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Abstract

In this paper, we introduce two new schemes based on the global Hessen-
berg processes for computing approximate solutions to low-rank Sylvester
tensor equations. We first construct bases for the matrix and extended
matrix Krylov subspaces by applying the global and extended global Hes-
senberg processes. Then the initial problem is projected into the matrix
or extended matrix Krylov subspaces with small dimensions. The reduced
Sylvester tensor equation obtained by the projection methods can be solved
by using a recursive blocked algorithm. Furthermore, we present the upper
bounds for the residual tensors without requiring the computation of the
approximate solutions in any iteration. Finally, we illustrate the perfor-
mance of the proposed methods with some numerical examples.
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1 Introduction

Let I1, I2, . . . , IN ∈ N. The multidimensional array X = (Xi1i2···iN ) (1 ≤
ij ≤ Ij , j = 1, . . . , N) is called an N -mode tensors with I1I2 · · · IN entries.
There has been increasing research on tensors in recent years. For instance,
Chang, Pearson, and Zhang [8] generalized the Perron–Frobenius theorem for
nonnegative matrices to the nonnegative tensors. Eigenvalues, eigenvectors,
symmetric hyperdeterminants were defined by Qi [31] for the real super-
symmetric tensors, and their properties were described. In [30], the restart
techniques are described for the tensor infinite Arnoldi method.

In this work, we introduce two new projection methods for solving the
low-rank Sylvester tensor equation

X ×1 A
(1) + X ×2 A

(2) + · · ·+ X ×N A(N) = B, (1)

where the matrices A(n) ∈ RIn×In , n = 1, 2, . . . , N, and right-hand side
tensor B ∈ RI1×I2×···×IN are given, and X ∈ RI1×I2×···×IN is an unknown
tensor. The Sylvester tensor equation (1) has a unique solution if and only if
λ1 + λ2 + · · ·+ λN ̸= 0, for all λi ∈ σ(A(i)), i = 1, 2, . . . , N, where σ(A(i)) is
the spectral of matrix A(i) [9]. In this study, it is assumed that the Sylvester
tensor equation has a unique solution. The Sylvester tensor equations are
one of the famous problems arising from the discretization of a linear partial
differential equation in high dimensions by the use of finite elements, finite
differences, and spectral methods [27, 28, 37]. The Sylvester matrix equation

A(1)X +XA(2)T = B,

is a special case of the Sylvester tensor equation (1), where X is a 2-mode
tensor. Many iteration methods for computing approximate solutions for
the Sylvester tensor equations (1) have been introduced in recent years. For
example, Chen and Lu [9] proposed the GMRES method based on tensor
form (GMRES-BTF) to solve the Sylvester tensor equation. Also, to speed
up the convergence of the GMRES-BTF method, they proposed precondi-
tioned GMRES-BTF. Beik, Saberi Movahed, and Ahmadi-Asl [4] presented
some iterative methods based on the tensor format to solve the Sylvester
tensor equations (1). In [33, 34], Saberi–Movahed et al. introduced the ten-
sor format of restarted Simpler GMRES, (SGMRES-BTF(m)), to solve the
Sylvester tensor equation and described an accelerating method in accor-
dance with a modification of the generalized conjugate residual with inner
orthogonalization (GCRO) method based on the tensor format. Bi-conjugate
gradient (BiCG) and bi-conjugate residual (BiCR) methods as well as their
preconditioned versions based on the tensor format, have been presented in
[39]. The tensor form of the global least squares method is proposed in [24].
Huang, Xie, and Ma [22] proposed the tensor form of the GMRES method
for solving a class of tensor equations via the Einstein product. Furthermore,
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for the case in which the coefficient tensor is symmetric, they proposed the
MINRES and SYMMLQ methods based on the tensor format. Dehdezi and
Karimi [15] extended the conjugate gradient squared and the conjugate resid-
ual squared methods to solve the generalized coupled Sylvester tensor equa-
tions. In [16], the authors proposed a gradient based iterative method version
for solving the tensor equations and presented a new preconditioner to accel-
erate the convergence rate of the proposed iterative methods. A projection
method has been introduced in [3] to find approximations of linear systems
in low-rank tensor format. Kressner and Tobler [25] proposed the Krylov
subspace for the case in which the right-hand side tensor has a low-rank.
Recently, Bentbib, El-Halouy, and Sadek [5] introduced a new projection
method to compute approximate solutions for the low-rank Sylvester tensor
equations. The extended Krylov-like methods were proposed in [6] to find the
solutions for the low-rank Sylvester and Stein tensor equations. The block
and extended block Hessenberg algorithms for solving the Sylvester tensor
equation with low-rank right-hand side (1) were presented in [12]. Hessen-
berg based methods are among the popular methods in terms of the Krylov
subspace methods, with less need for arithmetic operations and less storage
space compared to the Arnoldi-based methods. The Hessenberg process con-
structs nonorthogonal bases for the associated Krylov subspace. The schemes
based on the Hessenberg process have recently received great attention; see,
for instance, [32, 35, 19, 17, 21, 12]. This motivated us to introduce two new
projection schemes, employing the global Hessenberg process on the matrix
Krylov subspaces. The main idea of this scheme is to project the problem
onto a matrix or an extended matrix Krylov subspace. Then the reduced
problem can be solved by using the recursive blocked algorithm [11]. Com-
plexity consideration is given to show that the global and extended global
Hessenberg processes are less expensive than the global and extended global
Arnoldi ones.

We use the following notations. For the matrices X and Y in Rn×n,
we consider the following inner product ⟨X,Y ⟩F = tr(XTY ), where tr(·)
denotes the trace. The associated norm is the Frobenius norm denoted by
∥E∥F . The notation X⊥FY means that ⟨X,Y ⟩F = 0. The n × n identity
matrix is denoted by I(n). Moreover, e(k)j denotes the jth canonical vector
of Rk, and 0m×n denotes the m× n zero matrix.

The remainder of this paper is organized as follows. In section 2, we
review some basic notations and definitions. In section 3, the global Hessen-
berg process with maximum strategy and an approach for solving (1) with
a right-hand side tensor of a specific rank is described. The extended global
Hessenberg approach is presented in section 4. The complexity of the new
methods is considered in section 5. Some numerical examples for evaluating
the performance of our approaches are given in section 6. Finally, section 7
gives a brief conclusion.
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2 Preliminaries

In this part, the notations and basic definitions of tensors are presented.
Throughout this paper, we denote tensors by Euler script letters. Matrices
and vectors are denoted by capital and lowercase letters, respectively. Also,
the Kronecker product of matrices A and B is denoted by A ⊗ B and the
Kronecker product of tensors A and B, is denoted by A⊗B. Norm of an Nth
order tensor X ∈ RI1×I2×···×IN is denoted by ∥X∥F and is defined as follows:

∥X∥F =
√
⟨X ,X⟩ =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

X 2
i1i2···iN .

Definition 1 ([13]). Denote the N -mode (matrix) product of a tensor X ∈
RI1×I2×···×IN and a matrix U ∈ RJ×In by X ×n U. It is of dimension I1 ×
I2 × · · · × In−1 × J × In+1 × · · · × IN and defined as

(X ×n U)i1···in−1jin+1···iN =

In∑
in=1

Xi1i2···iNujin .

Proposition 1 ([13]). Let A ∈ RI1×I2×···×IN be an Nth order tensor, let
B ∈ RJ×Im , C ∈ RK×In , and let W ∈ RIn×In . Then

A×m B ×n C = A×n C ×m B,

A×n W ×n C = A×n CW.

Definition 2 ([14]). Assume that X ∈ RI1×I2×···×IN is an Nth order tensor
and that {U} is a set of matrices Un ∈ RIn×In(n = 1, . . . , N). Then their
product in all possible modes (n = 1, 2, . . . , N) is of size I1 × I2 × · · · × IN
and defined as follows:

X × {U} = X ×1 U1 ×2 U2 · · · ×N UN ,

and

X × {U}T = X ×1 U
T
1 ×2 U

T
2 · · · ×N UT

N .

Definition 3 ([13]). . The outer product of two tensors A ∈ RI1×I2×···×IM

and B ∈ RJ1×J2×···×JN is denoted by A ◦ B ∈ RI1×I2×···×IM×J1×J2×···×JN ,
with entries

Ci1···iM j1···jN = Ai1···iMBj1···jN .

If v1, v2, . . . , vN are N vectors of sizes Ii, i = 1, . . . , N, then their outer prod-
uct is an Nth order tensor of size I1 × I2 × · · · × IN and is given by
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v1 ◦ · · · ◦ vNi1,...,iN = v1(i1) · · · vN (iN ).

Definition 4 ([13]). An Nth order tensor X ∈ RI1×I2×···×IN is called a rank
one tensor if it can be written as the outer product of N vectors ai ∈ RIi (i =
1, . . . , N) as follows:

X = a1 ◦ a2 ◦ · · · ◦ aN .

If a tensor can be written as a sum of R rank one tensors, then it is called a
rank R tensor.

Definition 5 ([26]). The Kronecker product of two tensorA = a1◦a2◦· · ·◦aN
and B = b1 ◦ b2 ◦ · · · ◦ bN is defined as

A⊗ B = (a1 ⊗ b1) ◦ · · · ◦ (aN ⊗ bN ).

Proposition 2 ([5]). Assume that A ∈ RI1×I2×···×IN and B ∈ RI1×I2×···×IN

are Nth order tensors, that A ∈ Rkn×In , and that B ∈ RIn×Jn . Then

(A⊗ B)×n (A⊗B) = (A×n A)⊗ (B ×n B).

Proposition 3 ([5]). The product of a rank one tensor A = a1◦a2◦· · ·◦aN ∈
RI1×I2×···×IN and a set of matrices Un ∈ RIn×In , (n = 1, . . . , N) is defined
as follows:

A× {U} = U1a1 ◦ · · · ◦ UNaN . (2)

Definition 6 ([13]). The CP decomposition of an Nth order tensor A ∈
RI1×I2×···×IN is written as follows:

A =

R∑
r=1

a(1)r ◦ a(2)r ◦ · · · ◦ a(N)
r ,

where R ∈ N and a
(i)
r ∈ RIi , (i = 1, . . . , N). Assume that a

(i)
r , (i =

1, . . . , N), are normalized. Then the CP decomposition is given by

A =

R∑
r=1

λra
(1)
r ◦ a(2)r ◦ · · · ◦ a(N)

r ,

where λr ∈ R.

Definition 7 (Left inverse[35]). Consider Zk ∈ Rn×k as a matrix partitioned
as follows:

Zk =

Z1k

Z2k

 ,

where Z1k is a k × k matrix. If the matrix Z1k is nonsingular, then a left
inverse of Zk is defined as follow
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ZL
k =

[
Z−1
1k , 0k×(n−k)

]
.

Definition 8 ([7]). Let A = [A1, A2, . . . , Ap] and B = [B1, B2, . . . , Bl] be
matrices of dimension n× ps and n× ls, respectively, where Ai and Bj (i =
1, . . . , p; j = 1, . . . , l) are n × s matrices. Then the ⋄-product of matrices A
and B denoted by AT ⋄B is the p× l matrix defined by:

(AT ⋄B)i,j = ⟨Ai, Bj⟩F .

Some properties that are verified by the ⊗- and ⋄-products are as follows:

1. (DA)T ⋄B = AT ⋄ (DTB).

2. AT ⋄ (B(L⊗ I(p)) = (AT ⋄B)L.

In what follows, we assume that the right-hand side B in (1) is of rank R.
As known [13], by using the CP decomposition, B can be written as

B =

R∑
r=1

b
(r)
1 ◦ · · · ◦ b(r)N , (3)

where B(i) =
[
b
(1)
i , b

(2)
i , . . . , b

(R)
i

]
∈ RIi×R, i = 1, . . . , N, are the factor ma-

trices. By simple calculations, we can rewrite the relation (3) as

B = IR ×1 B
(1) · · · ×N B(N), (4)

in which IR denotes the identity tensor of Nth order of size R×R× · · · ×R
with ones along the super-diagonal.

3 Global Hessenberg process with maximum strategy

The global Hessenberg process with maximum strategy was first presented
in [17] by Heyouni to build a basis of the matrix Krylov subspace

Km(A, V ) =

{
m−1∑
i=0

γiA
i V, where γi ∈ R for i = 0, 1, . . . ,m− 1

}
,

where A ∈ Rn×n and V ∈ Rn×s. The global Hessenberg process with maxi-
mum strategy can be summarized in Algorithm 1 [17].

By employing Algorithm 1 with m = mi and s = R for the pair
(A(i), B(i)), we obtain Vmi+1 = [V

(i)
1 , . . . , V

(i)
mi+1] ∈ Rn×(mi+1)R with V

(i)
k ∈

Rn×R, for k = 1, . . . ,mi+1, and the upper Hessenberg matrix H̄mi = (h
(i)
i,j) ∈

R(mi+1)×mi , which satisfy

A(i)Vmi = Vmi+1(H̄mi ⊗ I(R)), (5)
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Algorithm 1 The Global Hessenberg process with Maximum Strategy
1. Input: Nonsingular matrix A, initial block V , and an integer m.
2. Determine i0 and j0 such that |Vi0,j0 | = max {|Vi,j |}1≤j≤s

1≤i≤n ; β = Vi0,j0 ;

V1 = V/β; l1 = i0; c1 = j0.

3. For k = 1, 2, . . . ,m
4. U = AVk.
5. For j = 1, 2, . . . , k

6. hj,k = Ulj ,cj ; U = U − hj,kVj .
7. End For.
8. Determine i0 and j0 such that |Ui0,j0 | = max {|Ui,j |}1≤j≤s

1≤i≤n

hk+1,k = Ui0,j0 ; Vk+1 = U/hk+1,k; lk+1 = i0; ck+1 = j0.

9. End For.

= Vmi(Hmi ⊗ I(R)) + h
(i)
mi+1,mi

V
(i)
mi+1(e

(mi)
T

mi
⊗ I(R)), (6)

where Hmi
denotes the matrix obtained from H̄mi

by deleting its last row.
As [5], we consider an approximate solution of (1) as

Xm = (Ym ⊗ IR)× {Vm}, (7)

where {Vm} denotes a set of matrices {Vm1 ,Vm2 , . . . ,VmN
} and Ym is an

m1×· · ·×mN tensor satisfying the low-dimensional Sylvester tensor equation

N∑
i=1

Ym ×i Hmi
= βEm, (8)

where β =
∏N

i=1 βi and Em = (e
(m1)
1 ◦ · · · ◦ e(mN )

1 ).

Proposition 4. Let Rm be the residual tensor corresponding to the approx-
imate solution Xm of (1). Then

Rm = −
N∑
i=1

hmi+1,mi
(Ym ×i e

(mi)
T

mi
)⊗ IR ×1 Vm1 · · · ×i V

(i)
mi+1 · · · ×N VmN

,

(9)

where Ym is the solution to (8).

Proof. The proof is similar to that of Proposition 6 in [12].

Theorem 1. Let Xm be an approximate solution of (1). Then the corre-
sponding residual Rm satisfies

∥Rm∥ ≤
√

((2nR− (m− 1))
m

2
)N

√√√√ N∑
i=1

| hmi+1,mi
|2 ∥Ym ×i eTmi

∥2, (10)

where m = max
1≤i≤N

mi.
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Proof. The proof is similar to that of Theorem 7 in [12].

Furthermore, from the fact that

∥Vmj
∥2 ≤ nmjR, i = 1, . . . , N,

we have

∥Rm∥ ≤
√
(nmR)N

√√√√ N∑
i=1

| hmi+1,mi |2 ∥Ym ×i eTmi
∥2. (11)

The upper bounds (10) and (11) are pessimistic. We propose the following
approximation, which is derived heuristically,

∥Rm∥ ≈ Em := N
√
(nmR)

√√√√ N∑
i=1

| hmi+1,mi
|2 ∥Ym ×i eTmi

∥2. (12)

Similar to Algorithm 2 in [5], the global Hessenberg process with the max-
imum strategy for the Sylvester tensor equation (1) can be summarized in
Algorithm 2.

Algorithm 2

1. Input: Coefficient matrices A(i), i = 1, . . . N, and the right-hand side in low-rank
representation,
B =

[
B(1), B(2), . . . , B(N)

]
.

2. Output: An approximate solution Xm for equation (1).
3. Choose a tolerance ϵ > 0, integer parameters k′

i , i = 1, . . . , N. Set ki = 0,mi = k
′
i .

4. For i = 1 : N
5. For j = ki + 1 : ki + k

′
i

6. Construct the basis
[
Vki+1, . . . , Vki+k

′
i

]
and the matrix Hmi by

Algorithm 1.
7. End For
8. End For
9. Solve the low-dimensional equation

∑N
i=1 Ym ×i Hmi = βEm by the recursive

blocked algorithms presented in [11].
10. Compute the estimated residual norm of Rm,

i.e., Em = N
√

(nmR)

√∑N
i=1 | hmi+1,mi |2 ∥Ym ×i eTmi

∥2.

11. If Em > ϵ, set ki = ki + k
′
i , mi = ki + k

′
i for i = 1, . . . , N, and go to step 4.

12. Compute the approximate solution by Xm = (Ym ⊗ I(R))×1 Vm1 · · · ×N VmN .
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4 The extended global Hessenberg process

We first recall the extended matrix Krylov subspace. Let A ∈ Rn×n and
V ∈ Rn×s. The extended global Hesssenberg process corresponding to the
pair (A, V ) is defined as follows [17]:

Ke
m(A, V ) = span(V,A−1V,AV, . . . , Am−1V,A−mV ),

= Km(A, V ) +Km(A−1, A−1V ).

The algorithm proceeds by running one step of the Global Hessenberg process
with A and one step with A−1, while maintaining orthogonalization among
all generated vectors and the n × s matrices Yj = e

(n)
lj

e
(s)T

cj whose entries
are zero except (Yj)lj ,cj = 1. The first two block vectors V

(1)
1 and V

(2)
1 are

obtained as follows:

V
(1)
1 = V/r11, (13)

where r11 = Vl1,c1 and |Vl1,c1 | = max{|Vi,j |}1≤j≤s
1≤i≤n, and

V
(2)
2 = W/r2,2, (14)

where W = A−1V −r1,2V
(1)
1 , r1,2 = (A−1V )l1,c1 , r2,2 = Wl2,c2 , and |Wl2,c2 | =

max{|Wi,j |}1≤j≤s
1≤i≤n.

Let Vi = [V
(1)
i , V

(2)
i ] be the ith n× 2s block vector of Vm = [V1, . . . , Vm]

and let

Hi,j =

h2i−1,2j−1 h2i−1,2j

h2i,2j−1 h2i,2j

 ,

be the 2× 2 block matrix (i, j) of the upper block Hessenberg matrix Hm ∈
R2(m+1)×2m. Then we compute the two block vectors V (1)

k+1 and V
(2)
k+1 by the

relation[
V

(1)
k+1 V

(2)
k+1

]
(Hk+1,k ⊗ I(s)) = [AV

(1)
k , A−1V

(2)
k ]−

k∑
j=1

[V
(1)
j , V

(2)
j ](Hj,k ⊗ I(s)),

(15)

where the entries of coefficients matrices Hk+1,k and Hi,k, for i = 1, . . . , k,
will be determined such that the relations

V
(1)
k+1⊥FY1, . . . , Y2k and (V

(1)
k+1)l2k+1,c2k+1

= 1,

and
V

(2)
k+1⊥FY1, . . . , Y2k+1 and (V

(2)
k+1)l2k+2,c2k+2

= 1
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hold for k = 1, . . . ,m. The determination of indices l2k+1, c2k+1 and
l2k+2, c2k+2 is similar to that of indices l1, c1 and l2, c2, respectively. The
main steps of the extended global Hessenberg process algorithm to generate
Vm and Hm may be summarized as follows.

Algorithm 3 The Extended Global Hessenberg process with Maximum
Strategy
1. Input: Nonsingular matrix A, initial block V , and an integer m.
2. Determine i0 and j0 such that |Vi0,j0 | = max {|Vi,j |}1≤j≤s

1≤i≤n ; r1,1 = Vi0,j0 ;

V
(1)
1 = V/r1,1; l1 = i0; c1 = j0; .

3. W = A−1V ; r1,2 = Wl1,c1 .

4. W = W − r1,2V
(1)
1 , |Wi0,j0 | = max{|Wi,j |}1≤j≤s

1≤i≤n; r2,2 = Wi0,j0 ;

V
(2)
1 = W/r2,2; l2 = i0, c2 = j0.

5. For k = 1, 2, . . . ,m

6. W = AV
(1)
k .

7. For i = 1, . . . , k

8. h2i−1,2k−1 = Wl2i−1,c2i−1
, W = W − h2i−1,2k−1V

(1)
i ;

h2i,2k−1 = Wl2i,c2i , W = W − h2i,2k−1V
(2)
i .

9. End For.
10. Determine i0 and j0 such that |Wi0,j0 | = max {|Wi,j |}1≤j≤s

1≤i≤n ;

h2k+1,2k−1 = Wi0,j0 ; V
(1)
k+1 = W/h2k+1,2k−1; l2k+1 = i0; c2k+1 = j0.

11. W = A−1V
(2)
k .

12. For i = 1, . . . , k.

13. h2i−1,2k = Wl2i−1,c2i−1
, W = W − h2i−1,2kV

(1)
i ;

h2i,2k = Wl2i,c2i ; W = W − h2i,2kV
(2)
i .

14 End For.
15 h2k+1,2k = Wl2k+1,c2k+1

, W = W − h2k+1,2kV
(1)
k+1.

16. Determine i0 and j0 such that |Wi0,j0 | = max {|Wi,j |}1≤j≤s
1≤i≤n ;

h2k+2,2k = Wi0,j0 ; V
(2)
k+1 = W/h2k+2,2k; l2k+2 = i0; c2k+2 = j0.

17. End For.

Suppose that the matrix Pm is defined by [Y1, Y2, . . . , Y2m]. Then

PT
m ⋄ Vm = Lm,

where Lm ∈ R2m×2m is a unit lower triangular matrix. So, we have L−1
mi

(PT
mi

⋄
Vmi) = I(2mi). As in [1], we consider VL

m = (Pm(L−T
m ⊗ I(s)))T = (L−1

m ⊗
I(s))PT

m , as a left inverse for the ⋄-product, which verifies the relation VL
m ⋄

Vm = I(2ms). Using this matrix, we can state the following proposition.

Proposition 5. Let Tm = VL
m+1 ⋄ (AVm), and suppose that m steps of

Algorithm 3 have been carried out. Then

AVm = Vm+1(Tm ⊗ I(s)), (16)
= Vm(Tm ⊗ I(s)) + Vm+1(Tm+1,mET

m ⊗ I(s)), (17)
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where Ti,j is the 2× 2 block (i, j) of Tm and ET
m = [02×2(m−1), I

(2)], and Tm

is obtained by removing the two last rows of Tm.

Proof. The proof is similar to the case for the classical Arnoldi process in
[20].

As [36], in the following proposition, we derive some recursive relations,
which can be used to significantly reduce the computational cost of the basic
algorithm.

Proposition 6. Let Tm = [t:,1, . . . , t:,2m] and Hm = [h:,1, . . . , h:,2m] be two
2(m+1)×2m block upper Hessenberg matrices, let ℓ(k+1) = (ℓi,j) = H−1

k+1,k,
and let r1,1, r1,2, r2,2 be as defined in Algorithm 3. Then for the odd columns,
we have

t:,2j−1 = h:,2j−1, j = 1, . . . ,m,

and for the even columns, we have

(k = 1) t:,2 =
1

r2,2
(r1,1e

2(m+1)
1 − r1,2t:,1),

t:,4 = (e
2(m+1)
2 −

[
T1h1:2,2

0(2m−2)×2

]
)ℓ

(2)
22 ,

ρ(2) = (ℓ
(2)
11 )

−1ℓ
(2)
12 ,

(1 < k ≤ m) t:,2k = t:,2k + t:,2k−1ρ
(k),

t:,2k+2 = (e
2(m+1)
2k −

[
Tkh1:2k,2k

0(2m−2k)×2

]
)ℓ

(k+1)
22 ,

ρ(k+1) = (ℓ
(k+1)
11 )−1ℓ

(k+1)
12 .

Proof. Starting from (15), we have

AV
(1)
k = Vk+1(Hk+1,ke

(2)
1 ⊗ I(s)) + Vk(Hke

(2k)
2k−1 ⊗ I(s))

= Vk+1(Hke
(2k)
2k−1 ⊗ I(s)).

Pre-multiplying the above relation by VL
m+1, we get

VL
m+1 ⋄AV

(1)
k = VL

m+1 ⋄ Vk+1(Hke
(2k)
2k−1 ⊗ I(s))

= (VL
m+1 ⋄ Vk+1)Hke

(2k)
2k−1

=

[
I(2k+2)

0(2m−2k)×(2k+2)

]
Hke

(2k)
2k−1

=

[
Hk

0(2m−2k)×(2k+2)

]
e
(2k)
2k−1.

Hence,
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t:,2k−1 = h:,2k−1, k = 1, . . . ,m.

From the lines 2 and 3 of Algorithm 3, we have

r2,2V
(2)
1 = r1,1A

−1V
(1)
1 − r1,2V

(1)
1 .

Pre-multiplying this relation by A, we get

r2,2AV
(2)
1 = r1,1V

(1)
1 − r1,2AV

(1)
1 .

Pre-multiplying the above relation by VL
m+1, we have

(VL
m+1 ⋄AV

(2)
1 ) =

1

r2,2
(r1,1(VL

m+1 ⋄ V
(1)
1 )− r1,2(VL

m+1 ⋄AV
(1)
1 )).

Consequently,
t:,2 =

1

r2,2
(r1,1e

2(m+1)
1 − r1,2h:,1),

In addition, from (15), one gets

V
(2)
k = AVk+1(Hk+1,ke

(2)
2 ⊗ I(s)) +AVk(Hke

(2k)
2k ⊗ I(s)).

This relation implies that

VL
m+1 ⋄AVk+1(Hk+1,ke

(2)
2 ⊗ I(s))

= VL
m+1 ⋄ V

(2)
k − VL

m+1 ⋄ (AVk(Hke
(2k)
2k ⊗ I(s))

= e
2(m+1)
2k − (VL

m+1 ⋄AVk)He
(2k)
2k

= e
2(m+1)
2k −

[
Tkh1:2k,2k

0(2m−2k)×2k

]
.

On the other hand, for the left-hand side of this relation, we deduce

VL
m+1 ⋄AVk+1(Hk+1,ke

(2)
2 ⊗ I(s))

= VL
m+1 ⋄ [AV

(1)
k+1 AV

(2)
k+1]

[
h2k+1,2kI

(s)

h2k+2,2kI
(s)

]
= h2k+1,2kVL

m+1 ⋄AV
(1)
k+1 + h2k+2,2kVL

m+1 ⋄AV
(2)
k+1

= h2k+1,2kt:,2k+1 + h2k+2,2kt:,2k+2.

Hence

t:,2k+2 =
1

h2k+2,2k
(−h2k+1,2kt:,2k+1 + e

2(m+1)
2k −

[
Tkh1:2k,2k

0(2m−2k)×2k

]
).
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By using the inverse of the 2×2 upper triangular matrix Hk+1,k and defining
ρ(k+1) = (ℓ

(k+1)
11 )−1ℓ

(k+1)
12 , this relation can be written as follows:

t:,2k+2 = t:,2k+1ρ
(k+1) + (e

2(m+1)
2k −

[
Tkh1:2k,2k

0(2m−2k)×2k)

]
)ℓ

(k+1)
22 ,

which completes the proof.

4.1 Extended global Hessenberg process for low-rank
Sylvester tensor equation

In this subsection, we consider the extended global Hessenberg process de-
rived in the previous subsection for the pair (A(i), B(i)), i = 1, . . . , N. By
applying Algorithm 3 with s = R to the pair (A(i), B(i)), i = 1, . . . , N, the
block matrices Vmi

= [V
(i)
1 , . . . , V

(i)
mi ], i = 1, . . . , N, are obtained and the

following relation holds, for i = 1, . . . , N ,

A(i)Vmi
= Vmi+1(Tmi

⊗ I(R))

= Vmi
(Tmi

⊗ I(R)) + V
(i)
mi+1(T

(i)
mi+1,mi

ET
mi

⊗ I(R)), (18)

where ET
mi

=
[
02×2, . . . , 02×2, I

(2)
]
∈ R2×2mi , and Tmi

= (T
(i)
i,j ) ∈ R2(mi+1)×2mi

is the restriction ofA(i) to the extended global Krylov subspaceKe
mi

(A(i), B(i)).
Using Line 1 of Algorithm 3, we have

B(i) = r
(i)
11 (V

(i)
1 )(1), for i = 1, 2, . . . , N.

As in the case of the global Hessenberg process, for the low-rank Sylvester
tensor equation (1), we seek an approximate solution of the form

Xm = (Ym ⊗ IR)× {Vm}, (19)

where {Vm} denotes a set of matrices Vmi
∈ Rn×2Rmi , i = 1, . . . , N, and

Ym ∈ R2m1×···×2mN satisfies the low-dimensional Sylvester tensor equation

N∑
i=1

Ym ×i Tmi
= βmEm, (20)

where βm =
∏N

i=1 r
(i)
11 and Em = (e

(2m1)
1 ◦ · · · ◦ e

(2mN )
1 ). In this case, the

residual corresponding to Xm can be written as
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Rm = −
N∑
i=1

(Ym ×i T
(i)
mi+1,mi

ET
mi

)⊗ IR ×1 Vm1
. . .×i V

(i)
mi+1 . . .×N VmN

.

(21)

We can easily obtain

∥Rm∥ ≤
√

((2nR− 2m+ 1)m)N

√√√√ N∑
i=1

∥Ym ×i T
(i)
mi+1,miE

T
mi

∥ (22)

and

∥Rm∥ ≤
√

(2nmR)N

√√√√ N∑
i=1

∥Ym ×i T
(i)
mi+1,miE

T
mi

∥, (23)

where m = max
1≤i≤N

mi. Finally, the following estimate is derived heuristically:

∥Rm∥ ≈ Em := N
√

(2nmR)

√√√√ N∑
i=1

∥Ym ×i T
(i)
mi+1,mi

ET
mi

∥. (24)

For the extended global Hessenberg process, the main part of Algorithm
2 remains the same except that the lines 6, 9, and 10 must be changed as
follows:

6. Construct the basis
[
Vki+1, . . . , Vki+k

′
i

]
and the matrix Tmi by Algo-

rithm 3 and the formulas of Proposition 6.

9. Solve the low-dimensional equation
∑N

i=1 Ym ×i Tmi = βmEm by the
recursive blocked algorithms presented in [11].

10. Compute the estimated residual norm of Rm, that is,
Em = N

√
(2nmR)

√∑N
i=1 ∥Ym ×i T

(i)
mi+1,mi

ET
mi

∥2.

5 Complexity consideration

In this section, we present the required number of operations to solve the
low-rank Sylvester tensor equation (1) for I1 = I2 = · · · = IN . Let Nnz de-
note the number of nonzero elements of matrix A, and suppose that the LU
decomposition of A is available for computing the block matrix W = A−1V .
We compare the required operations for the extended global Hessenberg pro-
cess and the extended global Arnoldi process [18]. Algorithm 3 requires
(2n2s+ 4ns) operations for computing the block matrices V (1)

1 and V
(2)
1 . In

addition, the iteration k of this algorithm involves
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• V
(1)
k+1, which requires 2sNnz + ns(4k + 1)− 4k2 operations,

• V
(2)
k+1, which requires 2n2s+ ns(4k + 3)− (2k + 1)2 operations.

Note that the global Arnoldi process (Algorithm 2 in [18]) requires 2n2s+10ns
operations for computing the global QR decomposition [V,A−1V ], and the
iteration k of this process involves

• U = [AV
(1)
k , A−1V

(2)
k ], which requires 2sNnz + 2n2s operations.

• Hi,j = V T
i ⋄ U, U = U − Vi(Hi,j ⊗ I(s)), i = 1, 2, . . . , k, which require

16nsk operations.

• the global decomposition of U , that is, U = Vk+1(Hk+1,k ⊗ I(s)), which
requires 10ns operations.

Therefore, for computing an approximation of the solution of Sylvester tensor
equation (1), the total cost number of operations required to perform m
iterations of the extended global versions of Arnoldi and Hessenberg processes
is approximately shown in Table 1. In addition, the total cost number of
operations required to perform m iterations of the global Hessenberg process
(Algorithm 1) and the modified global Arnoldi process (Algorithm 2.2 in
[23]) is presented in this table. According to Table 1, when solving the low-
rank Sylvester tensor equation (1), the global and extended global Hessenberg
processes are less expensive than the global and extended global Arnoldi ones.
On the other hand, these Hessenberg processes use the maximum strategy.
Hence they involve some data movement. However, these processes need
slightly less storage than the Arnoldi processes per iteration.

Table 1: Operation count for the global and extended global versions of
Hessenberg and Arnoldi processes.

Process Number of operations
Global Arnoldi N(2mRNnz + (m+ 1)(2m+ 3)nR− (m(m+ 1))/2)
Global Hessenberg N(2mRNnz + (m+ 1)2nR− (m(m+ 1)(2m+ 1))/6)
Extended Global Arnoldi N(2mRNnz + 2(m+ 1)n2R+ (m+ 1)(8m+ 10)nR)
Extended Global Hessenberg N(2mRNnz + 2(m+ 1)n2R+ 4(m+ 1)2nR−m(8m2 + 18m+ 13)/3)

6 Numerical experiments

In this section, some test problems with N = 3 are used to examine the ro-
bustness of two new presented methods for solving the low-rank Sylvester
equation (1). All the numerical experiments were performed in double-
precision floating-point arithmetic in MATLAB 2021a. The machine we have
used is an Intel(R) Xeon(R) CPU E5-2680 v4@2.40 GHz, 128 GB of RAM,
using the Tensor Toolbox [2]. We employ the recursive blocked algorithms
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introduced in [11] to solve the low-dimensional Sylvester tensor equations (8)
and (20). The step size parameter k′ associated with one cycle is equal to 3.
The algorithms stopped whenever Em ≤ 10−7, where Em is the estimate of
∥Rm∥. We also compare the numerical behavior of the methods in terms of
the number of cycles (Cycle), the norm of residual ∥Rm∥, the norm of error
∥X ∗ − Xm∥, where X ∗ is the exact solution, and the CPU time in seconds
(CPU time) required only for constructing the Krylov subspace basis and the
solution of reduced Sylvester tensor equation. Note that we use the proce-
dure cp_als(B, R) from the toolbox [2] to compute the CP decomposition of
the right-hand side B. In Table 2, we report ∥B − Bcp∥, where the Bcp is the
CP decomposition corresponding to the right-hand side tensor B, using the
procedure cp_als(B, R). The results of examples are reported in Table 2. For
each example, the rank R and the dimension n are presented in this table.
In Figure 1 , by plotting the norm of residual ∥Rm∥F versus the number of
cycles, we display the convergence history of the global and extended global
Arnoldi and Hessenberg algorithms for Examples 1–5.

Example 1. In this example, as in [5], we consider the matrices A(i), i =
1, 2, 3, corresponding to discretization of the operator

L(u) = ∆u− f1(x, y)
∂u

∂x
+ f2(x, y)

∂u

∂y
+ g(x, y),

in the unit square [0, 1]× [0, 1] with Dirichlet homogeneous boundary condi-
tions. The number of inner grid points in each direction is n0 for the operator
L. The discretization of the operator L yields matrices extracted from the
Lyapack package [29], using the command fdm and denoted as

A(i) = fdm(n0, f1(x, y), f2(x, y), g(x, y)), i = 1, 2, 3,

with f1(x, y) = exy, f2(x, y) = sin(x, y), g(x, y) = y2 − x2, n = n2
0. The

right-hand side tensor is chosen in such a way that the exact solution of the
Sylvester tensor equation (1) has the form X ∗ = x1 ◦ x2 ◦ x3, with xi =
rand(n, 1), for i = 1, 2, 3.

Example 2. Assume that in the Sylvester tensor equation (1), the coefficient
matrices are presented as [5]

A(i) = gallery(′poisson′, n0), i = 1, 2, 3,

where n = n2
0. The right-hand side tensor is constructed such that the exact

solution X of the Sylvester tensor equation (1) is a tensor with entries equal
to one.

Example 3. Let A(i), i = 1, 2, 3, be defined as [10]

A(i) = rand(n,n)+ diag(ones(n,1) ∗ alfa),
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where alfa = 8 and the right-hand side tensor is constructed as in Example
1.
Example 4. Consider the Sylvester equation (1) with the coefficient matrices
generated by [38]

A(i) = diag(rand(n-1,1),-1)+ diag(2 + diag(rand(n,n))), i = 1, 2, 3,

and the right-hand side tensor is constructed as in Example 1.
Example 5. The coefficient matrices A(i), i = 1, 2, 3, for the Sylvester tensor
equation (1) are defined as

A(i)(l, j) =
1

1 + |l − j|
,

and the right-hand side tensor is constructed as in Example 1.

Table 2: Results of Examples 1–5.

Example Algorithm ∥B − Bcp∥ ∥Rm∥ ∥X ∗ −Xm∥ Cycle CPU time

Global Arnoldi 3.655e− 08 8.549e− 08 9.903e− 11 30 2.879
Example 1 Global Hessenberg 3.655e− 08 2.901e− 07 2.667e− 10 28 2.558
n = 400 ,R = 4 Extended Global Arnoldi 3.655e− 08 4.197e− 08 3.173e− 11 7 0.261

Extended Global Hessenberg 3.655e− 08 1.411e− 07 1.162e− 10 6 0.110

Global Arnoldi 1.355e− 08 1.406e− 08 1.560e− 08 14 0.138
Example 2 Global Hessenberg 1.355e− 08 1.573e− 08 1.735e− 08 14 0.229
n = 400 , R = 3 Extended Global Arnoldi 1.355e− 08 1.375e− 08 1.603e− 08 5 0.079

Extended Global Hessenberg 1.355e− 08 4.528e− 08 2.652e− 08 4 0.058

Global Arnoldi 1.532e− 05 1.531e− 05 3.731e− 07 19 0.612
Example 3 Global Hessenberg 1.532e− 05 1.530e− 05 3.729e− 07 18 0.479
n = 500 , R = 3 Extended Global Arnoldi 1.532e− 05 1.531e− 05 3.731e− 07 9 0.429

Extended Global Hessenberg 1.532e− 05 1.531e− 05 3.731e− 07 8 0.267

Global Arnoldi 1.980e− 07 1.980e− 07 2.698e− 08 5 0.049
Example 4 Global Hessenberg 1.980e− 07 1.984e− 07 2.704e− 08 4 0.046
n = 500 ,R = 3 Extended Global Arnoldi 1.980e− 07 1.980e− 07 2.698e− 08 3 0.082

Extended Global Hessenberg 1.980e− 07 1.980e− 07 2.698e− 08 3 0.077

Global Arnoldi 1.038e− 08 1.034e− 08 2.567e− 09 12 0.120
Example 5 Global Hessenberg 1.038e− 08 1.161e− 08 2.622e− 09 11 0.144
n = 500 , R = 3 Extended Global Arnoldi 1.038e− 08 1.042e− 08 2.567e− 09 5 0.115

Extended Global Hessenberg 1.038e− 08 1.034e− 08 2.566e− 09 5 0.112

As can be seen from Table 2 and Figure 1, Global Arnoldi, Extended
Global Arnoldi, and Global Hessenberg, Extended Global Hessenberg meth-
ods are shown a similar behavior. In addition, for all examples, the number
of cycles of Extended Global Hessenberg is less than or equal to that of the
other methods. In Examples 1, 2, 3, and 5, the CPU time of Extended
Global Hessenberg method is less than the others. The results of Example 4
show that when the required number of cycles is small for Global Hessenberg
method, this method outperforms the other methods in terms of CPU times.
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

(e) Example 5

Figure 1: Convergence history of the global and extended global Arnoldi and
Hessenberg algorithms for Examples 1–5.

7 Conclusion

In this study, for computing the approximate solutions of the Sylvester tensor
equation (1) with the low-rank right-hand side, two new projection methods
based on the Hessenberg process were proposed. The theoretical results of
these methods were presented and analyzed as well. The global and extended
global Hessenberg algorithms were compared, in terms of CPU times, cycles,
and the number of operations, with the global and extended global Arnoldi

IJNAO, Vol. 12, No. 3 (Special Issue), 2022, pp 658–679



676 Cheraghzadeh, Toutounian and Khoshsiar Ghaziani

algorithms, respectively. Numerical examples showed that the global and
extended global Hessenberg algorithms are efficient and feasible for solving
the low-rank Sylvester tensor equation (1).
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