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Finished products and manufacturing plants are some elements of the production system in the supply chain, and 

there are other manufacturing plants. They produce work in process and finished products and hold them in 

warehouses. So, they need to plan and control production and inventories. Isolated planning and control by 

different manufacturers increase inventories in them, and then they must plan and control integratory. This paper 

presents an iterative approach for solving the optimal control problem with bounded control variables. The 

projection function constructs the iterative method to approximate the control law. Employing the approximation 

of control law, the approximation of state and the co-state variables are obtained. For this purpose, we apply the 

Hamiltonian of the optimal control problem. From the Hamiltonian, the approximation of control law and then the 

approximation of state law is obtained. A simple example is given to compare the results with another published 

paper. Also, a case study on production planning in a three-stock reverse logistics system with deteriorating items 

is derived to show the method's performance. 
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1. Introduction 

The study of the linear quadratic optimal control problem (OCP) with linear systems has a 

history of over fifty years. Many attempts have been made to obtain a satisfactory solution 

based on different approaches. The application of Pontryagin’s maximum principle to OCP, as 

outlined by Naidu (2003) and Pontryagin et al. (1962), results in a system of coupled two-point 

boundary-value (TPBV) problems. Within the Dynamic Programming approach, the sufficient 

conditions for an optimal controller and the functional with prescribed derivative proposed in 

Kharatishvili (1961) lead to a set of partial differential equations called the Riccati Equation for 

the systems. Neural networks are also another approach that is desirable to use for researchers 

(Pooya et al., 2021; Effati et al., 2021). In these methods, the OCP changes to a system of 

equations and then by using some known neural networks such as Perceptron, the problem is 

solved.  

In optimal control problems, it is sometimes the case that control is restricted to be between 

a lower and an upper bound, called a bounded optimal control problem. Bang-bang optimal 

control problems are also in which the optimal control switches from one extreme to another 

(i.e., strictly never in between the bounds). Bounded optimal control problems also have many 

applications, such as modelling infected diseases (Sweilam and AL-Mekhlafi, 2021; Liu et 

al.,2022; Ojo et al., 2022; Kovacevic et al., 2022; Sweilam et al., 2020), tank reactor systems 

(Göllmann et al., 2009), production planning systems (Hedjar et al., 2015; Pooya and 

Pakdaman, 2019; 2017 and 2018), etc. One major hurdle in the path of bounded optimal control 

problems discovery is the solution approach which is not similar to the methods without control 

restriction. 

Motivated by the former discussion, we will present a novel method to solve delay and 

bounded optimal control problems. In this way, we applied the projection function to tackle the 

challenge of bounded control variables. We test the method on a case study to show our 

technique's performance. The case study is on production planning in a three-stock reverse 

logistics system with deteriorating items. The motivation of the paper can be summarized as 

follows: 

   1. Use the projection method to solve the OCP.  

   2. Solve a production planning problem modelled by an OCP.  

The paper is organized as follows. The next section dedicates to the problem formulation and 

optimality conditions for OCP. The iterative method is proposed in Section 3. The case study 

is presented in Section 4, and the paper is concluded in section 5. 

https://doi.org/10.22067/JSTINP.2023.81194.1037
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2. Problem formulation and optimality conditions 

In this section, the problem formulation and the optimality conditions of the problem are stated 

in (1). Consider the OCP in the following form.  

min J =  
1

2
xT(tf)SxT(tf) +

1

2
 ∫ (xT(t)Qx(t) +  uT(t)Ru(t)) dt

tf

0

 

ẋ = Ax(t) + Bu(t)

x(0) = x0               

u(t) ∈ K, t ∈ [0, tf]
                                                                           

̇

 

(1) 

where 𝑥(𝑡) and 𝑢(𝑡) are piecewise continuous the state and the control vectors, respectively. 

Also, 𝐴 and 𝐵 are two matrices of appropriate dimensions and 𝑥0 is the initial state. Moreover, 

𝐾 ⊆ ℝ𝑚  is a close set. The initial condition 𝑥(𝑡 = 0)  = 𝑥0 is given. The terminal time 𝑡𝑓 is 

specified, and the final state 𝑥(𝑡𝑓) is not specified. Furthermore, 𝑄, 𝑆 ∈ ℝ𝑛×𝑛 is positive semi-

definite and 𝑅 ∈ ℝ𝑚×𝑚 is positive definite.  

Now, we will state the optimality conditions of equation (1). Consider the following 

Hamiltonian equation for (1): 

H (x(t), λ(t), u(t), t) =
1

2
xT(t)Qx(t) +  

1

2
uT(t)Ru(t) + λT[Ax(t) + Bu(t)]. (2) 

Where 𝜆(𝑡) is the state variable. Based on equation (2), the optimality conditions can be stated 

as follows: 

ẋ =
∂H

∂λ(t)
= Ax(t) + BR−1(t)BT(t)λ(t) 

λ̇ = −
∂H

∂λ(t)
= −Qx(t) − ATλ(t), 

𝑢(𝑡) =  arg min
{u∈K}

H (x(t), λ(t), u(t), t),                       0 ≤ t ≤ tf              

λ(tf) = Sx(tf),                              x(0) = x0 

(3) 

 

(4) 

 

(5) 

 

(6) 

Equations of (3)-(6) are known as a TPBV problem. The initial value of 𝑥(𝑡) is x(0) = x0 

and the initial value of  𝜆(𝑡) is λ(tf) = Sx(tf).  

3. Projection method for solving OCP  

Here, the projection method for solving the OCP is studied.   

Consider the optimality conditions of OCP (1) stated in equations (3)-(6). Assume that the 

equation (7) instead of equation (5) in optimality conditions: 

https://doi.org/10.22067/JSTINP.2023.81194.1037
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u(t) −  PK [u(t) −  Z(u(t))] =  0,     0 ≤  t ≤  tf (7)  

where 𝑃𝐾(. ) is a projection map and is defined as: (Eshaghnezhad et al., 2022; Mansoori and 

Effati, 2019). 

PK (u) = arg min
v∈K

∥ u − v ∥  

 Also, 𝑍(𝑢(𝑡)) = −
𝜕𝐻

𝜕𝑢(𝑡)
.  Note that, 𝑃𝐾(. ) is a piecewise function. Here, some results about 

the 𝑍(𝑢(𝑡)) are investigated. 

Lemma 1. 𝑍(𝑢(. )) satisfies the Lipschitz condition. 

Proof. As 𝑍(𝑢(𝑡)) = −
𝜕𝐻

𝜕𝑢(𝑡)
= 𝑅(𝑡)𝑢(𝑡) + 𝐵𝑇(𝑡)𝜆(𝑡), so the proof is obvious. 

Remark 2. According to the equations (3)-(6), when we want to obtain the solution to the 

problem, we should at first find 𝑢(𝑡) form equation (5) and then substitute in equations (4) and 

(3) the co-state vector 𝜆(𝑡) and state vector 𝑥(𝑡) are obtained. 

Now, in the previous discussion, we are going to settle down some iterative schemes to find 

the solution to the problem. 

The projection method gives an iteration sequence of controls by the rule in equation (8): 

uk+1(t) =  PK  [ uk (t) −  Z (uk (t))] ,              k =  0, 1, … . (8) 

We use the notation 𝑍(𝑢𝑘(𝑡)) = −𝐻𝑢(𝑥𝑘(𝑡), 𝑢𝑘(𝑡), 𝜆𝑘(𝑡), 𝑡) where 𝑥𝑘(𝑡) and 𝜆𝑘(𝑡) are the 

solutions of the state and co-state equations, respectively, related to the control function 𝑢𝑘(. ) 

and 𝑢0 is an initial control approximation. We consider the grid points 𝑡𝑖 = 𝑖ℎ, 𝑖 = 0, 1, … , 𝑁 

for 𝑁 =
𝑡𝑓

ℎ
, the initial approximation 𝑢𝑖

0 = 𝑢0(𝑡𝑖), 𝑖 = 0, 1, … , 𝑁 − 1, and the definition of the 

(𝑘 + 1) approximation is given in equation (9): 

uk+1(t) =  PK  [ uk (t) −  Z̅ (uk (t))] ,              k =  0, 1, …, (9) 

where �̅�(𝑢𝑖
𝑘) = −𝐻𝑢(𝑥𝑖

𝑘 , 𝑢𝑖
𝑘, 𝜆𝑖

𝑘, 𝑡𝑖) and 𝑥𝑖
𝑘, 𝜆𝑖

𝑘 are obtained after applying the Euler method 

to the state and co-state equations using the control approximations 𝑢𝑖
𝑘 on the intervals [𝑡𝑖 , 𝑡𝑖+1], 

𝑖 = 0, 1, … , 𝑁 − 1, i. e., 

https://doi.org/10.22067/JSTINP.2023.81194.1037
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xi+1
k = xi

k  +  h ( Axi
k (ti) +  Bui

k(ti)),            x0
k = x0, 

λi
k =   λi+1

k + hHx(xi+1
k , ui+1

k , λi+1
k , ti+1),            λN

k = SkxN 
k . 

(10) 

(11) 

Note that, from the above equations, the state and co-state vectors are computed forward and 

backward, respectively.  

Remark 3 Based on Remark 2, 𝑢𝑘 is obtained from equation (9) and then 𝑥𝑘 and 𝜆𝑘 are 

provided in equations (10) and (11). Finally, by applying the obtained 𝑢𝑘 and 𝑥𝑘 the quadratic 

performance index can be calculated according to the equation (1): 

Jk =  
1

2
(xk)T(tf)Sxk(tf) +

1

2
 ∫ ((xk)T(t)Q(t)xk(t) +  (uk)T(t)R(t)uk(t) dt) 

tf

0

 (12) 

For accuracy analysis, we consider the following criterion (equation (13)). The optimal 

control (9) has the desirable accuracy when for a given positive constant 𝜀, the following 

condition holds: 

|
Jk − Jk−1

Jk−1
| <  ε.        (13) 

If the tolerance error bound 𝜀 > 0 is chosen small enough, then the 𝑘th order optimal control 

law will be very close to the optimal control law 𝑢∗(𝑡), the value of the quadratic performance 

index in equation (12) will be very close to its optimal value 𝐽∗, and the boundary state 

conditions will be satisfied tightly. 

The convergence analysis of the projection method is given in the following theorem. The 

proof was derived in Pulova (2009). 

Theorem 4. Let the sequence 𝑢𝑘 = (𝑢0
𝑘, 𝑢1

𝑘, … , 𝑢𝑁−1
𝑘 ), 𝑢𝑖

𝑘𝜖 𝐾, 𝐾 ⊆ ℝ𝑚, 𝑘 = 0,1, …, is 

obtained from applying the projection method. There exists an accumulation point �̃� of this 

sequence and a piecewise constant function defined by �̃�(𝑡) ≡  �̃�𝑖 for 𝑡 ∈  [𝑡𝑖, 𝑡𝑖+1). Also, for 

𝑢∗(𝑡) ∈  𝑇∗  where 𝑇∗ = {𝑢(. )| <  𝑍(𝑢(. )), 𝑣(. ) − 𝑢(. ) >≥  0, 𝑣(. )𝜖 𝐾} we have: 

‖𝑢∗ − 𝑢 ̃‖2  ≤ 𝑂(ℎ), (14) 

where ||𝑢 − 𝑣|| = max
0≤ 𝑖≤ 𝑁−1

|𝑢𝑖 − 𝑣𝑖|. 

https://doi.org/10.22067/JSTINP.2023.81194.1037
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4. Simulation results  

This section will test the method on an example and a case study.  

4.1. An example 

Consider the following OCP Pulova (2009): 

𝑚𝑖𝑛    ∫ [𝑥2(𝑡) + 𝑢2(𝑡)]𝑑𝑡
1

0
                                                                                  

𝑠. 𝑡.      �̇� = −𝑎𝑥(𝑡)  +  𝐵𝑢(𝑡)  

             𝑥(0) = 1   

             |𝑢| < 1 

(15) 

The analytical optimal solution to this problem is  

𝑢∗  =  𝑐1𝑒𝑟1𝑡  + 𝑐2𝑒𝑟2𝑡 

where, 

𝑟1 = √𝑎2 + 1,    𝑟2 = −√𝑎2 + 1,  

𝑐1 =
1

𝑟1−𝑎−(𝑟2−𝑎)𝑒𝑟1−𝑟2
,  𝑐2 =

1

𝑟2−𝑎−(𝑟1−𝑎)𝑒𝑟1−𝑟2
. 

We solve the problem by setting 𝑎 = 1, 𝑁 = 100, ℎ = 0.01, and 𝑡𝑖 = 𝑖ℎ for 𝑖 = 0,1, . . . , 𝑁. 

The transient behaviour of the optimal solution of the control variable is given in Figure 1. As 

you can see we choose the initial value from out of the feasible region (𝑢0 = −2) and the 

solution converges to the optimal solution. This is the advantage of using the projection method. 

 
Figure 1. Trajectories of control vector 

4.2. Case study: production planning in reverse logistics system 

Finished products and manufacturing plants are some elements of the production system in 

SC, and there are other manufacturing plants. They produce work in process and finished 

https://doi.org/10.22067/JSTINP.2023.81194.1037
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products and hold them in warehouses. So, they need to plan and control production and 

inventories. Isolated planning and control by different manufacturers increase inventories in 

them, and then they must plan and control integratory. The application in management science 

consists of the control of dynamics, i.e., continuous or discrete-time systems are such systems. 

The difference between these systems depends on whether time varies continuously or 

discretely. These systems are an important research area in management (Sethi and Thompson, 

2000; Kistner and Dobos, 2000; Tang and et al., 2021; Vicil, 2021). The exciting topic in this 

area is the application of optimal control theory to the product inventory system.  

Here, we are going to solve the OCP with the proposed method. The OCP was modelled 

based on production planning in a three-stock reverse logistics system with deteriorating items 

(11). Assume some definitions from Hedjar et al. (2015) as follows: 

𝐼𝑟(𝑡): Inventory of remanufacturing at time 𝑡. 

𝐼𝑚(𝑡): Inventory of manufacturing at time  𝑡. 

𝐼𝑡(𝑡): Inventory of returned items at time  𝑡. 

𝑢𝑟(𝑡): Level of remanufacturing at time  𝑡. 

𝑢𝑚(𝑡): Level of manufacturing at time  𝑡. 

𝑢𝑑(𝑡): Level of disposal at time  𝑡. 

From Hedjar et al. (2015), the control and the state vectors are as 𝑢(𝑡)  =

 (∆ 𝑢𝑚(𝑡).  ∆𝑢𝑟(𝑡). ∆𝑢𝑑(𝑡))
𝑇
 and 𝑥(𝑡) =  (∆ 𝐼𝑚(𝑡).  ∆𝐼𝑟(𝑡). ∆𝐼𝑡(𝑡))

𝑇
, respectively, where 

∆ 𝐼𝑚(𝑡) =  𝐼𝑚(𝑡) −  𝐼𝑚(𝑡)̂  

∆ 𝐼𝑟(𝑡) =  𝐼𝑟(𝑡) −  𝐼𝑟(𝑡)̂ 

∆ 𝐼𝑡(𝑡) =  𝐼𝑡(𝑡) −  𝐼𝑡(𝑡)̂ 

∆ 𝑢𝑚(𝑡) =  𝑢𝑚(𝑡) −  𝑢𝑚(𝑡)̂  

∆ 𝑢𝑟(𝑡) =  𝑢𝑟(𝑡) −  𝑢𝑟(𝑡)̂ 

∆ 𝑢𝑑(𝑡) =  𝑢𝑑(𝑡) −  𝑢𝑑(𝑡)̂  

Also, " .̂ " shows the target value of the variables. The following OCP is given in Hedjar et 

al. (2015): 

min J =   
1

2
∫ [𝑞𝑚∆ 𝐼𝑚(𝑡) + 𝑞𝑟∆ 𝐼𝑟(𝑡)  +  𝑞𝑡∆𝐼𝑡(𝑡)  +  𝑟𝑚∆𝑢𝑚(𝑡)  + 𝑟𝑟∆𝑢𝑟(𝑡)   +  𝑟𝑑∆𝑢𝑑(𝑡)]

tf

0

 

𝑠. 𝑡.  
𝑑(∆𝐼𝑚(𝑡))

𝑑𝑡
=∆ 𝑢𝑚(𝑡) − 𝜃𝑚∆𝐼𝑚(𝑡) 

          
𝑑(∆𝐼𝑟(𝑡))

𝑑𝑡
=∆ 𝑢𝑟(𝑡) − 𝜃𝑟∆𝐼𝑟(𝑡) 

https://doi.org/10.22067/JSTINP.2023.81194.1037
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𝑑(∆𝐼𝑡(𝑡))

𝑑𝑡
=−∆ 𝑢𝑟(𝑡) − ∆𝑢𝑑(𝑡) 

          ∆𝐼𝑚(0) = 𝐼𝑚
0  ,      ∆𝐼𝑟(0) = 𝐼𝑟

0 ,   ∆𝐼𝑡(0) = 𝐼𝑡
0. 

The OCP can be restated as the following matrix form: 

min     J =  
1

2
 ∫ (xT(t)Qx(t) +  uT(t)Ru(t))dt

tf

0

 

𝑠. 𝑡.       ẋ = A(t)x(t) + B(t)u(t)

  x(0) = x0               
|𝑢| ≤ 10.

                                                                           

̇

 

where, 

𝑄 = [

𝑞𝑚 0 0
0 𝑞𝑟 0
0 0 𝑞𝑡

],     𝑅 = [

𝑟𝑚 0 0
0 𝑟𝑟 0
0 0 𝑟𝑑

] ,     𝐴 = [
−𝜃𝑚 0 0

0 −𝜃𝑟 0
0 0 0

],      

𝐵 = [
1 0 0
0 1 0
0 −1 −1

],   𝑥0 = [

∆𝐼𝑚(0)

∆𝐼𝑟(0)

∆𝐼𝑡(0)
] 

Now, assume the given values in Table 1 from Hedjar et al. (2015). 

Table 1. The given parameters and initial states 
Parameter     value Parameter   value Parameter   value Parameter   value Parameter    value 

∆𝐼𝑚(0)            15    

∆𝐼𝑟(0)             10    

∆𝐼𝑡(0)               5     

 

𝑞𝑚                 1  
𝑞𝑟                 2  
𝑞𝑡                  3  

  
    𝜃𝑚             0.01  
   𝜃𝑟              0.02 

 

 

  𝑟𝑚                0.1  
  𝑟𝑟                  0.2  

 
 

   𝑟𝑑                0.3  
   𝑡𝑓                1.2  

 
 

Employing the proposed method gives Figure 2 depicting the optimal control and state 

variables trajectories.  

https://doi.org/10.22067/JSTINP.2023.81194.1037
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 Figure 2. Trajectories of state and control vectors 

The solutions tend to be zero, similar to the obtained results in Hedjar et al. (2015). Hedjar et 

al. (2015) used the predictive control approach for solving the presented OCP. 

5. Conclusion  

This article presented an iterative approach to solving the linear quadratic optimal control 

problem with bounded control variables. The challenges of the optimal control problems were 

the bounded control variables so that conventional techniques could not be applied. The 

iterative approach presented in this paper guaranteed the uniform convergence of the solution 

for the problem. We applied the projection function to construct the approximation method. 

Employing the projection function had other advantages: we could select the initial value from 

out of the region. Finally, a case study on production planning in a reverse logistics system with 

deteriorating items was given and solved based on the proposed method. 
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