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Abstract

The main goal of this work is to develop and analyze an accurate trun-
cated stochastic Runge–Kutta (TSRK2) method to obtain strong numeri-
cal solutions of nonlinear one-dimensional stochastic differential equations
(SDEs) with continuous Hölder diffusion coefficients. We will establish
the strong L1-convergence theory to the TSRK2 method under the local
Lipschitz condition plus the one-sided Lipschitz condition for the drift co-
efficient and the continuous Hölder condition for the diffusion coefficient
at a time T and over a finite time interval [0, T ], respectively. We show
that the new method can achieve the optimal convergence order at a finite
time T compared to the classical Euler–Maruyama method. Finally, nu-
merical examples are given to support the theoretical results and illustrate
the validity of the method.
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1 Introduction

Consider the scalar stochastic differential equation of Itô type

dx(ξ) = a(x(ξ))dξ + b(x(ξ))dW (ξ), ξ ∈ [0, T ], (1)
x(0) = x0 ∈ R,
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where T > 0 and a, b : R → R are Borel measurable functions and W (ξ)
is a one-dimensional Wiener process. We refer the reader to [5, 16, 24, 26]
for an overview of stochastic differential equations (SDEs) and their applica-
tions. We assume that the drift coefficient a satisfies the one-sided Lipschitz
and local Lipschitz conditions and that the diffusion coefficient b satisfies the
Hölder continuity condition. Such applications exist in finance, for example,
the Aït–Sahalia-type interest rate model [1, 4] and the Cox–Ingersoll–Ross
model [6], and in biology, for example, the stochastic SIS epidemic model
[7] and laser emission models in chemical physics [16]. Since these equations
can be very complicated and analytical solutions are not always possible,
numerical methods have become an efficient tool for computing approximate
solutions for SDEs. Many numerical methods have been developed for SDEs
under the global Lipschitz and linear growth conditions; see, for example,
[24, 16, 29]. In particular, derivative-free stochastic Runge–Kutta (SRK)
methods for strong approximations have been proposed [3, 27, 8]. How-
ever, Hutzenthaler, Jentzen, and Kloeden [13] have shown that the classical
Euler–Maruyama (EM) and Milstein methods do not converge strongly to
the solution of (1) when the global Lipschitz and linear growth conditions of
the drift or diffusion coefficients are perturbed.

In recent years, an increasing number of numerical methods have been
developed for solving nonlinear SDEs without global Lipschitz conditions.
These methods include implicit methods [25, 23, 9], the tamed numerical
methods, the first of which was presented in Hutzenthaler et al. [14, 28, 12],
and the stopped EM method [19]. However, the use of implicit or drift-
implicit numerical methods requires the solution of a nonlinear algebraic
equation at each time step and thus can be very inefficient. Moreover, the
tamed methods may lead to inaccurate results due to the perturbation of the
flow by changing the drift and diffusion coefficients even at moderately small
step sizes [30]. Recently, Mao [21] proposed the truncated EM method for a
strong approximation of the nonlinear SDEs under the local Lipschitz con-
dition and the Khasminskii-type condition. After that, the Lq-convergence
rates and stability properties of the truncated EM method have been stud-
ied by some researchers [22, 11]. Yang et al. [32] investigated the strong
convergence of the truncated EM method for one-dimensional SDEs with
superlinearly growing drifts and the Hölder continuous diffusion conditions.
Then, several new techniques of the partially truncated EM method were
proposed in [33] to determine the optimal convergence rate. The authors
also investigated the stability of these methods.

Despite the strength of explicit methods in terms of computational cost,
there is still a drawback. As mentioned in [16, 2], explicit methods may have
to use very small step sizes if the SDEs to be solved are stiff. Although under
the classical global Lipschitz condition, there are some classes of explicit
methods with extended stability regions that are well suited for solving stiff
problems, especially those whose eigenvalues are close to the negative real
axis. For example, Komori and Burrage [17] have developed strong first-
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order SROCK methods for Itô and Stratonovich SDEs. However, they are
still far from accurate numerical algorithms suitable for highly nonlinear stiff
SDEs with explicit methods.

In this paper, we will bring all these ideas together. Based on Mao’s
truncation strategies [21, 22, 18], we derive a stochastic two-stage truncated
Runge–Kutta method for nonlinear SDEs with the superlinearly growing drift
coefficient and the continuous Hölder diffusion coefficient. The proposed
scheme is explicit and includes some free parameters that can extend the
accuracy of the results and stability regions. To the best of the author’s
knowledge, truncated SRK is the only truncated Runge–Kutta method with
the relevant results for a strong approximation of solutions of SDEs with
Hölder diffusion coefficients. We will study the strong convergence of the
proposed method under the local Lipschitz condition plus the one-sided Lip-
schitz condition for the drift term and the continuous Hölder condition for the
diffusion term at a time T and over a finite time interval [0, T ], respectively.
We show that the new method can achieve the optimal order of convergence
compared to the classical EM method at a finite time T without any restric-
tion on the step size. To show the effectiveness of our methods, we simulate
some stiff SDEs with several Hölder parameters α ∈ [0, 1

2 ).

The rest of the paper is organized as follows. In Section 2, we describe
some relevant assumptions that must be satisfied for the drift and diffusion
coefficients, as well as results for solving the original SDEs. In Section 3, we
first present mathematical notations and preliminary results for truncated
methods. We then develop the two-stage truncated stochastic Runge–Kutta
(TSRK2) method, which is the main goal of the paper. In this section, we
present convergence results of the new method at time T and give several
technical lemmas. In Section 4, we study the convergence rate over a finite
interval [0, T ]. Numerical results and conclusions are given in Sections 5 and
6, respectively.

2 Mathematical preliminaries

Let (Ω,F ,P) be a complete probability space with right continuous and
increasing filtration {Fξ}0≤ξ≤T , where F0 contains all P-null sets. Let
{W (ξ)}0≤ξ≤T be a one-dimensional standard {Fξ}0≤ξ≤T -adapted Wiener
process on the probability space. For z1, z2 ∈ R, we use z1∨z2 = max{z1, z2}
and z1∧z2 = min{z1, z2}. If B is a set, then its indicator function is denoted
by IB , namely, IB(z) = 1 if z ∈ B and 0 otherwise. For any fixed p ∈ [1,∞),
we frequently make use of the Young inequality

zp1z2 ≤ pδ

q
zq1 +

q − p

qδp/q−p
z
p/q−p
2 , for all z1, z2 ∈ R+, (2)
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for any δ > 0 and q ∈ [p,∞). To construct the new method, we now make
assumptions about a and b.

Assumption 1. Suppose that there exist real positive constants K1 and ρ
such that

|a(z1)− a(z2)|2 ≤ K1(1 + |z1|ρ + |z2|ρ)|z1 − z2|2, (3)

for all z1, z2 ∈ Rd.

From (3) we can conclude that the drift coefficient a satisfies the local
Lipschitz condition: For any u > 0, there exists Ku > 0 such that

|a(z1)− a(z2)| ≤ Ku|z1 − z2|, (4)

for all z1, z2 ∈ R with |z1| ∨ |z2| ≤ u.

Assumption 2. We assume that the drift coefficient a satisfies the one-
sided Lipschitz condition and the diffusion coefficient b satisfies the Hölder
continuity condition: Real constants H1,H2 ∈ R+ and 0 ≤ α < 0.5 exist
such that

(z1 − z2)(a(z1)− a(z2)) ≤ H1|z1 − z2|2, (5)
|b(z1)− b(z2)| ≤ H2|z1 − z2|

1
2+α, (6)

for all z1, z2 ∈ R.

Clearly, from Assumption 2, it is easy to verify that

za(z) ≤ H1|z|2 + |z||a(0)| ≤ M1(1 + |z|2), (7)
|b(z)| ≤ H2|z|0.5+α + |b(0)| ≤ M2(1 + |z|), (8)

for all z ∈ R, where M1 = 0.5
(
|a(0)|2 ∨ [2H1 + 1]

)
and M2 = H2(0.5 + α) ∨[

H2(0.5− α) + |b(0)|
]
. The relation (8) shows that the coefficient function b

satisfies the linear growth condition.
In this work, we use C for the generic positive real constant that depends

on p, T , α, x0, and so on but are independent of the time step size ∆ and R,
and whose values can change between occurrences.

Remark 1. Under Assumption 2, for all p ∈ (2,∞), there is a positive
constant C such that

za(z) +
p− 1

2
|b(z)|2 ≤ C(1 + |z|2), for all z ∈ R. (9)

To construct the numerical method, we first estimate the growth rate of a
as follows. We choose a strictly increasing continuous function ν : R+ → R+

such that ν(r) → ∞ as r → ∞ and
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sup
0<|z1|∨|z2|≤r

|a(z1)− a(z2)|
|z1 − z2|

∨ sup
|z|≤r

|a(z)| ≤ ν(r), for all r ≥ 1. (10)

We see that ν−1 : [ν(0),∞) → (0,∞) as the inverse function of ν is also a
strictly increasing continuous function. From Assumption 1, we observe that

sup
0<|z1|∨|z2|≤r

|a(z1)− a(z2)|
|z1 − z2|

≤
√

K1(1 +
√
2rρ/2),

sup
|z|≤r

|a(z)| ≤ |a(0)|+
√
K1r(1 + rρ/2). (11)

Therefore, we can set ν(r) = ηνr
1+ρ/2 for all r ≥ 1 with ην =

√
2K1 + |a(0)|.

Yang et al. [32] proved the existence and uniqueness of the strong solution
of the scalar SDE (1) with Hölder continuous diffusion coefficients presented
in the following theorem. They proved the theorem based on [31, Yamada–
Watanabe theorem] and [10, Lemma 3.2].

Theorem 1. Let Assumptions 1 and 2 be satisfied. Then the SDE (1) with
initial value x(0) = x0 ∈ R has a unique global solution x(t). Moreover, for
all p > 0, there is a positive constant C that depends on T , p, and x0 such
that

E
(

sup
0≤ξ≤T

|x(ξ)|p
)
≤ C, (12)

where E denotes the probability expectation under the probability measure
P.

For any real number R > |x(0)|, we define a stopping time

τR = inf{t ≥ 0 : |x(t)| ≥ R}. (13)

Lemma 1. Let Assumptions 1 and 2 hold. Fix any p ∈ (0,∞). Then, for
any real number R > |x(0)|, we have

P(τR ≤ T ) ≤ C

Rp
, (14)

where C stands for the generic positive real constant here in independent of
R.

Proof. By replacing ξ by τR ∧ T in (12), we see

E|x(τR ∧ T )|p ≤ C. (15)

Then, by Markov’s inequality, we have

RpP(τR ≤ T ) ≤ E(|x(τR)|pIτR≤T ) ≤ E(|x(τR ∧ T )|p) ≤ C, (16)

which completes the proof.
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In the following sections, we consider numerical methods on a uniform
mesh tn = n∆ for n = 1, . . . , N with ∆ = T/N for some N ∈ N.

3 An explicit two-stage truncated Runge–Kutta method

In this section, we develop an explicit two-stage truncated Runge–Kutta
scheme for the nonlinear SDE (1) with a superlinearly growing drift coef-
ficient and a continuous Hölder diffusion coefficient. It is worth mentioning
that in this regard, we adopt the idea of constructing the truncating functions
of Mao [22] and Li, Mao, and Yin [18] to construct the new method. First,
we outline some notations and preliminary results of the truncated methods,
which will be used in the following sections. Further details can be found
in the literature [21, 22, 11]. Let h : (0, 1] → (0,∞) be a strictly decreasing
function such that for a constant ĥ ≥ 1

h(1) ≥ ν(1), ∆1/4h(∆) ≤ ĥ, lim
∆→0+

h(∆) = ∞, for all ∆ ∈ (0, 1]. (17)

For example, we can consider h(∆) = ηh∆
−ϵω with ηh ≥ ην for any ϵ ∈

(0, 1/4ω), where ω > 0. For a given step size ∆ ∈ (0, 1], let κ∆ : R → R
denote the truncation mapping defined by κ∆(z) := (ν−1(h(∆))∧ |z|) z

|z| , for
all z ∈ R. We set z

|z| = 0 if z = 0. It can be easily deduced

|κ∆(z1)| ≤ |z1|, |κ∆(z1)− κ∆(z2)| ≤ 2|z1 − z2|, for all z1, z2 ∈ Rd.
(18)

Accordingly, we define the truncated coefficient by

a∆(z) := a(κ∆(z)), (19)

for all z ∈ R. It is obvious from (3), (10) and (18) that

|a∆(z)| ≤ ν
(
ν−1(h(∆))

)
= h(∆), for all z ∈ Rd, (20)

and
|a∆(z1)− a∆(z2)|2 ≤ 4K1

(
1 + |z1|ρ + |z2|ρ

)
|z1 − z2|2, (21)

for all z1, z2 ∈ R.

Remark 2. From (10) and (18) it can be deduced for all z ∈ R and ∆ ∈ (0, 1]
that

|a∆(z)| ≤ |a∆(z)− a(0)|+ |a(0)| ≤ ν(ν−1(h(∆))|κ∆(z)|+ |a(0)|
≤ Ch(∆)(1 + |z|). (22)

Also, from (8) we can easily write
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|b(z)|2 ≤ C(1 + |z|2). (23)

In fact, relations (22) and (23) are the same inequalities (2.5) and (2.6)
presented in Remark 2.1 in [33], which play a fundamental role in determining
the optimal convergence rate of the partially truncated EM methods.

The truncated function a∆ preserves the relation (9) in Remark 1 for all
∆ ∈ (0, 1]. We describe this in the following lemma.

Lemma 2. Let Assumption 2 holds. Then for all p > 2, there is a constant
K2 such that for all ∆ ∈ (0, 1]

za∆(z) +
p− 1

2
|b(z)|2 ≤ K2(1 + |z|2), for all z ∈ R, (24)

where K2 = 5
2

(
M1 ∨

[
M1

ν−1(h(1))

]
∨
[
(p− 1)M2

2

])
.

Proof. For any z ∈ R with |z| ≤ ν−1(h(∆)) from (7) and (8), we have

za∆(z) +
p− 1

2
|b(z)|2 = za(z) +

p− 1

2
|b(z)|2

≤
(
M1 ∨ [(p− 1)M2

2 ]
)
(1 + |z|2). (25)

Furthermore, for any z ∈ R with |z| > ν−1(h(∆)), we can write

za∆(z) +
p− 1

2
|b(z)|2 ≤ν−1(h(∆))

z

|z|
a
(
ν−1(h(∆))

z

|z|

)
+ (p− 1)M2

2 (1 + |z|2)

+
( |z|
ν−1(h(∆))

− 1
)
ν−1(h(∆))

z

|z|
a
(
ν−1(h(∆))

z

|z|

)
≤M1

|z|
ν−1(h(∆))

(
1 + [ν−1(h(∆))]2)

)
+ (p− 1)M2

2 (1 + |z|2)

≤M1|z|
( 1

ν−1(h(1))
+ |z|)

)
+ (p− 1)M2

2 (1 + |z|2)

≤5

2

(
M1 ∨

[ M1

ν−1(h(1))

]
∨
[
(p− 1)M2

2

])
(1 + |z|2)

(26)

The inequalities (25) and (26) imply the required assertion (24) easily.

Next, we construct our numerical algorithm TSRK2 to approximate the
exact solution (1). For any given step size ∆ ∈ (0, 1], define
Y (t0) = x0

Z∆(tn) = Y∆(tn) + ∆θa∆(Y∆(tn)),

Y∆(tn+1) = Y∆(tn) + ∆
(
α1a∆(Y∆(tn)) + α2a∆(Z∆(tn))

)
+ b(Z∆(tn))∆Wn,

(27)
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for n = 0, 1, . . . , N , where tn = n∆ and ∆Wn := W (tn+1) − W (tn). Here
θ ∈ R and α1, α2 ∈ [0, 1] with α1 +α2 = 1 are free parameters of the TSRK2
procedure. As an example, for θ = 0, we obtain the explicit truncated EM
method [21]. Thus, the presented class of TSRK2 methods turns out to be
a generalization of the truncated EM method. It is worth noting that when
the truncated function a∆ is replaced by a, the TSRK2 method with α1 = 0,
α2 = 1, and θ = 0.5 is the SRK scheme DDIRDI1 [3] and reduces to the
midpoint rule when applied to an ordinary differential equation.

We now form a continuous-time version of the TSRK2 procedure (27).
To do this, we first for any fixed step size ∆ ∈ (0, 1] set

Y∆(ξ) =

∞∑
n=0

Y∆(tn)I[tn,tn+1)(ξ), Z∆(ξ) =

∞∑
n=0

Z∆(tn)I[tn,tn+1)(ξ), for all ξ ≥ 0.

y∆(ξ) = Y∆(ξ)+

∫ ξ

tn

(
α1a∆(Y∆(ζ))+α2a∆(Z∆(ζ))

)
dζ+

∫ ξ

tn

b(Z∆(ζ))dW (ζ),

(28)
or equivalently

y∆(ξ) = x0 +

∫ ξ

0

(
α1a∆(Y∆(ζ)) + α2a∆(Z∆(ζ))

)
dζ +

∫ ξ

0

b(Z∆(ζ))dW (ζ).

(29)

3.1 Moment bound of the TSRK2 method

In this subsection, we will state a new result showing the uniform bounded-
ness of the solutions of the TSRK2 method (27). First, the following lemma
shows how to conclude that the values Y∆(ξ) and Z∆(ξ) are close to y∆(ξ)
with respect to the Lp-norm.

Lemma 3. For any p̃ > 0 and any T > 0, there is a positive constant number
Cp̃ such that for every step size ∆ ∈ (0, 1]

E|y∆(ξ)−Y∆(ξ)|p̃∨E|y∆(ξ)−Z∆(ξ)|p̃ ≤ Cp̃∆
p̃/2(h(∆))p̃, for all ξ ∈ [0, T ].

(30)

Proof. We first prove the lemma for any p̃ ≥ 2. In this case, for a given
ξ ∈ [0, T ], there is an unique n ≥ 0 such that tn ≤ ξ < tn+1. By (28) and
from the Hölder inequality, [20, Theorem 7.1], (8), and (20), one can conclude

E|y∆(ξ)− Y∆(ξ)|p̃ ≤3p̃−1
(
α1∆

p̃−1E
∫ ξ

tn

∣∣a∆(Y∆(ζ))
∣∣p̃dζ (31)
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+ α2∆
p̃−1E

∫ ξ

tn

∣∣a∆(Z∆(ζ))
∣∣p̃dζ +∆

p̃−2
2 E

∫ ξ

tn

∣∣b(Z∆(ζ))
∣∣p̃dζ)

≤3p̃−1
(
α1∆

p̃(h(∆))p̃ + α2∆
p̃(h(∆))p̃

+ 2p̃−1M2∆
p̃/2
(
1 + E|Z∆(tn)|p̃

))
Moreover, for every ζ ∈ [0, T ], we can find a unique positive integer k such
that tk ≤ ξ < tk+1. So, by (20) and (27), we have

E|Z∆(ζ)−Y∆(ζ)|p̃ = E|Z∆(tk)−Y∆(tk)|p̃ = |θ|p̃∆p̃E|a∆(Y∆(tk))|p̃ ≤ |θ|p̃∆p̃(h(∆))p̃.
(32)

On the other hand, by relations (8), (29), and (32) and the Doob martingale
inequality, we have

E|y∆(ξ)|p̃ ≤3p̃−1
(
|x0|p̃ + E

∫ ξ

0

∣∣a∆(Y∆(ζ))
∣∣p̃dζ + α2E

∫ ξ

0

∣∣a∆(Z∆(ζ))
∣∣p̃dζ

+ T
p̃−2
2 E

∫ ξ

0

∣∣b(Z∆(ζ))
∣∣p̃dζ) ≤ C

(
1 + (h(∆))p̃ +

∫ ξ

0

E|Z∆(ζ)|p̃dζ
)

≤C
(
1 + (h(∆))p̃ +

∫ ξ

0

E|Z∆(ζ)− Y∆(ζ)|p̃dζ +
∫ ξ

0

E|Y∆(ζ)|p̃dζ
)
.

(33)

From (32) and (33), we can conclude

sup
0≤u≤ξ

E|Y∆(u)|p̃ ≤ sup
0≤u≤ξ

E|y∆(u)|p̃ ≤ C
(
1+(h(∆))p̃+

∫ ξ

0

sup
0≤u≤ζ

E|Y∆(u)|p̃dζ
)
.

By the Gronwall’s inequality, we can deduce

sup
0≤ξ≤T

E|Y∆(ξ)|p̃ ≤ C
(
1 + (h(∆))p̃

)
. (34)

So, from (32), (34), and (17), we can write

sup
0≤ξ≤T

E|Z∆(ξ)|p̃ ≤ 2p̃−1|θ|p̃∆p̃(h(∆))p̃+2p̃−1 sup
0≤ξ≤T

E|Y∆(ξ)|p̃ ≤ C
(
1+(h(∆))p̃

)
.

(35)
By inserting (35) in (31), we have

E|y∆(ξ)−Y∆(ξ)|p̃ ≤ C
(
∆p̃(h(∆))p̃+∆p̃/2+∆p̃/2(h(∆))p̃

)
≤ C∆p̃/2(h(∆))p̃.

(36)
To prove the lemma for any p̄ ∈ (0, 2), fix a number p̃ ≥ 2. Then by the
Hölder inequality, we can write
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E|y∆(ξ)− Y∆(ξ)|p̄ ≤
(
E|y∆(ξ)− Y∆(ξ)|p

)p̄/p̃
≤
(
C∆p̃/2(h(∆))p̃

)p̄/p̃
= Cp̄∆

p̄/2(h(∆))p̄. (37)

So, from (32), (36), and (37) the proof of theorem is complete.

Lemma 4. Let Assumption 1 and 2 hold. Then, we have

sup
0≤∆≤1

sup
0≤ξ≤T

E|y∆(ξ)|p ≤ C, for all p > 0. (38)

Proof. Let us fix ∆ ∈ (0, 1] and ξ ∈ [0, T ]. Using the Itô formula from (29)
for any p > 2, we can write

|y∆(ξ)|p ≤|x0|p +
∫ ξ

0

p|y∆(ζ)|p−2y∆(ζ)b(Z∆(ζ))dW (ζ)

+

∫ ξ

0

p|y∆(ζ)|p−2

(
y∆(ζ)

(
α1a∆(Y (ζ)) + α2a∆(Z∆(ζ))

)
+

p− 1

2
|b(Z∆(ζ)|2

)
dζ,

for all ξ ∈ [0, T ]. Since α1 + α2 = 1, we have

|y∆(ξ)|p ≤|x0|p + Γ1(ξ) + Γ2(ξ) + Γ3(ξ)

+

∫ ξ

0

p|y∆(ζ)|p−2y∆(ζ)b(Z∆(ζ))dW (ζ), (39)

where

Γ1(ξ) :=

∫ ξ

0

p|y∆(ζ)|p−2
(
Z∆(ζ)a∆(Z∆(ζ)) +

p− 1

2
|b(Z∆(ζ))|2

)
dζ,

Γ2(ξ) :=

∫ ξ

0

p|y∆(ζ)|p−2
(
y∆(ζ)− Z∆(ζ)

)
a∆(Z∆(ζ))dζ, (40)

Γ3(ξ) := α1

∫ ξ

0

p|y∆(ζ)|p−2y∆(ζ)
(
a∆(Y∆(ζ))− a∆(Z∆(ζ))

)
dζ.

By the facts that p|y∆(ζ)|p−2y∆(ζ)b(Z∆(ζ)) is Fζ−measurable, we have

E|y∆(ξ)|p ≤ E|x0|p + E(Γ1(ξ)) + E(Γ2(ξ)) + E(Γ3(ξ)). (41)

Next, we try to estimate the values E(Γ1(ξ)), E(Γ2(ξ)), and E(Γ3(ξ)) in
(41). By the relations (20), (24), and (27) and the special form of Young’s
inequality (2), which reads
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zp−2
1 z2 ≤ p− 2

p
zp1 +

2

p
z
p/2
2 , for all z1, z2 ≥ 0, (42)

we can approximate Γ1(ξ) as follows:

E(Γ1(ξ)) ≤E
∫ ξ

0

(
(p− 2)|y(ζ)|p + 2K

p/2
2 (1 + |Z∆(ζ)|2)p/2

)
dζ

≤(2K2)
p/2T + 23p/2−1K

p/2
2 T |θ|p∆p(h(∆))p

+ (p− 2)

∫ ξ

0

E|y∆(ζ)|pdζ + 23p/2−1K
p/2
2

∫ ξ

0

E|Y∆(ζ)|pdζ. (43)

For Γ2(ξ), with the help of Young’s inequality (42), relations (10) and (20)
and Lemma 3, we obtain

E(Γ2(ξ)) ≤ (p− 2)

∫ ξ

0

E|y∆(ζ)|pdζ + 2(h(∆))p/2
∫ T

0

E|y∆(ζ)− Z∆(ζ)|p/2dζ

≤ (p− 2)

∫ ξ

0

E|y∆(ζ)|pdζ + 2TCp/2(h(∆))p∆p/4. (44)

For Γ3(ξ), the Young inequality as well as (10), (18), and (20) yields

E(Γ3(ξ)) ≤ α1E
∫ ξ

0

(
(p− 2)|y∆(ζ)|p + 2|y∆(ζ)|p/2

∣∣a∆(Y (ζ))− a∆(Z∆(ζ))
∣∣p/2)dζ

≤ α1(p− 1)

∫ ξ

0

E|y∆(ζ)|pdζ + α1(h(∆))p
∫ T

0

∣∣κ∆(Y (ζ))− κ∆(Z∆(ζ))
∣∣pdζ

≤ α1(p− 1)

∫ ξ

0

E|y∆(ζ)|pdζ + 2α1|θ|pT (h(∆))2p∆p

≤ (p− 1)α1

∫ ξ

0

sup
0≤u≤ζ

E|y∆(u)|pdu+ 2|θ|pα1T ĥ
2. (45)

Inserting (43)–(45) into (41), we have

E|y∆(ξ)|p ≤ C
(
1 +

∫ ξ

0

sup
0≤u≤ζ

E|y∆(u)|pdζ
)
.

Therefore, we can write

sup
0≤u≤ξ

E|y(u)|p ≤ C
(
1 +

∫ ξ

0

sup
0≤u≤ζ

E|y(u)|pdζ
)
.

It can be deduced from the Gronwall’s inequality that

sup
0≤u≤ξ

E|y(u)|p ≤ C,
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for a positive constant number C independent of ∆. For 0 < p̂ ≤ p, according
to the Lyapunov inequality, (38) still holds, which completes the proof of the
lemma.

Remark 3. For every ξ ∈ [0, T ], there is a single integer n ≥ 0 such that
tn ≤ ξ < tn+1. From (17) and (27) we can deduce that

E|Z∆(ξ)|p = E|Z∆(tn)|p ≤ 2p−1
(
E|Y∆(tn))|p +∆p|θ|pE

∣∣a∆(Y∆(tn))
∣∣p)

≤ 2p−1
(
E|Y∆(tn)|p +∆3p/4|θ|pĥp

)
.

Therefore, by Lemma 3 we can write

sup
0≤∆≤1

sup
0≤ξ≤T

E|Z∆(ξ)|p ≤ C. (46)

In addition to (13), for any real number R > |x(0)|, we define two other
stopping times

θ
(1)
R := inf{t ≥ 0 : |Y∆(t)| ≥ R}, θ

(2)
R := inf{t ≥ 0 : |Z∆(t)| ≥ R}. (47)

Lemma 5. Let Assumption 1 and 2 hold. Fix any p ∈ (0,∞). Then, for
any real number R > |x(0)|, we have

P(θ(1)R ≤ T ) ∨ P(θ(2)R ≤ T ) ≤ C

Rp
,

where C stands for the generic positive real constant here in independent of
R.

Proof. The proof of this lemma is similar to that of Lemma 1. Namely,
replacing ξ by θ

(1)
R ∧ T in (38), we see

E|y∆(θ(1)R ∧ T )|p ≤ C.

Then, by Markov’s inequality we have

RpP(θ(1)R ≤ T ) ≤ E(|y∆(θ(1)R )|pI
θ
(1)
R ≤T

) ≤ E(|y∆(θ(1)R ∧ T )|p) ≤ C.

Moreover, it follows from Remark 3 that E|Z∆(θ
(2)
R ∧ T )|p ≤ C. Therefore,

as above

RpP(θ(2)R ≤ T ) ≤ E(|Z∆(θ
(2)
R )|pI

θ
(2)
R ≤T

) ≤ E(|Z∆(θ
(2)
R ∧ T )|p) ≤ C,

which completes the proof.
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3.2 Convergence of the new method at time T

In this section, we study the effectiveness of the method TASK2 in solving
problem (1) and obtain the corresponding convergence results at finite time
T . Using the method of Yamada and Watanabe, for each δ ∈ [1,∞) and
ϵ ∈ (0,∞), we choose a nonnegative continuous function χδϵ : [0,∞) → R
such that [15, 31]:

• χδϵ(ξ) ≤ 2
x ln(δ) , if ξ ∈ [ϵ/δ, ϵ], χδϵ(ξ) = 0 otherwise;

•
∫ ϵ

ϵ/δ
χδϵ(ξ)dξ = 1.

Moreover, we approximate the function ξ :→ |ξ| by the function ϖδϵ defined
by

ϖδϵ(ξ) :=

∫ |ξ|

0

∫ ζ1

0

χδϵ(ζ2)dζ2dζ1, for all ξ ∈ R. (48)

Below we outline some properties of the ϖδϵ function that will be used in the
following sections. Further details can be found in the literature [32, 33].

Lemma 6. Let δ ∈ [1,∞) and let ϵ ∈ (0,∞). Then for all ξ ∈ R

1. |ξ| ≤ ϖδϵ(ξ) + ϵ,

2. 0 ≤ |ϖ′
δϵ(ξ)| ≤ 1,

3. ϖ′′
δϵ(ξ) = χδϵ(|ξ|) ≤ 2

|ξ| ln δ I{ϵ/δ≤|ξ|≤ϵ},

4. ϖ′
δϵ(ξ)
ξ > 0, for all ξ ∈ R \ {0}.

Remark 4. Since supξ∈R|ϖ′
δϵ(ξ)| ≤ 1, under Assumption 2, we can easily

conclude
ϖ′

δϵ(z1 − z2)(a(z1)− a(z2)) ≤ H1|z1 − z2|, (49)

for all z1, z2 ∈ R; see [32].

Define the stopping time β∆,R := τR ∧ θ
(1)
R ∧ θ

(2)
R , where τR and θ

(i)
R

for i = 1, 2, are defined by (13) and (47), respectively. Then, the moment
deviation between x(ξ ∧ β∆,R) and y∆(ξ ∧ β∆,R) is estimated as follows.

Lemma 7. Consider the initial problem (1), which satisfies Assumptions
1 and 2. Suppose that R > |x0| is a real number and that ∆ ∈ (0, 1] is
sufficiently small such that ν(−1)(h(∆)) ≥ R. Then there exists a constant
C such that

E|e∆(ξ ∧ β∆,R)| ≤

{
C
(
− 1

ln(∆) +∆
1
4 (h(∆))

1
2

)
, if α = 0,

C
(
∆

1
2h(∆)

)2α
, if 0 < α < 0.5,

(50)

where
e∆(ξ) := x(ξ)− y∆(ξ), for 0 ≤ ξ ≤ T.
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Proof. We note for 0 ≤ ζ ≤ ξ ∧ β∆,R that |Y∆(ζ)| ≤ R and |Z∆(ζ)| ≤ R.
Therefore, we conclude by the condition ν(−1)(h(∆)) ≥ R and the definition
of the truncation function a∆ in (19) that

a∆(Y∆(ζ)) = a(Y∆(ζ)) and a∆(Z∆(ζ)) = a(Z∆(ζ)).

It therefore follows from the Itô formula that

E|e∆(ξ ∧ β∆,R)| ≤ϵ+ E
(
ϖδϵ(e∆(ξ ∧ β∆,R))

)
(51)

=ϵ+ E
∫ ξ∧β∆,R

0

ϖ′
δϵ(e∆(ζ))

[
a(x(ζ))− α1a(Y∆(ζ))− α2a(Z∆(ζ))

]
dζ

+
1

2
E
∫ ξ∧β∆,R

0

ϖ′′
δϵ(e∆(ζ))

[
b(x(ζ))− b(Z∆(ζ))

]2
dζ := ϵ+Π1 +Π2.

In what follows, we attempt to estimate the values Π1 and Π2 in (51). Since
α1 + α2 = 1, by re-arranging we get that

Π1 ≤E
∫ ξ∧β∆,R

0

ϖ′
δϵ(e∆(ζ))

[
a(x(ζ))− a(y∆(ζ))

]
dζ

+ E
∫ ξ∧β∆,R

0

∣∣ϖ′
δϵ(e∆(ζ))

∣∣∣∣a(y∆(ζ))− a(Y∆(ζ))
∣∣dζ

+ α2E
∫ ξ∧β∆,R

0

∣∣ϖ′
δϵ(e∆(ζ))

∣∣∣∣a(Y∆(ζ))− a(Z∆(ζ))
∣∣dζ.

By Assumption 1, Lemma 6, and Remark 4 we can write

Π1 ≤H1E
∫ ξ∧β∆,R

0

|e∆(ζ))|dζ

+
√
K1E

∫ ξ∧β∆,R

0

(
1 + |y∆(ζ)|ρ + |Y∆(ζ)|ρ

) 1
2
∣∣y∆(ζ))− Y∆(ζ)

∣∣dζ
+ α2

√
K1E

∫ ξ∧β∆,R

0

(
1 + |Y∆(ζ)|ρ + |Z∆(ζ)|ρ

) 1
2
∣∣Y∆(ζ))− Z∆(ζ)

∣∣dζ.
So, by the Hölder inequality, Lemmas 3 and 4, we have

Π1 ≤ H1E
∫ ξ∧β∆,R

0

|e∆(ζ))|dζ + C∆
1
2h(∆). (52)

As for Π2, it follows from Assumption 2 and Lemmas 3 Lemma 6 that

Π2 ≤ H2
2E
∫ ξ∧β∆,R

0

(
x(ζ)− Z∆(ζ)

)1+2α 1

|e∆(ζ)| ln δ
I{ϵ/δ≤|e∆(ζ)|≤ϵ}dζ

≤ 22αH2
2 ϵ

2αT

ln(δ) +
22αH2

2δ

ϵ ln(δ) E
∫ ξ

0

∣∣y∆(ζ)− Z∆(ζ)
∣∣1+2α

dζ
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≤ 22αH2
2T
[ ϵ2α

ln(δ) +
δ

ϵ ln(δ)

](
∆

1
2h(∆)

)1+2α
. (53)

Substituting (52) and (53) in (51) and by the Gronwall inequality, we have

E|e∆(ξ ∧ β∆,R)| ≤ C
(
ϵ+∆

1
2h(∆) +

ϵ2α

ln(δ) +
δ

ϵ ln(δ)
(
∆

1
2h(∆)

)1+2α
)
.

In the case when α = 0, we set δ = ∆− 1
8 and ϵ = − 1

ln(∆) , which implies

E|e∆(ξ ∧ β∆,R)| ≤ C
(
− 1

ln(∆)
+ ∆

1
4 (h(∆))

1
2

)
. (54)

If we take δ = 2 and ϵ = ∆
1
2h(∆) for the case where α ∈ (0, 0.5), then we

have
E|e∆(ξ ∧ β∆,R)| ≤ C

(
∆

1
2h(∆)

)2α
. (55)

The inequalities (54) and (55) prove the desired.

Theorem 2. Let conditions in Assumptions 1 and 2 be fulfilled and let p > 1.
Let R∆ :=

(
∆

1
2h(∆)

)−1/(p−1) for any ∆ ∈ (0, 1]. If there is a positive real
number ∆∗ ∈ (0, 1] such that

ν−1(h(∆)) ≥ R∆, for all ∆ ∈ (0,∆∗]. (56)

Then, there exists a positive constant C independent of ∆ such that

E|e∆(T )| ≤

{
C
(
− 1

ln(∆) +∆
1
4 (h(∆))

1
2

)
, if α = 0,

C
(
∆

1
2h(∆)

)2α
, if α ∈ (0, 1

2 ).
(57)

Proof. We first divide the left side of (57) as below:

E|e∆(T )| = E|e∆(T )I{β∆,R>T}|+ E|e∆(T )I{β∆,R≤T}| (58)

By Young’s inequality (2), Theorem 1, and Lemmas 4 and 5, we obtain

E|e∆(T )I{β∆,R≤T}| ≤
∆

1
2h(∆)

p
E|e∆(T )|p +

p− 1

p
(
∆

1
2h(∆)

)1/(p−1)
P(β∆,R ≤ T )

≤ C∆
1
2h(∆). (59)

Since ν−1(h(∆)) ≥ R∆, substituting (59) in (58) by Lemma 7, we obtain the
result of the theorem.

Remark 5. This theorem shows that the TSRK2 method has an order of
convergence close to α for α ∈ (0, 0.5). This is theoretically almost opti-
mal if we recall that the classical EM method has a convergence order of
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α. However, the condition (56) could sometimes make the TSRK2 method
impractical; see [33] for more details.

In what follows, we use the mathematical techniques developed by Yang
and Huang [33] to remove the imposed condition (56). In this context,
we replace the condition ∆1/4h(∆) ≤ ĥ by the more general condition
∆1/2h(∆) ≤ ĥ for all ∆ ∈ [0, 1]. Without limiting generality, for simplic-
ity, we use here h(∆) = ηh∆

− 1
2 with ηh > 0.

Lemma 8. Let Assumptions 1 and 2 be satisfied. If h(∆) = ηh∆
− 1

2 with
ηh > 0, then for every ∆ ∈ (0, 1] and every p > 0, it holds that

sup
0<∆≤1

E
[

sup
0≤ξ≤T

|y∆(ξ)|p
]
≤ C, (60)

and(
sup

0≤ξ≤T
E|y∆(ξ)− Y∆(ξ)|p

)
∨
(

sup
0≤ξ≤T

E|y∆(ξ)− Z∆(ξ)|p
)
≤ C∆

p
2 , (61)

for all real positive number T .

Proof. We fix ∆ ∈ (0, 1] and use the same notation as in the proof of Lemma
4. By using the Itô formula, we can write that for any p > 2,

sup
0≤ξ≤T

|y∆(ξ)|p ≤|x0|p + Γ1(T ) + Γ2(T ) + Γ3(T )

+ sup
0≤ξ≤T

∣∣∣∫ ξ

0

p|y∆(ζ)|p−2y∆(ζ)b(Z∆(ζ))dW (ζ)
∣∣∣. (62)

So, by the Burkholder–Davis-Gundy inequality and the linear growth condi-
tion property of b in (8), we have

E
(

sup
0≤ξ≤T

|y∆(ξ)|p
)
≤|x0|p + Γ1(T ) + Γ2(T ) + Γ3(T ) (63)

+ 8pM2E
([

sup
0≤ξ≤T

|y∆(ξ)|p
∫ T

0

|y∆(ξ)|p−2
(
1 + |Z∆(ξ)|2

)
dξ
]1/2)

.

In what follows, we estimate the values E(Γ1(T )), E(Γ2(T )), and E(Γ3(T ))

in (63) with the more general condition h(∆) = ηh∆
− 1

2 . For E(Γ1(ξ)), we
obtain from (43)

E(Γ1(ξ)) ≤ C
(
1 +

∫ T

0

E|y∆(ζ)|pdζ +
∫ T

0

E|Y∆(ζ)|pdζ
)
. (64)

As for Γ2(ξ), we obtain by Young’s inequality (42) that
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E(Γ2(ξ)) ≤(p− 2)

∫ T

0

E|y∆(ζ)|pdζ + 2E
∫ T

0

|y∆(ζ)− Z∆(ζ)|
p
2 |a∆(Y∆(ζ))|

p
2 dζ

≤C∆− p
4

∫ T

0

(E|y∆(ζ)− Z∆(ζ)|p)
1
2 (1 + E|Y∆(ζ)|p)

1
2 dζ

+ (p− 2)

∫ T

0

E|y∆(ζ)|pdζ. (65)

Since (h(∆))2p∆p ≤ η2ph ĥp, following an approach very similar to that used
in (45), we can show that

E(Γ3(ξ)) ≤ C
(
1 +

∫ T

0

E|y∆(ζ)|pdu
)
. (66)

For any ζ ∈ [0, T ], there is a unique integer n ≥ 0 such that tn ≤ ζ ≤ tn+1.
Then we can write

E|Z∆(ζ)− Y∆(ζ)|p = E|Z∆(tn)− Y∆(tn)|p = ∆p|θ|pE|a∆(Y∆(tn))|p

≤ C∆
p
2 (1 + E|Y∆(tn)|p) = C∆

p
2 (1 + E|Y∆(ζ)|p), (67)

and

E|y∆(ζ)− Y∆(ζ)|p =E|y∆(ζ)− Y∆(tn)|p ≤ C∆
p
2

(
α1∆

p
2E
[
|a∆(Y∆(tn))|p

]
+ α2∆

p
2E
[
|a∆(Z∆(tn))|p

]
+ E

[
|b(Z∆(tn))|p

])
. (68)

Therefore, by Remark 2 and relations (67) and (68) we can obtain

E|y∆(ζ)− Y∆(ζ)|p ≤ C∆
p
2

(
1 + E|Y∆(tn)|p + E|Z∆(tn)|p

)
≤ C∆

p
2 (1 + E|Y∆(ζ)|p). (69)

From (67) and (69) we can simply conclude

E|y∆(ζ)− Z∆(ζ)|p ≤ C∆
p
2 (1 + E|Y∆(ζ)|p). (70)

Substituting (64)–(66) and (70) into (63) and applying Young’s inequality
that is

z1z2 ≤ z21
2δ

+
δz22
2

, for all z1, z2 ∈ R, for all δ > 0, (71)

with δ = 8pM2, we can write

E
(

sup
0≤ξ≤T

|y∆(ξ)|p
)
≤C
(
1 +

∫ T

0

E|y∆(ζ)|pdζ +
∫ T

0

E|Y∆(ζ)|pdζ
)
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+
1

2
E
(

sup
0≤ξ≤T

|y∆(ξ)|p
)

+ 32p2M2
2E
(∫ T

0

|y∆(ξ)|p−2
(
1 + |Z∆(ξ)|2

)
dξ
)

≤1

2
E
(

sup
0≤ξ≤T

|y∆(ξ)|p
)

+ C
(
1 +

∫ T

0

E|y∆(ζ)|pdζ +
∫ T

0

E|Y∆(ζ)|pdζ
)
,

which implies

E
(

sup
0≤ξ≤T

|y∆(ξ)|p
)
≤ C

(
1 +

∫ T

0

E
[

sup
0≤s≤ξ

|y∆(s)|p
]
ds
)
.

Then, the Gronwall inequality implies the relation (60) for p > 2. For p̄ ∈
(0, 2], (60) still holds as desired due to the Lyapunov inequality. Moreover,
(61) is obtained directly by substituting (60) into (69) and (70) , which
completes the proof.

Theorem 3. Consider the initial problem (1) that satisfies Assumptions 1
and 2. Let ν(r) = ηhr

1+ρ̄ and h(∆) = ηh∆
− 1

2 in which ρ̄ ≥ ρ
2 . Then there

exists a constant C such that

E|e∆(T )| ≤

{
C
(
− 1

ln(∆) +∆
1
4

)
, if α = 0,

C∆α, if 0 < α < 0.5.
(72)

Proof. We split the left side of (72) into two parts

E|e∆(T )| = E|e∆(T )I{β∆,R≤T}|+ E|e∆(T )I{β∆,R>T}|. (73)

Using the Young inequality, we have

E|e∆(T )I{β∆,R≤T}| ≤
∆

1
2

ρ̄+ 2
E|e∆(T )|ρ̄+2+

ρ̄+ 1

ρ̄+ 2
∆− 1

2(ρ̄+1)P(β∆,R ≤ T ). (74)

For any R > |x0|, by Lemmas 1 and 5, we can write

Rρ̄+2P(β∆,R ≤ T ) ≤ C,

which follows that
P(β∆,R ≤ T ) ≤ C

Rρ̄+2
. (75)

If we substitute (75) into (74) and use Theorem 1 and Lemma 8, we get

E|e∆(T )I{β∆,R≤T}| ≤ C
(
∆

1
2 +

∆− 1
2(ρ̄+1)

Rρ̄+2

)
.
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By choosing R = ν−1(h(∆)) = ( ηh

ην
∆− 1

2 )
1

1+ρ̄ , we have

E|e∆(T )I{β∆,R≤T}| ≤ C∆
1
2 . (76)

In what follows, we try to estimate the second terms in (73). Since R =
ν−1(h(∆)), if 0 ≤ ζ ≤ β∆,R, then |Y∆(ζ)| ∨ |Z∆(ζ)| ≤ ν−1(h(∆)) for all
∆ ∈ [0, 1]. By the definition of the truncated function (19), a∆(|Y∆(ζ)|) =
a(|Y∆(ζ)|) and a∆(|Z∆(ζ)|) = a(|Z∆(ζ)|). Using the same notation as in the
proof of Lemma 7, according to the Itô formula we get

E|e∆(ξ ∧ β∆,R)| ≤ ϵ+Π1 +Π2, (77)

where Π1 and Π2 are defined in (51). According to Assumption 1, Lemma 6,
and Remark 4 as well as the Hölder inequality the following equation holds
for Π1

Π1 ≤H1

∫ ξ

0

E|e∆(ζ ∧ β∆,R))|dζ

+
√

K1

∫ ξ∧β∆,R

0

(
1 + E|y∆(ζ)|ρ + E|Y∆(ζ)|ρ

) 1
2 (E

∣∣y∆(ζ))− Y∆(ζ)
∣∣2) 1

2 dζ

+ α2

√
K1E

∫ ξ∧β∆,R

0

(
1 + E|Y∆(ζ)|ρ + E|Z∆(ζ)|ρ

) 1
2 (E

∣∣Y∆(ζ))− Z∆(ζ)
∣∣2) 1

2 dζ.

From Theorem 1 and Lemma 8 we can thus conclude

Π1 ≤ C

∫ ξ

0

E|e∆(ζ ∧ β∆,R))|dζ + C∆
1
2 . (78)

As for Π2, it follows from (6) and Lemmas 6 and 8 that

Π2 ≤ H2
2E
∫ ξ∧β∆,R

0

(
x(ζ)− Z∆(ζ)

)1+2α 1

|e∆(ζ)| ln δ
I{ϵ/δ≤|e∆(ζ)|≤ϵ}dζ

≤ 22αH2
2 ϵ

2αT

ln(δ) +
22αH2

2δ

ϵ ln(δ) E
∫ ξ

0

∣∣y∆(ζ)− Z∆(ζ)
∣∣1+2α

dζ

≤ C
( ϵ2α

ln(δ) +
δ∆1/2+α

ϵ ln(δ)
)
. (79)

Substituting (78) and (79) into (77) and applying Gronwall’s inequality yield

E|e∆(ξ ∧ β∆,R)| ≤ C
(ϵ+ ϵ2α

ln(δ) +
δ∆1/2+α

ϵ ln(δ) + ∆1/2
)
.

In what follows we divide the proof into two cases α = 0 and α ∈ (0, 1
2 ). In

the case when α = 0, we set δ = ∆− 1
4 and ϵ = 1

4 , implying

E|e∆(ξ ∧ β∆,R)| ≤ C
(
− 1

ln(∆)
+ ∆

1
4

)
. (80)
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In the case where α ∈ (0, 1
2 ), we set ∆ = 2 and ϵ = ∆

1
2 , which implies

E|e∆(ξ ∧ β∆,R)| ≤ C∆α. (81)

From (77), (80), and (81) the proof follows directly.

4 Convergence rate over a finite interval

Sometimes we need to approximate path-dependent quantities, for example,
the value of the European barrier option value. In these cases, we need a
stronger convergence result such as

lim
∆→0

E
(

sup
0≤ξ≤T

|x(ξ)− y∆(ξ)|
)
= 0.

Lemma 9. Consider the initial problem (1), which satisfies Assumptions
1 and 2. Suppose that R > |x0| is a real number and that ∆ ∈ (0, 1] is
sufficiently small such that ν(−1)(h(∆)) ≥ R. Then for all 0 ≤ ξ ≤ T , a
constant C exists such that

E
(

sup
0≤ζ≤ξ

|x(ζ)− y∆(ζ)|
)
≤

C
(

1
ln(∆−1) +∆

1
4 (h(∆))

1
2

) 1
2

, if α = 0,

C
(
∆

1
2h(∆)

)4α2

, if α ∈ (0, 1
2 ).

(82)

Proof. By the Itô formula, we can write

|e∆(ξ ∧ β∆,R)| ≤ε+
(
ϖδ,ϵ(e∆(ξ ∧ β∆,R))

)
=ϵ+

∫ ξ∧β∆,R

0

ϖ′
δ,ϵ(e∆(ζ))

[
a(x(ζ))− α1a∆(Y∆(ζ))− α2a∆(Z∆(ζ))

]
dζ

+
1

2

∫ ξ∧β∆,R

0

ϖ′′
δ,ϵ(e∆(ζ))

[
b(x(ζ))− b(Z∆(ζ))

]2
dζ + Sδ,ϵ,∆(ξ),

where, for ξ ≥ 0

Sδ,ϵ,∆(ξ) =

∫ ξ∧β∆,R

0

ϖ′
δ,ϵ(e∆(ζ))

(
b(x(ζ))− b(Z∆(ζ))

)
dW (ζ). (83)

Since ν(−1)(h(∆)) ≥ R, if 0 ≤ ζ ≤ ξ ∧ β∆,R, we have |Y∆(ζ)| ∨ |Z∆(ζ)| ≤
ν(−1)(h(∆)), which gives a∆(Y∆(ζ)) = a(Y∆(ζ)) and a∆(Z∆(ζ)) = a(Z∆(ζ)).
If we use the same technique as in the proof of Lemma 7 and apply Assump-
tion 1, then we have

|e∆(ξ ∧ β∆,R)| ≤ε+H1

∫ ξ∧β∆,R

0

|e∆(ζ))|dζ (84)
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+
√

K1

∫ ξ∧β∆,R

0

(
1 + |y∆(ζ)|ρ + |Y∆(ζ)|ρ

) 1
2
∣∣y∆(ζ))− Y∆(ζ)

∣∣dζ
+ α2

√
K1

∫ ξ∧β∆,R

0

(
1 + |Y∆(ζ)|ρ + |Z∆(ζ)|ρ

) 1
2
∣∣Y∆(ζ))− Z∆(ζ)

∣∣dζ
+

22αH2
2ε

2α

ln(δ) ξ

+
22αH2

2δ

ε ln(δ)

∫ ξ∧β∆,R

0

∣∣y∆(ζ)− Z∆(ζ)
∣∣1+2α

dζ + Sδ,ϵ,∆(ξ).

By the Hölder’s inequality and Lemmas 3 and 4, we have

E
(

sup
0≤u≤ξ

|e∆(u ∧ β∆,R)|
)
≤ε+H1

∫ ξ

0

E
(

sup
0≤u≤ζ

|e∆(u ∧ β∆,R)|
)
dζ + C∆

1
2h(∆)

+
22αH2

2ε
2α

ln(δ) ξ +
22αH2

2δ

ε ln(δ) E
∫ ξ

0

∣∣y∆(ζ)− Z∆(ζ)
∣∣1+2α

dζ

+ E
(

sup
0≤u≤ξ

|Sδ,ϵ,∆(u)|
)
. (85)

Next, we try to estimate the value E
(

sup0≤u≤ξ|Sδ,ϵ,∆(u)|
)

in (85). By the
Burkholder–Davis–Gundy inequality and Lemma 6, we can write

E
(

sup
0≤u≤ξ

|Sδ,ϵ,∆(u)|
)
≤4

√
2E
(∫ ξ∧β∆,R

0

|ϖ′
δϵ(e∆(ζ))|2

∣∣b(x(ζ))− b(Z∆(ζ))
∣∣2dζ) 1

2

≤2α+
5
2H2E

(∫ ξ∧β∆,R

0

|x(ζ)− x∆(ζ)|1+2αdζ
) 1

2

+ 2α+
5
2H2E

(∫ ξ∧β∆,R

0

|x∆(ζ)− Z∆(ζ)|1+2αdζ
) 1

2

.

In fact, by Assumption 2 we have∣∣b(x(ζ))− b(Z∆(ζ))
∣∣2 ≤ H2|x(ζ)− Z∆(ζ)|1+2α

≤ 2αH2|x(ζ)− x∆(ζ)|1+2α + 2αH2|x∆(ζ)− Z∆(ζ)|1+2α.

Therefore, by Lemma 3 we have

E
(

sup
0≤u≤ξ

|Sδ,ϵ,∆(u)|
)
≤C
(
∆

1
4

√
h(∆)

)1+2α

+ 2α+
5
2H2E

(∫ ξ∧β∆,R

0

|x(ζ)− x∆(ζ)|1+2αdζ
) 1

2

.(86)

In the rest, we divide the proof into two cases.
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Case 1: Suppose that α = 0. In this case, according to Lemma 7 and from
the relation (86), it follows that

E
(

sup
0≤u≤ξ

|Sδ,ϵ,∆(u)|
)
≤ C

(
∆

1
4

√
h(∆) +

( 1

ln(∆−1)
+ ∆

1
4 (h(∆))

1
2

) 1
2

)
. (87)

Substituting (87) into (85) and choosing δ = ∆− 1
8 and ε = −1/ ln(∆), we get

E
(

sup
0≤u≤ξ

|e∆(u ∧ β∆,R)|
)
≤H1

∫ ξ

0

E
(

sup
0≤u≤ζ

|e∆(u ∧ β∆,R)|
)
dζ

+ C

(
∆

1
2h(∆) + ∆

1
4 (h(∆))

1
2 − 1

ln(∆)
+ ∆

3
8h(∆)

+
( 1

ln(∆−1)
+ ∆

1
4 (h(∆))

1
2

) 1
2

)
,

which implies

E
(

sup
0≤u≤ξ

|e∆(u ∧ β∆,R)|
)
≤H1

∫ ξ

0

E
(

sup
0≤u≤ζ

|e∆(u ∧ β∆,R)|
)
dζ

+ C
( 1

ln(∆−1)
+ ∆

1
4 (h(∆))

1
2

) 1
2

. (88)

Case 2: Suppose α ∈ (0, 1
2 ). In this case from (86) we have

E
(

sup
0≤u≤ξ

|Sδ,ϵ,∆(u)|
)
≤C
(
∆

1
4

√
h(∆)

)1+2α

+ 2α+ 5
2 H2E

((
sup

0≤u≤ξ
|e∆(ξ ∧ β∆,R)|

) 1
2
(∫ ξ∧β∆,R

0

|e∆(ζ)|2αdζ
) 1

2

)
.

By Young’s inequality and Lemma 7 we have

E
(

sup
0≤u≤ξ

|Sδ,ϵ,∆(u)|
)
≤C

((
∆

1
4

√
h(∆)

)1+2α

+
(√

∆h(∆)
)4α2

)

+
1

2
E
(

sup
0≤u≤ξ

|e∆(ξ ∧ β∆,R)|
))

. (89)

Inserting (89) in (85) and by choosing ε = ∆
1
2h(∆) and δ = 2, we get

E
(

sup
0≤u≤ξ

|e∆(u∧β∆,R)|
)
≤ 2H1

∫ ξ

0

E
(

sup
0≤u≤ζ

|e∆(u∧β∆,R)|
)
dζ+C

(√
∆h(∆)

)4α2

.

(90)
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Hence, by using the Gronwall inequality on (88) and (90) we have the required
assertion.

Theorem 4. Let ν(r) = ηhr
1+ρ̄ and h(∆) = ηh∆

−ωϵ in which ρ̄ ≥ ρ
2 , and

ϵ ∈
(
0,min

{ 1

4ω
,

3

4− 2ω

})
,

for any ω ∈ (0, 2). Let Assumptions 1 and 2 hold, and also let ∆∗ be suffi-
ciently small such that ∆

1−2ωϵ
4 ≤ 1

ln ∆−1 for all ∆ ∈ (0,∆∗]. Then

E
(

sup
0≤ζ≤T

|x(ζ)−y∆(ζ)|
)
≤

C
(

1
ln(∆−1)

) 1
2

, if α = 0,

C
(
∆2α2(1−2ωϵ) +∆

1−ϵ
2

)
, if α ∈ (0, 1

2 ).
(91)

Proof. For any R > |x0|, we can decompose the left side of (91) into two
parts as below:

E
(

sup
0≤ζ≤T

|x(ζ)−y∆(ζ)|
)
≤ E

(
sup

0≤u≤ξ
|e∆(u∧β∆,R)|

)
+E
(

sup
0≤ζ≤T

|e∆(ζ)|I{β∆,R≤T}

)
.

(92)
Let p > 1 + 1+ρ̄

2ωϵ be fixed. By the Young inequality, that is

z1z2 ≤ δ

p
zp1 +

p− 1

pδ1/(p−1)
z
1/(p−1)
2 , for all z1, z2 ∈ [0,+∞), for all δ > 0,

and Lemmas 1 and 5, we can deduce

E
(

sup
0≤ζ≤T

|e∆(ζ)|I{β∆,R≤T}

)
≤δ

p
E
(

sup
0≤ζ≤T

|e∆(ζ)|p
)
+

p− 1

pδ1/p−1
P(β∆,R ≤ T )

≤Cδ

p
+

p− 1

pδ1/p−1Rp
. (93)

By choosing
δ = ∆(1−ϵ)/2, R = ∆−(1−ϵ)/2(p−1),

we see that ν(−1)(h(∆)) ≥ R. Therefore, by substituting (93) into (92) and
applying Lemma 9, we have

E
(

sup
0≤ζ≤T

|x(ζ)−y∆(ζ)|
)
≤

C
((

1
ln(∆−1) +∆

1−2ωϵ
4

) 1
2 +∆

1−ϵ
2

)
, if α = 0,

C
(
∆2α2(1−2ωϵ) +∆

1−ϵ
2

)
, if α ∈ (0, 1

2 ),

which completes the proof of the theorem.
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Figure 1: The supremum convergence norm (95) in [0, 2] as a function of step size ∆ for
Example 1 with ϵ = 0.0001, ω = 0.5, and α = 0.

5 Numerical experiments

In Section 3, we derived TSRK2 methods with free parameters α1, α2, and
θ. In this section, we follow [17] and set them to below:

α1 = α2 =
1

2
and θ =

ω1

ω0
, (94)

in which ω0 = 1.9 and ω1 = 0.8184. We confirm the performance of the new
method in terms of accuracy and stability in contrast to the truncated EM
method [21, 32] and the modified partially truncated EM method [33]. In
this context, we investigate

E
(

sup
0≤ζ≤T

|x(ζ)− y∆(ζ)|
)
≈ 1

2000

2000∑
i=1

max
n=1,...,M

∣∣x(i)(tn)− y
(i)
∆ (tn)

∣∣, (95)

for a given ∆ = T/N to measure the accuracy of the methods.

Example 1. Consider the following SDE with Hölder continuous diffusion
coefficient

dx(ξ) =
(
λ1x(ξ)− λ2x

3(ξ)
)
dξ + µ|x(ξ)| 12+αdW (ξ), ξ ∈ [0, T ], (96)

x(0) = x0 ∈ R,

where λ1 ∈ R and λ2, µ ∈ R+.

The drift and diffusion coefficients are a(z) = λ1z − λ2z
3 and b(z) =

µ|z| 12+α, respectively. We can easily show that, for z1, z2 ∈ R,
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Figure 2: The supremum convergence norm (95) in [0, 2] as a function of step size ∆ for
Example 1 with ϵ = 0.0001, ω = 0.5, and α = 0.25.

|a(z1)− a(z2)|2 ≤ K̃1(1 + |z1|4 + |z2|4)|z1 − z2|2,

where K̃1 := 3max{λ2
1,

9
4λ

2
2}. In other words, Assumption 1 is satisfied with

ρ = 4. Moreover, we have

(z1 − z2)(a(z1)− a(z2)) ≤ λ1(z1 − z2)
2, |b(z1)− b(z2)| ≤ µ|z1 − z2|

1
2+α.

That is to say, Assumption 2 is fulfilled. Concerning (10), we set ηh = 4
√

K̃1.
Then, we have

sup
0<|z1|∨|z2|≤r

|a(z1)− a(z2)|
|z1 − z2|

≤ ηh
(1 + r2

2

)
≤ ηhr

3,

and
sup
|z|≤r

|a(z)| ≤ (|λ1|+ λ2)r
3 ≤ ηhr

3,

for all r ≥ 1. To apply Theorem 4, we set ν(r) = ηhr
3 and h(∆) = ηh∆

−ωϵ.
We can therefore conclude that the truncated Runge–Kutta solution (27)
satisfies

E
(

sup
0≤ζ≤T

|x(ζ)− y∆(ζ)|
)
≤

C
(

1
ln(∆−1)

) 1
2

, if α = 0,

C
(
∆2α2(1−2ωϵ) +∆

1−ϵ
2

)
, if α ∈ (0, 1

2 ).

Let us now test the efficiency of the TSRK2 method for problem (96) in
comparison with the truncated EM method [21] and the modified partially
truncated EM method [33] for different values of the Hölder parameter α.
Since we do not know the exact solution of (96), we search for a numerical
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Figure 3: The supremum convergence norm (95) in [0, 2] as a function of step size ∆ for
Example 1 with ϵ = 0.0001, ω = 0.5, and α = 0.45.

solution with ∆ = 2−18 using the truncated EM method and use it instead
of the exact solution. Figures 1–3 show simulations of (95) for the TSRK2
method with parameters (94), the truncated EM method, and the modified
partially truncated EM method with ω = 0.5. Here we take λ1 = −1.5,
λ2 = 10, and µ = 1.5 as parameters of (96) and apply the methods over
0 ≤ ξ ≤ 2 with step sizes, ∆ = 2i−2 for i = 1, 2, . . . , 9. In these figures, the
error of the methods is plotted as a function of seven-step sizes ∆ in log10
for different values of α (0, 0.25 and 0.45, respectively).

Figure 1 shows that, compared to the reference curve 0.5 log10(− 1
ln(∆) ),

the TSRK2 method gives better convergence results than the truncated EM
method and the modified partially truncated EM method for step size 2−5 ≤
∆ ≤ 2−1. However, for sufficiently small ∆ (e.g., ∆ ∈ (0, 2−5]), all methods
have the same slope values as in Theorem 4. Increasing the value of the
Hölder parameter α, it can be seen in Figures 2 and 3 that for the step size
2−5 ≤ ∆ ≤ 2−1, the TSRK2 method has a better convergence rate than
the other methods compared to the reference line with slope 1/2, but for
sufficiently small ∆ ≤ 2−6, all methods have the same convergence rate close
to 0.5 as in Theorem 4. The simulation results clearly show that the TSRK2
method confirms the convergence results stated in Theorem 4 and that the
new method is the most efficient method in terms of accuracy compared to
the truncated EM method and the modified partially truncated EM method.

Example 2. Consider the scalar nonlinear Itô SDE with a one-dimensional
Wiener process

dx(t) =
(
λ1x(ξ)− λ2x

5(ξ)
)
dξ + µ|x(ξ)| 12+αdW (ξ), t ∈ [0, T ],

x(0) = 1, (97)
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Figure 4: The supremum convergence norm (95) in [0, 2] as a function of step size ∆ for
Example 2 with ϵ = 0.1, ω = 0.5, and α = 0.

where λ1 ∈ R and λ2, µ ∈ R+.

The drift and diffusion coefficients are a(z) = λ1z − λ2z
5 and b(z) =

µ|z| 12+α, respectively. We can easily show that, for z1, z2 ∈ R,

|a(z1)− a(z2)|2 ≤ K̃2(1 + |z1|8 + |z2|8)|z1 − z2|2,

where K̃2 := 3max{λ2
1,

25
4 λ2

2}. In other words, Assumption 1 is satisfied with
ρ = 8. Moreover, we have

(z1 − z2)(a(z1)− a(z2)) ≤ λ1(z1 − z2)
2, |b(z1)− b(z2)| ≤ µ|z1 − z2|

1
2+α.

Concerning (10), we set ην = 4
√
K̃2. Then, we conclude

sup
0<|z1|∨|z2|≤r

|a(z1)− a(z2)|
|z1 − z2|

≤ ηh
(1 + r4

2

)
≤ ηhr

5,

and
sup
|z|≤r

|a(z)| ≤ (|λ1|+ λ2)r
5 ≤ ηhr

5,

for all r ≥ 1. To apply Theorem 4, we set ν(r) = ηνr
5 and h(∆) = ην∆

−ωϵ.
Figures 4–6 show the simulation of (95) of the TSRK2 method for equa-
tion (97) as a function of step size ∆ for Hölder α = 0, α = 0.25, and
α = 0.45, respectively. Since there is no explicit solution, we use the trun-
cated EM solution with ∆ = 2−18 as a suitable approximation to the exact
solution. Here we take λ1 = −15, λ2 = 20, and µ = 3 as stiff parame-
ters of (97) and apply the methods over 0 ≤ ξ ≤ 2 with different step sizes
∆ ∈ {2−3, 2−4, · · · , 2−10}.
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Figure 5: The supremum convergence norm (95) in [0, 2] as a function of step size ∆ for
Example 2 with ϵ = 0.1, ω = 0.5 and α = 0.25.

Figure 4, corresponding to α = 0, shows that the TSRK2 method gives
better convergence results than the truncated EM method and the modified
partially truncated EM method, especially for the step size 2−6 ≤ ∆ ≤ 2−3,
compared to the reference curve 0.5 log10(− 1

ln(∆) ). For the step size ∆ = 2−3,
for example, the new method has an error of 0.8655, while the truncated EM
method and the modified partially truncated EM method reach an error of
4.9260 and 25.1876, respectively. It should be emphasized that the modified
partially truncated method EM is not applicable for ∆ ≥ 2−2. However, for
sufficiently small ∆ (e.g., ∆ ≤ 2−6), all methods have the same slope values
as in Theorem 4.

In Figures 4 and 5, we present the supremum norm of the methods for
larger values of α = 0.25 and α = 0.45, respectively. These figures also show
that the new method has a better convergence rate compared to the other
methods mentioned, especially when the step sizes are not very small.

6 Conclusion

In this work, we have developed an explicit TSRK2 scheme for nonlinear
one-dimensional Itô-SDEs with one-sided Lipschitz and local Lipschitz drift
conditions and continuous Hölder diffusion condition. We proved the mo-
ment boundedness and convergence properties of the approximate solutions
at a time T and in a finite time interval [0, T ], respectively. We have demon-
strated the efficiency of the new method using some numerical examples with
different Hölder parameters α ∈ [0, 1

2 ) and compared our method with the
truncated EM method and the modified partially truncated EM method in
terms of their strong convergence performance. The numerical simulations
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Figure 6: The supremum convergence norm (95) in [0, 2] as a function of step size ∆ for
Example 2 with ϵ = 0.1, ω = 0.5 and α = 0.45.

we performed confirmed the theoretical convergence results and also showed
that the TSRK2 method is robust to changes in the Hölder parameters of
the SDEs.
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