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Abstract

The problem of the steady activation of a skeletal muscle is one of the ap-
plicable phenomena in real life that can be modeled by a Volterra integral
equation. The current research aims to investigate this problem by using
an effective operational matrix-based method. For this purpose, the opera-
tional matrix of integration is derived for the barycentric rational cardinal
basis functions. Then, by utilizing the obtained operational matrix and
without using any collocation points, the governing integral equation is re-
duced to a system of nonlinear algebraic equations. Convergence analysis
of the proposed numerical method is studied thoroughly. Moreover, the
obtained numerical results based on the proposed method with acceptable
computational times support the theoretical results and reveal the accuracy
and efficiency of the method.
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1 Introduction

Mathematical modeling of most problems in mechanics, mathematical biol-
ogy, and economics are expressed as integral equations. Skeletal or striated
muscles are one of the three types of muscles in the body. They connect to
bones and control body movements, maintain body posture, protect internal
organs, support the entry and exit points of the body, and regulate body
temperature. The steady activation of a skeletal muscle is a phenomenon
with complex and subtle physiological processes that can be described by
Volterra integral equations (VIEs) [5, 8, 10]. The motor units (MUs) develop
a skeletal muscle; each MUs contains a motoneuron (MN) and the muscle
fibers it innervates. Electrical signals, coming from higher motor centers and
propagating to the motoneurons along with a network of nerve fibers, com-
pose the input of MUs. In this problem, MUs are ordered according to their
maximal (tetanic) contraction forces t. Consider the muscle force f(t) as a
function of the last recruited MU for an arbitrary but fixed network. Clearly,
f(t) is an increasing function of t. As mentioned in [5, 8], the muscle force
f(t) can be stated with the following VIE:

f(t) =

∫ t

a

k(s, f(s), f(t))ds. (1)

Equation (1) is a subclass of VIEs and can be called non-standard VIEs
because, in addition to f(s), its kernel also includes f(t). Let ρ be a density
function that represents the MU population. Suppose that tmin and tmax be
the tetanic forces of the weakest and strongest MUs and let

∫ tmax
tmin

ρ(s)ds be
the number of MUs in the pool. The VIE for (1) takes the form [5]

f(v) =

∫ v

tmin

K(f(v), f(u))h(u)du, v ∈ [tmin, tmax], (2)

where
K(f(v), f(u)) = 1− c exp

(
− α

f(v)− f(u)

f(u) + ∆

)
,

and h(v) = vρ(v), α > 0, ∆ > 0, and 0 < c < 1. The integral equation (2)
governs the activation of a muscle, and it is not clear whether this equation
has a solution or not. Because ρ is a strictly positive function almost every-
where, the function H(t) =

∫ t

tmin
h(s)ds is strictly increasing on the interval

[tmin, tmax] and hence invertible. H(t) represents the force of the muscle
when all MUs up to level t produce their tetanic force and H(tmax) = Fmax.
Now, by considering the change of variable u = H−1(x), the VIE (2) can be
reduced to

f(v) =

∫ H(v)

H(tmin)

K(f(v), f(H−1(x)))dx, v ∈ [tmin, tmax]. (3)
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Then by assuming H(v) = t and equivalently v = H−1(t), the integral equa-
tion (3) can be written as

Y (t) =

∫ t

0

(
1− c exp

(
− α

Y (t)− Y (x)

Y (x) + ∆

))
dx, t ∈ [0, T ], (4)

where Y (t) = f(H−1(t)) and T = Fmax. Finally, the muscle force function
can be obtained as f(t) = Y (H(t)). The existence and uniqueness of a non-
negative solution of the VIE (4) are studied in [5].
The main purpose of this paper is to develop a computational method based
on the linear barycentric rational interpolants (LBRIs) and associated inte-
gral operational matrix to approximate the problem of steady activation of
a skeletal muscle (1). The LBRIs were introduced by Berrut [2] and then
generalized by Floater and Hormann [4]. The family of Floater–Hormann
(FH) interpolants has no real poles and has a high order of convergence for
enough smooth functions. Furthermore, the FH interpolants offer a better
choice than the polynomial interpolants, which are ill-conditioned and yield
Runge’s phenomenon in the case of equispaced interpolation nodes. Also,
the LBRIs can be applied to approximate derivatives and integrals of a given
function [1, 6]. Due to the attractive features of the LBRIs, many researchers
are interested in developing numerical methods based on such interpolants to
solve functional equations such as differential equations [13, 11], Volterra and
Fredholm integral equations [3, 7], and integro-differential integral equations
[1].
The paper is organized as follows: In Sections 2 and 3, the LBRIs and the
corresponding integral operational matrix are described, respectively. In Sec-
tion 4, the numerical technique for solving the VIE (1) based on the integral
operational matrix is introduced. In Section 5, the convergence analysis of
the proposed method is provided. In Section 6, the obtained numerical results
are reported. Finally, a brief conclusion is given in Section 7.

2 The LBRIs

Let n ∈ N, let f : [a, b] → R, let Ω = {a ≤ t0 < t1 < · · · < tn ≤ b} be a set of
nodes on the interval [a, b], and let f(tj), j = 0, 1, . . . , n be the corresponding
given data. The LBRIs can be defined as follows:

In(t) =

n∑
j=0

f(tj)ϕj(t), (5)

where

ϕj(t) =

wj

t−tj∑n
i=0

wi

t−ti

, j = 0, 1, . . . , n, (6)
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339 An operational matrix method ...

are barycentric cardinal basis functions with the following features:

•
n∑

j=0

ϕj(t) = 1,

• ϕj(ti) = δij , i, j = 0, 1, . . . , n,

where δij is the Kronecker delta. Also, the nonzero real numbers {wj}nj=0 are
barycentric weights independent of f(tj). Floater and Hormann [4] proposed
a family of LBRIs by introducing wj as

wj = (−1)j
min(j,n−d)∑

i=max(j−d,0)

( i+d∏
k=i,k ̸=j

1

| tj − tk |

)
, j = 0, 1, . . . , n, (7)

where 0 ≤ d ≤ n is an integer parameter. Using the barycentric weights (7),
the LBRI (5) can be rewritten as follows [4]:

In(t) =

n−d∑
j=0

λj(t)pj(t)

n−d∑
j=0

λj(t)

, λj(t) =
(−1)j

(t− tj) . . . (t− tj+d)
, j = 0, 1, . . . , n− d,

(8)
where pj(t) is the polynomial of degree at most d interpolates f(t) at local
nodes {xj+k}dk=0. In [4], it is proved that the interpolant (8) has no real
poles.
Theorem 1. [4] Let f ∈ Cd+2[a, b]. Then

∥f(t)− In(t)∥∞ ≤ Chd+1,

where

C = (1 + γµ)


(b− a)∥f

(d+2)∥∞
d+2 , (n− d) odd,(

(b− a)∥f
(d+2)∥∞
d+2 + ∥f(d+1)∥∞

d+1

)
, (n− d) even,

µ = max
1≤i≤n−2

min
(
ti+1 − ti
ti − ti−1

,
ti+1 − ti
ti+2 − ti+1

)
,

γ =

{
1, d = 0,
0, d > 1,

, h = max
0≤i≤n−1

(ti+1 − ti).

Similar to the one-dimensional LBRIs (6), one can define two-dimensional
LBRIs. For this purpose, two-dimensional barycentric rational basis func-
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tions can be defined as

ψij(t, s) = ϕi(t)ϕj(s), i, j = 0, 1, . . . , n,

where {ϕi(t)}ni=0 are the basis functions (6). The basis functions {ψij(t, s)}
have the following properties:

•
n∑

i=0

n∑
j=0

ψij(t, s) = 1,

• ψij(tk, sl) = δikδjl.

According to the Lagrange property, any two-dimensional function f(t, s)
can be approximated as

f(t, s) ≃
n∑

i=0

n∑
j=0

f(ti, sj)ψij(t, s). (9)

Also, by using the barycentric weights defined in (7), the two-dimensional
LBRI (9) can be rewritten in the form of the two-dimensional FH interpolants
as

In(t, s) =

n−d∑
i=0

n−d∑
j=0

λi(t)λj(s)pi,j(t, s)

n−d∑
i=0

n−d∑
j=0

λi(t)λj(s)

, (10)

where

λi(t) =
(−1)i

(t− ti) . . . (t− ti+d)
,

λj(s) =
(−1)j

(s− sj) . . . (s− sj+d)
, i, j = 0, 1, . . . , n,

in which pi,j(t, s) is the polynomial that interpolates f at local nodes
{(ti+k, sj+l)}dk,l=0. In the following, by applying Theorem 1, the error bound
of the two-dimensional Floater–Hormann interpolant (10) is estimated.

Theorem 2. Let f(t, s) ∈ Cd+2([a, b]× [a, b]). Then

∥f(t, s)− In(t, s)∥∞ = O(hd+1).

Proof. Suppose that

Ωt = {a ≤ t0 < t1 < · · · < tn ≤ b},
Ωs = {a ≤ s0 < s1 < · · · < sn ≤ b},
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and let {(ti, sj)}ni,j=0 be the interpolation nodes on [a, b]× [a, b]. Then

f(t, s) = In(t, s), for all (t, s) ∈ Ωt × Ωs.

Now, the error interpolation can be written as

f(t, s)− In(t, s) =

n−d∑
i=0

n−d∑
j=0

λi(t)λj(s)(f(t, s)− pij(t, s))

n−d∑
i=0

n−d∑
j=0

λi(t)λj(s)

, (11)

for any (t, s) ∈ [a, b] × [a, b] − Ωt × Ωs. By extending the Newton form of
polynomial interpolant error and using the commuting property of the divided
differences described in [9], the Newton error formula for a two-dimensional
polynomial interpolation can be represented as

f(t, s)− pij(t, s) =πd+1(t)[ti, ti+1, . . . , ti+d, t]f

+ πd+1(s)[sj , sj+1, . . . , sj+d, s]f (12)
− πd+1(t)πd+1(s)[sj , sj+1, . . . , sj+d, s][ti, ti+1, . . . , ti+d, t]f,

where πd+1(t) =
∏d

r=0(t − ti+r) and πd+1(s) =
∏d

r=0(s − sj+r). Replacing
(12) in (11) yields

f(t, s)− In(t, s) =

n−d∑
i=0

(−1)i[ti, ti+1, . . . , ti+d, t]f∑n−d
i=0 λi(t)

+

n−d∑
j=0

(−1)j [sj , sj+1, . . . , sj+d, s]f∑n−d
j=0 λj(s)

(13)

−

n−d∑
i=0

n−d∑
j=0

(−1)i+j [ti, ti+1, . . . , ti+d, t][sj , sj+1, . . . , sj+d, s]f

n−d∑
i=0

n−d∑
j=0

λi(t)λj(s)

.

To complete the proof, it is enough to compute an upper bound for the
numerators and a lower bound for the denominators of the used quotient
in (13). In [4], the upper bounds for the numerator of the first and second
quotients applied in (13) are derived. Moreover, the following inequalities
hold [4]:
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∣∣∣ n−d∑
i=0

λi(t)
∣∣∣ ≥ 1

(1 + γµ)d!hd+1
,
∣∣∣ n−d∑
j=0

λj(s)
∣∣∣ ≥ 1

(1 + γµ)d!hd+1
, (14)

where γ and µ are defined in Theorem 1. Now, it is enough to get an upper
bound on the numerator of the third quotient in (13). Let n − d be odd.
Following the proof of Theorem 2 in [4], one can get

n−d∑
i=0

n−d∑
j=0

(−1)i+j [ti, ti+1, . . . , ti+d, t][sj , sj+1, . . . , sj+d, s]f

= −
n−d∑
i=0

n−d−1∑
j=0

j even

(−1)i(sj+d+1 − sj)[ti, ti+1, . . . , ti+d, t][sj , sj+1, . . . , sj+d+1, s]f

=

n−d−1∑
i=0

i even

n−d−1∑
j=0

j even

(ti+d+1 − ti)(sj+d+1 − sj)

× [ti, ti+1, . . . , ti+d+1, t][sj , sj+1, . . . , sj+d+1, s]f,

and therefore∣∣∣ n−d∑
i=0

n−d∑
j=0

(−1)i+j [ti, ti+1, . . . , ti+d, t][sj , sj+1, . . . , sj+d, s]f
∣∣∣

≤
n−d−1∑
i=0

i even

n−d−1∑
j=0

j even

|ti+d+1 − ti||sj+d+1 − sj |
((d+ 2)!)2

∣∣∣ ∂2d+4

∂td+2∂sd+2
f
∣∣∣

≤ (d+ 1)2(b− a)2

((d+ 2)!)2

∥∥∥ ∂2d+4

∂td+2∂sd+2
f
∥∥∥
∞
. (15)

Let n− d be even. In a similar manner, by following the proof of Theorem 2
in [4], the following result is obtained:

n−d∑
i=0

n−d∑
j=0

(−1)i+j [ti, ti+1, . . . , ti+d, t][sj , sj+1, . . . , sj+d, s]f

=

n−d−2∑
i=0

i even

n−d−2∑
j=0

j even

(ti+d+1 − ti)(sj+d+1 − sj)

× [ti, ti+1, . . . , ti+d+1, t][sj , sj+1, . . . , sj+d+1, s]f

−
n−d−2∑
i=0

i even

(ti+d+1 − ti)[ti, ti+1, . . . , ti+d+1, t][sn−d, sn−d+1, . . . , sn, s]f
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343 An operational matrix method ...

−
n−d−2∑
j=0

j even

(sj+d+1 − sj)[tn−d, tn−d+1, . . . , tn, t][sj , sj+1, . . . , sj+d+1, s]f

+ [tn−d, tn−d+1, . . . , tn, t][sn−d, sn−d+1, . . . , sn, s]f,

and therefore∣∣∣ n−d∑
i=0

n−d∑
j=0

(−1)i+j [ti, ti+1, . . . , ti+d, t][sj , sj+1, . . . , sj+d, s]f
∣∣∣

≤ (d+ 1)2(b− a)2

((d+ 2)!)2

∥∥∥ ∂2d+4

∂td+2∂sd+2
f
∥∥∥
∞

+
b− a

d!(d+ 2)!

∥∥∥ ∂2d+3

∂td+2∂sd+1
f
∥∥∥
∞

+
b− a

d!(d+ 2)!

∥∥∥ ∂2d+3

∂td+1∂sd+2
f
∥∥∥
∞

+
1

((d+ 1)!)2

∥∥∥ ∂2d+2

∂td+1∂sd+1
f
∥∥∥
∞
. (16)

Finally, by using the relations (14), (15), and (16), the desired result can be
obtained as follows:
• If n− d is odd, then

∥∥∥f(s, t)− In(s, t)
∥∥∥
∞

≤ (1 + γµ)(b− a)

d+ 2

(∥∥∥ ∂d+2

∂td+2
f
∥∥∥
∞

+
∥∥∥ ∂d+2

∂sd+2
f
∥∥∥
∞

)
hd+1

+
(1 + γµ)2(b− a)2

(d+ 2)2

∥∥∥ ∂2d+4

∂td+2∂sd+2
f
∥∥∥
∞
h2d+2.

• If n− d is even, then

∥∥∥f(t, s)− In(t, s)
∥∥∥
∞

≤ (1 + γµ)(b− a)

d+ 2

(∥∥∥ ∂d+2

∂td+2
f
∥∥∥
∞

+
∥∥∥ ∂d+2

∂sd+2
f
∥∥∥
∞

)
hd+1

+
1 + γµ

d+ 1

(∥∥∥ ∂d+1

∂td+1
f
∥∥∥
∞

+
∥∥∥ ∂d+1

∂sd+1
f
∥∥∥
∞

)
hd+1

+
(1 + γµ)2(b− a)2

(d+ 2)2

∥∥∥ ∂2d+4

∂td+2∂sd+2
f
∥∥∥
∞
h2d+2

+
(1 + γµ)2

(d+ 1)2

∥∥∥ ∂2d+2

∂td+1∂sd+1
f
∥∥∥
∞
h2d+2

+
(1 + γµ)2(b− a)

(d+ 1)(d+ 2)
h2d+2

×

(∥∥∥ ∂2d+3

∂td+2∂sd+1
f
∥∥∥
∞

+
∥∥∥ ∂2d+3

∂td+1∂sd+2
f
∥∥∥
∞

)
.
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3 Integral operational matrix

In this section, a brief review of the integral operational matrix based on the
barycentric rational basis functions described in [14, 12] is provided. Suppose
that Φ(t) is an (n+ 1)× 1 vector as follows:

Φ(t) = [ϕ0(t), ϕ1(t), . . . , ϕn(t)]
T , (17)

where ϕi(t), i = 0, 1, . . . , n, are defined in (6). The integration of vector Φ(t)
in (17) can be expressed as∫ t

a

Φ(s)ds =
[ ∫ t

a

ϕ0(s)ds,

∫ t

a

ϕ1(s)ds, . . . ,

∫ t

a

ϕn(s)ds
]T
. (18)

Using (5), any elements of the vector (18) can be estimated as∫ t

a

ϕi(s)ds ≃
n∑

j=0

pijϕj(t) = PiΦ(t), i = 0, 1, . . . , n. (19)

where

Pi = [pi0, pi1, . . . , pin], i = 0, 1, . . . , n.

Replacing (19) in (1) yields∫ t

a

Φ(s)ds ≃
[
P0Φ(t),P1Φ(t), . . . ,PnΦ(t)

]T
= PΦ(t),

in which

P =
[
P0,P1, . . . ,Pn

]T
.

Hence, the operational matrix of integration can be defined as follows.

Definition 1. Let Φ(t) be the vector stated in (17). The operational matrix
of integration P, based on the barycentric basis functions, can be represented
as ∫ t

a

Φ(s)ds ≃ PΦ(t),

where P = (pij) and pij can be computed as

pij =

∫ tj

a

ϕi(s)ds, i, j = 0, 1, . . . , n.
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Remark 1. Let A be an (n+ 1)× (n+ 1) matrix. Using (10), the function
ΦT (t)AΦ(t) can be approximated as follows:

ΦT (t)AΦ(t) ≃
n∑

j=0

ΦT (tj)AΦ(tj)ϕ(t).

Due to the Lagrange property of the basis functions (6), one can get

ΦT (t)AΦ(t) ≃ ÂΦ(t), Â = [A00, A11, . . . , Ann],

where Â is a row vector composed of the diagonal elements of matrix A.

4 Description of the numerical method

In this section, an operational matrix-based method will be discussed to
solve the nonlinear VIE (1). For this purpose, by using (5), the function f(t)
is approximated as

f(t) ≃ fn(t) =

n∑
i=0

f(ti)ϕi(t) = FTΦ(t), (20)

where

F = [f(t0), f(t1), . . . , f(tn)]
T ,

is the unknown vector and should be determined to compute the approximate
solution of the problem. At first, using (20), the function k(s, fn(s), fn(t)) is
estimated respect to the variable s as

k
(
s, fn(s), fn(t)

)
≃ K(t)TΦ(s), (21)

where

K(t) =
[
k
(
s0, fn(s0), fn(t)

)
, k
(
s1, fn(s1), fn(t)

)
, . . . , k

(
sn, fn(sn), fn(t)

)]T
,

and si = ti, i = 0, 1, . . . , n. From (20) and according to the Lagrange
property of the basis functions ϕi(t), i = 0, 1, . . . , n, the vector K(t) can be
rewritten as

K(t) =
[
k
(
s0, f(s0), fn(t)

)
, k
(
s1, f(s1), fn(t)

)
, . . . , k

(
sn, f(sn), fn(t)

)]T
.

Again using (5), each component of the vector K(t) is approximated as
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k
(
si, f(si), fn(t)

)
≃ KT

i Φ(t), i = 0, 1, . . . , n, (22)

where

Ki =
[
k
(
si, f(si), f(t0)

)
, k
(
si, f(si), f(t1)

)
, . . . , k

(
si, f(si), f(tn)

)]T
.

Substituting (22) into (21) yields

k
(
s, fn(s), fn(t)

)
≃ ΦT (t)KTΦ(s), (23)

where K is a (n+ 1)× (n+ 1) matrix and Kij = k(si, f(si), f(tj)). Now, by
substituting (20) and (23) into (1), one can obtain

FTΦ(t)− Φ(t)TKT

∫ t

a

Φ(s)ds = 0.

Using the integral operational matrix defined in Definition 1, we arrive at

FTΦ(t)− Φ(t)TKT PΦ(t) = 0. (24)

Finally, applying Remark 1 leads to the following nonlinear algebraic system:

FT − Â = 0, (25)

where Â is a row vector constructed of the diagonal elements of the matrix
KT P. Thus, the unknown vector F can be computed by solving the nonlinear
system of algebraic equations (25).

5 Convergence analysis

In this section, the convergence analysis of the proposed numerical scheme
is presented. To this end, we utilize the following norms to measure the
approximation error:

∥v(t)∥∞ = max
t∈[a,b]

v(t), for real function v : [a, b] → R,

∥V (t)∥∞ = max
1≤i≤k

∥vi(t)∥∞, for vector function V (t) = [v1(t), v2(t), . . . , vk(t)]
T ,

vi : [a, b] → R.

Lemma 1. Let Φ(t) be the vector defined in (17) with the weights (7). Then,∥∥∥ ∫ t

a

Φ(s)ds− PΦ(t)
∥∥∥
∞

= O(hd+1).

Iran. j. numer. anal. optim., Vol. 13, No. 2, 2023,pp 336–353



347 An operational matrix method ...

Proof. By integrating from the vector Φ(t), one obtains∥∥∥ ∫ t

a

Φ(s)ds− PΦ(t)
∥∥∥
∞

= max
0≤i≤n

∣∣∣ ∫ t

a

ϕi(s)ds− PiΦ(t)
∣∣∣, (26)

where Pi is the ith row of the integral operational matrix P. According to
(19) and Theorem 1, one can get∥∥∥ ∫ t

a

ϕi(s)ds− PiΦ(t)
∥∥∥
∞

≤hd+1(1 + γµ)

×


(b− a)

∥ϕ(d+2)
i ∥∞
d+2 , (n− d) odd(

(b− a)
∥ϕ(d+2)

i ∥∞
d+2 +

∥ϕ(d+1)
i ∥∞
d+1

)
, (n− d) even

(27)

Substituting (27) into (26), the desired result is obtained as∥∥∥ ∫ t

a

Φ(s)ds− PΦ(t)
∥∥∥
∞

≤ Chd+1,

where

C = (1 + γµ)


(b− a)∥Φ

(d+2)∥∞
d+2 , (n− d) odd(

(b− a)∥Φ
(d+2)∥∞
d+2 + ∥Φ(d+1)∥∞

d+1

)
, (n− d) even

and

Φ(d)(t) = [ϕ
(d)
0 (t), ϕ

(d)
1 (t), . . . , ϕ(d)n (t)]T , ∥ Φ(d)(t) ∥∞= max

0≤i≤n
|ϕ(d)i (t)|.

Lemma 2. Consider A an (n+1)×(n+1) matrix, and let Φ(t) be the vector
defined in (17) with the weights (7). Then,

∥ΦT (t)AΦ(t)− ÂΦ(t)∥∞ = O(hd+1),

where Â is a row vector composed of the diagonal elements of the matrix A.

Proof. As mentioned in Remark 1, we have

ΦT (t)AΦ(t) ≃ ÂΦ(t).

Finally, by applying the weights (7) and using Theorem 1, the desired result
is acquired.
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Theorem 3. Let f ∈ Cd+2[a, b], let k ∈ Cd+2([a, b],R,R), and let the kernel
k satisfy the following Lipschitz condition:

|k(s, y1, z1)− k(s, y2, z2)| ≤ L(|y1 − y2|+ |z1 − z2|),

for all (s, y1, z1), (s, y2, z2) ∈ [a, b]× R2.

Also, consider fn(t) = FTΦ(t) the approximate solution of (1) such that F
is obtained from solving the nonlinear system of algebraic equations (25) and
2L(b− a) < 1. Then

∥f(t)− fn(t)∥∞ → 0, as n→ +∞.

Proof. The residual function of the VIE (1) can be computed as follows:

RESn(t) = fn(t)−
∫ t

a

k
(
s, fn(s), fn(t)

)
ds. (28)

Now, by subtracting relation (24) from (28) and utilizing equation (25), the
residual function RESn(t) can be rewritten as

RESn(t) = (FT − Â)︸ ︷︷ ︸
0

Φ(t)−
∫ t

a

(
k
(
s, fn(s), fn(t)

)
− ΦT (t)KTΦ(s)

)
ds

−ΦT (t)KT
(∫ t

a

Φ(s)ds− PΦ(t)
)
− (ΦT (t)KT PΦ(t)− ÂΦ(t)).

Therefore

∥RESn(t)∥∞ ≤ (b− a)
∥∥∥k(s, fn(s), fn(t))− ΦT (t)KTΦ(s)

∥∥∥
∞

+∥ΦT (t)KT ∥∞
∥∥∥ ∫ t

a

Φ(s)ds− PΦ(t)
∥∥∥
∞

+∥ΦT (t)KT PΦ(t)− ÂΦ(t)∥∞,

Employing Theorem 2, and Lemmas 1 and 2 leads to the following relation:

∥RESn(t)∥∞ = O(hd+1). (29)

Let En(t) = f(t)− fn(t). Substituting f(t) = fn(t)+En(t) into the VIE (1),
one can obtain

fn(t) + En(t) =

∫ t

a

k
(
s, fn(s) + En(s), fn(t) + En(t)

)
ds. (30)

Employing the residual function (28) and relation (30) yields the following
equation:
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En(t) =

∫ t

a

(
k(s, fn(s) + En(s), fn(t) + En(t))− k(s, fn(s), fn(t))

)
ds

−RESn(t).

Therefore

|En(t)| ≤
∫ t

a

∣∣∣k(s, fn(s) + En(s), fn(t) + En(t))− k(s, fn(s), fn(t))
∣∣∣ds

+|RESn(t)|.

Finally, applying the Lipschitz condition yields

|En(t)| ≤ L

∫ t

a

(|En(s)|+ |En(t)|)ds+ |RESn(t)|,

and consequently

∥En(t)∥∞ ≤ ∥RESn(t)∥∞
1− 2L(b− a)

.

From (29) and 2L(b− a) < 1, the desired result is obtained as

∥En(t)∥∞ → 0 as h→ 0.

6 Numerical results

In this section, the proposed method is applied based on the integral opera-
tional matrix to approximate the solution of the VIE (4). Consider tmin = 10,
tmax = 20, c = 0.9, α = 1.14, and ρ(t) = 1

t , t ∈ [tmin, tmax]. To get the nu-
merical results, the equidistant nodes are employed on the interval [0, 10],
and the algorithm associated with the proposed method is implemented us-
ing Maple 2015 software on a Core (TM) i7 PC with 2.70 GHz of CPU and 16
GB of RAM. Here, the fsolve command is used to solve the nonlinear system
(25). Also, the rate of convergence of the numerical method is determined
based on the following formula:

Ratio =
log(∥En∥∞)− log(∥En′∥∞)

log(h)− log(h′) , (31)

where h and h′ are defined in Theorem 1. Because the exact solution of
(4) is unknown, we use the error of residual function to verify the efficiency
and high accuracy of the proposed method. So, to commutating the rate of
convergence of the method, the absolute error En(t) in (31) is replaced by
the error of residual function RESn(t).
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Figure 1 depicts the approximation solution Yn(t) and the residual function
|RESn(t)| with n = 20 and d = 18 for different values of ∆.

Figure 1: Graphs of Y (t) and |RESn(t)| with n = 20 and d = 18

Table 1 reports the numerical results for the VIE (4) for ∆ = 2, 5, and
10.

Table 1: Numerical results with n = 20 and d = 19

t |RESn(t)|
∆ = 2 ∆ = 5 ∆ = 10

0.0 0.000000 0.0000000 0.0000000

1.0 3.98e− 9 9.53e− 13 1.67e− 16

2.0 3.90e− 9 9.46e− 13 1.66e− 16

3.0 3.82e− 9 9.34e− 13 1.65e− 16

4.0 3.75e− 9 9.23e− 13 1.64e− 16

5.0 3.69e− 9 9.14e− 13 1.63e− 16

6.0 3.64e− 9 9.05e− 13 1.62e− 16

7.0 3.60e− 9 8.97e− 13 1.63e− 16

8.0 3.56e− 9 8.80e− 13 1.72e− 16

9.0 3.51e− 9 8.80e− 13 2.21e− 16

10 2.44e− 9 4.74e− 13 3.33e− 16

CPU time (s) 2.121 2.043 2.184
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Table 2 represents the residual function error and the convergence rate
for different values of d. According to this table, one can infer that the order
of convergence is ≈ 4 for d = 3 and ≈ 3 for d = 2. So, the numerical results
in Table 2 confirm the theoretical results stated in Theorem 3.

Table 2: Numerical results for ∥RESn(t)∥∞ with ∆ = 10

n h d = 3 Ratio CPU time(s) d = 2 Ratio CPU time(s)

4 2.50000 1.91e− 4 − 0.343 1.01e− 3 − 0.341

8 1.25000 2.09e− 5 3.19 0.562 1.38e− 4 2.87 0.515

16 0.62500 1.67e− 6 3.65 1.373 1.86e− 5 2.89 1.357

32 0.31250 1.20e− 7 3.80 5.538 2.46e− 6 2.92 5.491

64 0.15625 7.80e− 9 3.94 27.690 2.90e− 7 3.08 27.082

As it is clear from the graphical and tabulated results, the proposed
method can be successfully employed to solve the VIEs (1).

7 Conclusion

In this paper, the problem of the steady activation of a skeletal muscle has
been investigated. Applying the numerical technique based on the integral
operational matrix of the LBRIs, the approximate solution of the nonlin-
ear VIE governing the problem was obtained. One of the advantages of the
proposed method is that the FH interpolants are infinitely smooth rational
interpolants and involve polynomial interpolants when d = n, n − 1. More-
over, without using collocation points, the VIE (1) is reduced to a system of
nonlinear algebraic equations. Numerical results confirmed the obtained the-
oretical results of Theorem 3. Thus, the method can be successfully employed
to approximate the nonlinear VIEs with acceptable accuracy and computa-
tional times.
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