- Abdi, H., & Williams, L.J. (2010). Principal component analysis, Wiley interdisciplinary reviews: Computational Statistics 2(4): 433-459.
- Ajayram, K.A., Jegadeeshwaran, R., Sakthivel, G., Sivakumar, R., & Patange, A.D. (2021). Condition monitoring of carbide and non-carbide coated tool insert using decision tree and random tree – A statistical learning. Materials Today. https://doi.org/10.1016/j.matpr.2021.02.065.
- Al-Mukhtar,, & Al-Yaseen, F. (2019). Modeling water quality parameters using data-driven models, a case study Abu-Ziriq Marsh in South of Iraq. Hydrology 6(24). https://doi.org/10.3390/hydrology6010024.
- Batur, E., & Maktav, D. (2019). Assessment of surface water quality by using satellite images fusion based on PCA method in the Lake Gala, Turkey. IEEE Transactions on Geoscience and Remote Sensing 57(5): 2983–2989. http://doi.org/10.1109/TGRS.2018.2879024.
- Breiman, L. (1996). Bagging predictors. Machine Learning 24: 123–140.
- Chen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., Shen, R., & Ren, H. (2020). Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Researchhttp://doi.org/10.1016/j.watres.2019.115454.
- Denil, M., Matheson, D., & de Freitas, N. (2014). Narrowing the Gap: Random Forests in Theory and in Practice. Proceedings of the 31st International Conference on Machine Learning, Beijing, China. JMLR: W and P. Vol.32. 9 pages.
- Hameed, M., Shargi, S., Yaseen, Z., Afan, H., Hussain, A., & Elshafie A. (2017). Application of artificial intelligence (AI) techniques in water quality index prediction: a case study in a tropical region, Malaysia. Neural Computing and Applications 28: 893-905. https://doi.org/10.1007/s00521-016-2404-7.
- Haar, A. (1910). The theory of orthogonal function systems. Mathematical Annals 69(3): 331-371. http://doi.org/10.1007/BF01456326.
- Hosseini, H., Shakeri, A., Rezaei, M., Dashti Barmaki, M., & Shahraki, M. (2019). Application of water quality index (WQI) and hydro-geochemistry for surface water quality assessment, Chahnimeh reservoirs in the Sistan and Baluchestan Province. Iranian Journal of Health and Environment 11(4): 575-586.
- Karbasi, M., & Dindar, S. (2019). Comparison of wavelet-MLP and wavelet-GMDH models in forecasting EC and SAR at Zayandeh-Rood River. Environmental Sciences 16(4): 135-152. (In Persian with English abstract)
- Kavita, D., & Jagdish, S. (2012). Water resources management and water quality, case of Bhopa l‰, International Conference on Chemical, Ecology and Environmental Sciences (ICEES'2012) 17-18march, Bangkok.
- Khalil, B., Ouarda, T., & St-Hilaire, A. (2011). Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis. Journal of Hydrology 405: 277–287.
- Kheirabadi, Kh., Fayazi, J., Roshanfekr, H., & Abdollahi-Arpanahi, R. (2017). Evaluation of the effectiveness of bootstrap aggregating sampling technique in the accuracy of the genomic best linear unbiased prediction method. Iranian Journal of Animal Science 48(4): 573-584. http://doi.org/10.22059/ijas.2018.248547.653596.
- Khoi, D.N., Quan, N.T., Linh, D.Q., Nhi, P.T.T., & Thuy, N.T.D. (2022). Using Machine Learning Models for Predicting the Water Quality Index in the La Buong River, Vietnam. Water https://doi.org/10.3390/w14101552.
- Kira, K., & Rendell, L.A. (1992). The feature selection problem: traditional methods and a new algorithm. AAAI-92 Proceedings of the tenth national conference on Artificial intelligence, Menlo Park, California. 129-134.
- Kolli,, & Seshadri, R. (2013). Ground water quality assessment using data mining techniques. International Journal of Computer Applications 76(15): 39-45.
- Lau, K.M., & Weng, H.Y. (1995). Climate signal detection using wavelet transform, How to make time-series sing, Bulletin of the American Meteorological Society 76: 2391-2402.
- Mat Nawi, N., Chen, G., Jensen, T., & Abdanan Mehdizadeh, S. (2013). Prediction and classification of sugarcane Brix based on skin scanning using visible and shortwave near infrared. Biosystems Engineering 115(2): 154–161.
- Nihalani, S.M., & Meeruty, A. (2020). Water quality index evaluation for major rivers in Gujarat. Environmental Science and Pollution Research 28: 63523–63531. http://doi.org/10.1007/s11356-020-10509-5.
- Othman, F., Alaaeldin, M., Seyam, M., Ahmed, A., Teo, F., Ming, Fai, Ch., Afan, H., Sherif, M., Sefelnasr, A., & Shafie, A. (2020). Efficient river water quality index prediction considering a minimal number of inputs variables. Engineering Applications of Computational Fluid Mechanics 14(1): 751-763. https://doi.org/10.1080/19942060.2020.1760942.
- Sattari, M.T., Mirabbasi, R., & Abbasgholi, M. (2017). The use of data mining in predicting the quality of surface water (case study: the rivers of the northern slopes of Sahand). Ecohydrology 4(2): 407-419. (In Persian)
- Singh, D.F. (1992). Studies on the water quality index of some major rivers of Pune, Maharashtra. Proceedings Academy Environmental Biology 1: 61–66.
- Soleimanpour, S.M., Mesbah, S.H., & Hedayati, B. (2018). Application of CART decision tree data mining to determine the most effective drinking water quality factors (case study: Kazeroon plain, Fars province). Iranian Journal of Health and Environment 11(1): 1-14. (In Persian with English abstract)
- Solgi, A., Pourhaghi, A., Zarei, H., & Ansari, H. (2017). Modeling and forecast biological oxygen demand (BOD) using combination support vector machine with wavelet transform. Journal of Water and Soil 31(1): 86-100.
- Trabelsi,, & Hadj Ali, S. (2022). Exploring machine learning models in predicting irrigation groundwater quality indices for effective decision making in Medjerda River Basin, Tunisia. Sustainability 14. https://doi.org/10.3390/su14042341.
- Vishwanath, V., Mahesh Kumar, N., & Wakif, A. (2021). Haar wavelet scrutinization of heat and mass transfer features during the convective boundary layer flow of a nanofluid moving over a nonlinearly stretching sheet. Partial Differential Equations in Applied Mathematics 4, https://doi.org/10.1016/j.padiff.2021.100192.
|