellaneda-Torres, L.M., Melgarejo, L.M., Narváez-Cuenca, C.E., & Sánchez, J. (2013). Enzymatic activities of potato crop soils subjected to conventional management and grassland soils. Journal of Soil Science and Plant Nutrition 13(2): 301-312. http://dx.doi.org/10.4067/S0718-95162013005000025.
- Ayres, E., Steltzer, H., Berg, S., Wallenstein, M.D., Simmons, B.L., & Wall, D.H.) 2009). Tree species traits influence soil physical, chemical, and biological properties in high elevation forests. PLOS One 4(6): e5964. https://doi.org/10.1371/journal.pone.0005964.
- Bailey, V.L., Smith, J.L., & Bolton Jr, H. (2002). Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biology and Biochemistry 34(7): 997-1007. https://doi.org/10.1016/S0038-0717(02)00033-0.
- Bakhshipour, R., Ramezanpour, H., & Lashkarboluki, E. (2012). Studying the effect of Pinus taeda and Populus plantation on some forest soils properties (Case study: Fidareh of Lahidjan). Iranian Journal of Forest 4(4): 321-332. (In Persian with English abstract)
- Behera, N., & Sahani, U. (2003). Soil microbial biomass and activity in response to Eucalyptus plantation and natural regeneration on tropical soil. Forest Ecology and Management 174(1-3): 1-11. https://doi.org/10.1016/S0378-1127(02)00057-9.
- Binkley, D. (2010). The influence of tree species on forest soils, processes and patterns. In: Proceedings of the trees and soil workshop. Mead, D.J., & Cornforth, I.S. (eds.). Agronomy Society of New Zealand Special Publication. Lincoln University Press, Canterbury.
- Błońska, E., Lasota, J., & Zwydak, M. (2017). The relationship between soil properties, enzyme activity and land use. Forest Research Papers 78(1): 39-44. https://depot.ceon.pl/handle/123456789/15059.
- Cai, D., Yang, X., Wang, S., Chao, Y., Morel, J.L., & Qiu, R. (2017). Effects of dissolved organic matter derived from forest leaf litter on biodegradation of phenanthrene in aqueous phase. Journal of Hazardous Materials 324: 516-525. https://doi.org/10.1016/j.jhazmat.2016.11.020.
- Chen, J., Wang, Q., Li, M., Liu, F., & Li, W. (2016). Does the different photosynthetic pathway of plants affect soil respiration in a subtropical wetland. Ecology and Evolution6(22): 8010-8017. https://doi.org/10.1002/ece3.2523.
- Deharveng, L. (2011). Soil collembola diversity, endemism and reforestation: A case study in the Pyrenees (France). Conservation Biology 10: 74-84. https://doi.org/10.1046/j.1523-1739.1996.10010074.x.
- Ghorbanzadeh, N., Pourbabaei, H., Salehi, A., Soltani Tolarood, A.A., & Alavi, S.J. (2018). Investigation of the microbial and soil invertebrates biodiversity indices of hard wood and soft wood plantations in west of Guilan province. Applied Soil Research 6(3): 1-12. (In Persian with English abstract)
- Gianfreda, L., & Bollag, M.J. (1996). Influence of Natural and Anthropogenic Factors on Enzyme Activity in Soil. Soil Biochemistry 9: 123-193.
- Hölscher, D., Hertel, D., Leuschner, C., & Hottkowitz, M. (2002). Tree species diversity and soil patchiness in a temperate broad-leaved forest with limited rooting space. Flora-Morphology. Distribution, Functional Ecology of Plants 197(2): 118-125. https://doi.org/10.1078/0367-2530-00021.
- Hur, J., Park, M.H., & Schlautman, M.A. (2009). Microbial transformation of dissolved leaf litter organic matter and its effects on selected organic matter operational descriptors. Environmental Science and Technology 43(7): 2315-2321. https://doi.org/10.1021/es802773b.
- Iovieno, P., Alfani, A., & Bååth, E. (2010). Soil microbial community structure and biomass as affected by Pinus pinea plantation in two Mediterranean areas. Applied Soil Ecology 45(1): 56-63. 1016/j.apsoil.2010.02.001.
- Islam, K.R., & Weil, R.R. (2000). Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture, Ecosystems and Environment 79: 9–16. https://doi.org/10.1016/S0167-8809(99)00145-0.
- Jones, D.L., Cooledge, E.C., Hoyle, F.C., Griffiths, R.I., & Murphy, D.V. (2019). PH and exchangeable aluminum are major regulators of microbial energy flow and carbon use efficiency in soil microbial communities. Soil Biology and Biochemistry 138: 107584. https://doi.org/10.1016/j.soilbio.2019.107584.
- Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils 6(1): 68-72. https://doi.org/10.1007/BF00257924.
- Khormali, F., & Shamsi, S. (2009). Micromorphology and quality attributes of the loess derived soils affected by land use change: a case study in Ghapan watershed, northern Iran. Journal of Mountain Science 6: 197-204. https://doi.org/10.1007/s11629-009-1037-z.
- Kiani, F., Jalalian, A., Pashaee, A., & Khademi, H. (2004). Effect of deforestation on selected soil quality attributes in loess-derived land forms of Golestan Province, northern Iran. Proceedings of the Fourth International Iran and Russia Conference: 546-550.
- Kooch, Y. (2012). Soil variability related to pit and mound, canopy cover and individual trees in a Hyrcanian Oriental Beech stand. Ph.D. Thesis, Tarbiat Modares University, 203p. (In Persian with English abstract)
- Kooch, Y., & Parsapoor, M.K. (2016). The effects of broad and needle-leaved forest covers on soil microbial indices. Journal of Water and Soil Conservation 23(2): 195-210. https://doi.org/22069/jwfst.2016.3063.
- Kooch, Y., & Zoghi, Z. (2014). Comparison of soil fertility of Acer insigne, Quercus castaneifolia and Pinus brutia stands in the Hyrcanian forests of Iran. Chine. Journal of Applied Environmental and Biological Sciences 20: 899-905. https://doi.org/3724/SP.J.1145.2014.02011.
- Leirós, C., Trasar-Cepeda, C., Seoane, S., & Gil-Sotres, F. (2000). Biochemical properties of acid soils under climax vegetation (Atlantic Oakwood) in an area of the European temperate–humid zone (Galicia, NW Spain): general parameters. Soil Biology and Biochemistry 32: 733-745. https://doi.org/10.1016/S0038-0717(99)00195-9.
- Mallik, A.U., & Hu, D. (1997). Soil respiration following site preparation treatments in boreal mixedwood forest. Forest Ecology and Management 97: 265–275. https://doi.org/10.1016/S0378-1127(97)00067-4.
- Mu, Z., Huang, A., Ni, J., & Xie, D. (2014). Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio. PlOs One 9(5): e96572. https://doi.org/10.1371/journal.pone.0096572.
- Nannipieri, P., & Alef, K. (1995). Methods in Applied Soil Microbiology and Biochemistry. Netherlands: Elsevier Science.
- Neatrour, M.A., Jones, R.H., & Golladay, S.W. (2005). Correlations between soil nutrients availability and fine- root biomass at two spatial scales in forested wetlands with contrasting hydrological regimes. Canadian Journal of Forest Research 35(12): 2934-2941. https://doi.org/10.1139/x05-217.
- Polyak, Y.M., & Sukcharevich, V.I. (2019). Allelopathic interactions between plants and microorganisms in soil ecosystems. Biology Bulletin Reviews 9(6): 562-574. https://doi.org/1134/S2079086419060033.
- Rasouli-Sadaghiani, M.H., Barin, M., Siavash Moghaddam, S., Damalas, C.A., & Ghodrat, K. (2018). Soil quality of an Iranian forest ecosystem after conversion to various types of land use. Environmental Monitoring and Assessment8: 447. https://doi.org/10.1007/s10661-018-6815-z.
- Salehi, A., Matinizadeh, M., & Tamjidi, J. (2012). Investigation on effect of forest plantation of Alnus ghutinosa (Gaertn.) and Pinus taeda L. on soil microbial activity and biomass (case study: Geisom site, west of Guilan province, Iran). Iranian Journal of Forest and Poplar Research 20(2): 345-334. (In Persian with English abstract). https://doi.org/10.22092/ijfpr.2012.107304.
- Sheikhloo, F., & Rasouli Sadaghiani, M. (2016). Effects of different agronomic and forest land uses on soil enzyme activity. Iranian Journal of Soil and Water Research 47(1): 205-216. (In Persian with English abstract). https://doi.org/22059/ijswr.2016.57992.
- Silva, E.D., de Medeiros, E.V., Duda, P., Lira, M.A., de Oliveira, J.B., dos Santos, U.J., & Hammecker, C. (2019). Seasonal effect of land use type on soil absolute and specific enzyme activities in a Brazilian semi-arid region. Catena 172: 397-407. https://doi.org/10.1016/j.catena.2018.09.007.
- Singh, R., Bhardwaj, D.R., Pala, N.A., Kaushal, R., & Rajput, B.S. (2018). Soil microbial characteristics in sub-tropical agro-ecosystems of North Western Himalaya. Current Science 115: 1956-1959. https://www.jstor.org/stable/26978529.
- Soleimani, A., Hosseini, S.M., Bavani, A.R.M., Jafari, M., & Francaviglia, R. (2019). Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran. Catena 177: 227-237. https://doi.org/10.1016/j.catena.2019.02.018.
- Susyan, E.A., Ananyeva, N.D., & Blagodatskaya, E.V. (2005). The antibiotic-aided distinguishing of fungal and bacterial substrate-induced respiration in various soil ecosystems. Microbiology74(3): 336-342. https://doi.org/10.1007/s11021-005-0072-1.
- Tabatabai, M.A., & Bremner, J.M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry 1(4): 301-307. https://doi.org/10.1016/0038-0717(69)90012-1.
- Ushio, M., Kitayama, K., & Balser, C. (2010). Tree species effects on soil enzyme activities through effects on soil physicochemical and microbial properties in a tropical montane forest on Mt. Kinabalu, Borneo. Pedobiologia 53: 227-233. https://doi.org/10.1016/j.pedobi.2009.12.003.
- Wani, F.S., Akhter, F., Mir, S., Baba, Z.A., Maqbool, S., Zargar, M.Y., & Nabi, S.U. (2018). Assessment of soil microbial status under different land use systems in North Western Zone of Kashmir. International Journal of Current Microbiology and Applied Sciences 7: 266-279. https://doi.org/10.20546/ijcmas.2018.708.032.
- Wardle, D., Bonner, K., & Barker, G. (2002). Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Functional Ecology 16: 585–595. https://doi.org/10.1046/j.1365-2435.2002.00659.x.
- Yadava, R. (2012). Soil organic carbon and soil microbial biomass as affected by restoration measures after 26 years of restoration in mined areas of Doon Valley. International Journal of Environmental Sciences 2: 1380-1385.
- Yang, N., Ji, L., Yang, Y., & Yang, L. (2018). The influence of tree species on soil properties and microbial communities following afforestation of abandoned land in northeast China. European Journal of Soil Biology 85: 73-78. https://doi.org/1016/j.ejsobi.2018.01.003.
- Yao, H., He, Z.L., Wilson, M., & Campbell, C.D. (2000). Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology 40(3): 223-237. https://doi.org/10.1007/s002480000053.
- Zavaleta, E., & Hulvey, K. (2007). Realistic variation in species composition affects grassland production, resource use and invasion resistance. Plant Ecology 188: 39–51. https://doi.org/10.1007/s11258-006-9146-z.
- Zeng, D.H., Hu, Y.L., Chang, S.X., & Fan, Z.P. (2009). Land cover change effects on soil chemical and biological properties after planting Mongolian pine (Pinus sylvestris mongolica) in sandy lands in Kerning, northeastern China. Plant and Soil 317: 121-133. https://doi.org/10.1007/s11104-008-9793-z.
- Zeng, Z., Wang, S., Zhang, C., Tang, H., Li, X., Wu, Z., & Luo, J. (2015). Soil microbial activity and nutrients of evergreen broad-leaf forests in mid-subtropical region of China. Journal of Forestry Research 26(3): 673-678. https://doi.org/10.1007/s11676-015-0060-x.
|