1. Majewski, S., Majewska, A., and Nermend, K. A. (2014). Comparison of k-means and Fuzzy c-means Clustering Methods for a Sample of Gulf Cooperation Council Stock Markets. Folia Oeconomica Stetinensia 14(2), pp. 19.39. http://dx.doi.org/10.1515/foli-2015-0001
2. Barziy, I., and Chlebus, M. (2020). HRP performance comparison in portfolio optimization under various codependence and distance metrics. Working papers, Warszawa, Poland.
3. Bechis, L. (2020). Machine learning portfolio optimization: hierarchical risk parity and modern portfolio theory. LUISS Guido Carli, Roma, Italy.
4. Bodie, Z., Kane, A., and Marcus, A. (2014). Investments, Edition 10, London, McGraw-Hill Education-Europe. Hentet Seember. https://www.amazon.com/Investments-10th-Zvi-Bodie/dp/0077861671
5. Chaudhuri, T. D., and Ghosh, I. (2016). Using clustering method to understand Indian stock market volatility, Communications on Applied Electronics, 2(6), pp. 35-44, https://doi.org/10.5120/cae2015651793
6. Chiu, B., Keogh, E., and Lonardi, S. (2003). Probabilistic discovery of time series motifs. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 493–498. https://doi.org/10.1145/956750.956808
7. Chung, F. L. K., Fu, T. C., Luk, W. P. R., and Ng, V. T. Y. (2001). Flexible time series pattern matching based on perceptually important points. In Workshop on Learning from Temporal and Spatial Data in International Joint Conference on Artificial Intelligence. pp. 1-7.
8. Detemple, J. (2014). Portfolio selection: a review. Journal of Optimization Theory and Applications, 161(1), pp. 1–21. https://doi.org/10.1007/s10957-012-0208-1
9. Ding, B., Li, L., Zhu, Y., Liu, H., Bao, J., and Yang, Z. (2019). Research on Comprehensive Analysis Method of Stock KDJ Index based on K-means Clustering. 3rd International Conference on Mechatronics Engineering and Information Technology, pp. 484–491. https://doi.org/10.2991/icmeit-19.2019.78
10. Gubu, L., Rosadi, D., and Abdurakhman. (2019). Classical portfolio selection with cluster analysis: Comparison between hierarchical complete linkage and ward algorithm. AIP Conference Proceedings, 2192(1), https://doi.org/10.1063/1.5139174
11. Huarng, K.-H., Yu, T. H.-K., and Kao, T.-T. (2008). Analyzing structural changes using clustering techniques. International Journal of Innovative Computing, Information and Control, 4(5), pp. 1195–1202.
12. Hull, J. C. (2018). Options, Futures and Other Derivatives, 10e. Aufl., New York. 13. Jaeger, M., Krügel, S., Papenbrock, J., and Schwendner, P. (2021). ’Adaptive Seriational Risk Parity’and other Extensions for Heuristic Portfolio Construction using Machine Learning and Graph Theory. Working paper, https://doi.org/10.3905/jfds.2021.1.078
14. Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), pp. 651–666. https://doi.org/10.1016/j.patrec.2009.09.011
15. Jain, A. K., and Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall, Inc, New Jersey, U.S.
16. Jones, J. M. (2017). US stock ownership down among all but older, higher-income. Gallup Economy, Washington, D.C., United States.
17. Keogh, E., Lonardi, S., and Chiu, B. (2002). Finding surprising patterns in a time series database in linear time and space. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, PP. 550-556. https://doi.org/10.1145/775047.775128
18. Kolm, P. N., Tütüncü, R., and Fabozzi, F. J. (2014). 60 Years of portfolio optimization: Practical challenges and current trends. European Journal of Operational Research, 234(2), pp. 356–371. https://doi.org/10.1016/j.ejor.2013.10.060
19. Kumar, P., and Wasan, S. K. (2010). Comparative analysis of k-mean based algorithms. International Journal of Computer Science and Network Security, 10(4), pp. 314–318.
20. Leng, M., Lai, X., Tan, G., and Xu, X. (2009). Time series representation for anomaly detection. 2nd IEEE International Conference on Computer Science and Information Technology, 10868358, pp. 628–632. https://doi.org/10.1109/ICCSIT.2009.5234775
21. León, D., Aragón, A., Sandoval, J., Hernández, G., Arévalo, A., and Niño, J. (2017). Clustering algorithms for risk-adjusted portfolio construction. Procedia Computer Science, 108, pp. 1334- 1343. https://doi.org/10.1016/j.procs.2017.05.185
22. Liao, S.-H., Ho, H., and Lin, H. (2008). Mining stock category association and cluster on Taiwan stock market. Expert Systems with Applications, 35(1–2), pp. 19–29. https://doi.org/10.1016/j.eswa.2007.06.001
23. Lohre, H., Rother, C., and Schäfer, K. A. (2020). Hierarchical Risk Parity: Accounting for Tail Dependencies in Multi‐asset Multi‐factor Allocations. Machine Learning for Asset Management: New Developments and Financial Applications, pp. 329-368. https://doi.org/10.1002/9781119751182.ch9
24. Molyboga, M. (2020). A Modified Hierarchical Risk Parity Framework for Portfolio Management. The Journal of Financial Data Science, 2(3), pp. 128–139.
25. Nakagawa, K., Imamura, M., and Yoshida, K. (2019). Stock price prediction using k‐medoids clustering with indexing dynamic time warping. Electronics and Communications in Japan, 102(2), pp. 3–8. https://doi.org/10.1002/ecj.12140
26. Nourahmadi, M., and Sadeqi, H. (2021). Hierarchical Risk Parity as an Alternative to Conventional Methods of Portfolio Optimization: (A Study of Tehran Stock Exchange). Iranian Journal of Finance, 5(4), pp. 1–24. https://doi.org/10.30699/ijf.2021.289848.1242. In Persian.
27. Pardalos, P. M., Sandström, M., and Zopounidis, C. (1994). On the use of optimization models for portfolio selection: A review and some computational results. Computational Economics, 7(4), pp. 227–244.
28. Raffinot, T. (2017). Hierarchical clustering-based asset allocation. The Journal of Portfolio Management, 44(2), pp. 89–99. https://doi. org/10.3905/jpm.2018.44.2.089
29. Raffinot, T. (2018). The hierarchical equal risk contribution portfolio. Risk Management Journal, http://dx.doi.org/10.2139/ssrn.3237540
30. Rai, P., and Singh, S. (2010). A survey of clustering techniques. International Journal of Computer Applications, 7(12), pp. 1–5.
31. Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., Er, M. J., Ding, W., and Lin, C.-T. (2017). A review of clustering techniques and developments. Neurocomputing, 267, pp. 664–681. https://doi.org/10.1016/j.neucom.2017.06.053
32. Snow, D. (2020). Machine Learning in Asset Management—Part 2: Portfolio Construction—Weight Optimization. The Journal of Financial Data Science, 2(2), pp. 17–24. http://dx.doi.org/10.3905/jfds.2020.1.029
33. Tatsat, H., Puri, S., and Lookabaugh, B. (2020). Machine Learning and Data Science Blueprints for Finance From Building Trading Strategies to Robo-Advisors Using Python. O’Reilly Media, Inc, California, United States.
34. Thuraisingham, B. M., and Ceruti, M. G. (2000). Understanding data mining and applying it to command, control, communications and intelligence environments. Proceedings 24th Annual International Computer Software and Applications Conference, Taipei, Taiwan, pp. 171–175. http://dx.doi.org/10.1109/CMPSAC.2000.884710
35. Wang, H., Wang, W., Yang, J., and Yu, P. S. (2002). Clustering by pattern similarity in large data sets. Proceedings of International Conference on Management of Data, pp. 394–405. https://doi.org/10.1145/564691.564737
36. Williams, G. (2011). Data mining with Rattle and R: The art of excavating data for knowledge discovery. Springer Science & Business Media. New York, London. DOI:10.1007/978-1-4419-9890-3