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Abstract
We deal with some effective numerical methods for solving a class of

nonlinear singular two-point boundary value Fredholm integro-differential
equations. Using an appropriate interpolation and a q-order quadrature
rule of integration, the original problem will be approximated by the non-
linear finite difference equations and so reduced to a nonlinear algebraic
system that can be simply implemented. The convergence properties of the
proposed method are discussed, and it is proved that its convergence order
will be of O(hmin{ 7

2
,q− 1

2
}). Ample numerical results are addressed to con-

firm the expected convergence order as well as the accuracy and efficiency
of the proposed method.
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1 Introduction

In this study, we consider the following nonlinear singular two-point boundary
value Fredholm integro-differential equation (SFIDE):

(tαy′(t))′ = f(t) +

∫ 1

0

v(t, s)u(y(s))ds, t ∈ (0, 1], 0 < α < 1, (1)

y(0) = a, y(1) = b, (2)

Received 04 April 2023; revised 31 March 2023; accepted 21 April 2023
Sadegh Amiri
Department of Basic Sciences, Shahid Sattari Aeronautical University of Science and
Technology, P.O. Box: 13846-63113, Tehran, Iran. e-mail: s.amiri@ssau.ac.ir, amiri-
math@yahoo.com

444

https://doi.org/10.22067/ijnao.2023.80420.1211
https://ijnao.um.ac.ir/
https://www.orcid.org/0000-0002-3910-5497


445 Effective numerical methods for nonlinear singular....

where f(t), y(t) and kernels v(s, t), u are known L2 functions, and all of them
are in C4((0, 1]). The nonlinear singular problems are extensively arisen in
many applications in physics and astrophysics [11, 9, 12, 19, 20], chemical
and mechanical engineering [18, 5, 15, 13], physiological process [14], popula-
tion dynamics and epidemiology [23], fluid mechanics, electro hydrodynamics,
nuclear physics, and chemical kinetics [2, 10].

Also, the nonlinear singular problems have many applications in stel-
lar structure, thermal explosions, isothermal gas spheres, radiative cooling,
thermionic currents, and the thermal behavior of a spherical cloud of gas
[3, 17, 22].

The majority of engineering applications and various branches of sci-
ence, such as financial mathematics, oceanography, population dynamics,
fluid mechanics, plasma physics, electromagnetic theory, artificial neural net-
works, and biological processes, have been dominated by Fredholm integro-
differential equations (FIDEs) [4, 6]. In general, the analytical solution of
FIDEs is not available. As a result, various numerical techniques for deter-
mining approximate solutions of FIDEs have been created. The situation
is significantly more complicated for FIDEs with singularities. A particular
type of them called singularly perturbed Fredholm integro-differential equa-
tions (SPFIDEs), was discussed in [1, 6, 8, 7]. Numerical analysis of SPFIDEs
has not yet been widely utilized. In this study, we focus on a specific case
of nonlinear singular two-point boundary value Fredholm integro-differential
equations of the form (1)–(2). Since solving problems of this type is very
difficult, the main motivation of this study is to construct an efficient and
useful numerical method with O(h

7
2 ) accuracy in the L2 norm for nonlinear

singular problems of the form (1).
To formulate some accurate and effective methods for (1), we first ap-

ply a finite difference method to discretize the singular ordinary differential
equation part and a suitable quadrature rule of integration for the singular
two-point boundary value Fredholm integro-differential part of (1).

Then, the original problem is converted into a system of nonlinear alge-
braic equations. The numerical solution of the derived nonlinear system is
computed by using some solver like the Newton method. Also, the conver-
gence analysis of the present method is established.

The main features of the new method are as follows:

• It can be simply implemented by converting the singular problem into
a system of nonlinear algebraic equations.

• The convergence rate of the proposed method is O(h4) with respect to
the L∞ norm when applied to nonlinear singular problems.

• The proposed method is successful in solving some classes of singular
problems, such as SFIDEs and SPFIDE.
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• The provided comparative numerical simulations confirm that the pro-
posed method is more accurate than the existing methods reported in
the literature.

2 Formulation of the method

In this section, we formulate a novel numerical method for solving the two-
point boundary value Fredholm integro-differential equation (1). At first if
one takes q(t) = tαy′(t), then (1) reduces to

q′(t) = f(t) +

∫ 1

0

v(t, s)u(y(s))ds. (3)

Consider the partition {tk = kh : k = 0, 1, . . . , N} of the interval [0, 1], where
t0 = 0 and tN = 1 and h = 1

N denotes the step size. For k = 0, 1, . . . , N , let Yk

and Vk,n denote the approximate values of yk := y(tk) and vk,n := v(tk, tn),
respectively. For (3), we can conclude that

q(t)− qk =

∫ t

tk

f(ξ)dξ +

∫ t

tk

∫ 1

0

v(ξ, s)u(y(s))dsdξ. (4)

Dividing both sides of (4) by tα and then integrating over [tk, tk+1] and
[tk−1, tk], we have∫ tk±1

tk

(
y′(t)− qk

tα

)
dt =

∫ tk±1

tk

∫ t

tk

f(ξ)

tα
dξdt+

∫ tk±1

tk

∫ t

tk

∫ 1

0

v(ξ, s)

tα
u(y(s))dsdξdt.

By changing the order of integration, we get

yk±1 − yk ∓ qkTk±⌊ k∓1
k ⌋ = f±

k +

∫ 1

0

u(y(s))v±k (s)ds, (5)

where

Tk−1 =
t1−α
k − t1−α

k−1

1− α
, f±

k =

∫ tk±1

tk

t1−α
k±1 − ξ1−α

1− α
f(ξ)dξ,

v±k (s) =

∫ tk±1

tk

t1−α
k±1 − ξ1−α

1− α
v(ξ, s)dξ, (6)

and k = 1, . . . , N − 1. Eliminating qk in (5) concludes that

1

Tk−1
(yk − yk−1 + f−

k ) +
1

Tk
(yk − yk+1 + f+

k )

+

∫ 1

0

u(y(s))

(
1

Tk−1
v−k (s) +

1

Tk
v+k (s)

)
ds = 0. (7)

Iran. j. numer. anal. optim., Vol. 13, No. 3, 2023,pp 444–459



447 Effective numerical methods for nonlinear singular....

To solve (7), it is sufficient to utilize some suitable numerical integration
methods to approximate f±, v±, and its integral part. By using the in-
terpolating polynomials of f(ξ) and v(ξ, ·) at nodes tk and tk±1, we can
approximate the integrals given in (6) as follows: f±

k = a±0,kf(tk) + a±1,kf(tk±1) + a±2,kf
′′(tk) + a±3,kf

′′′(ξ±k ),

v±k (s) = a±0,kv(tk, s) + a±1,kv(tk±1, s) + a±2,k
∂2v
∂t2 (t, s)

∣∣∣
t=tk

+ a±3,k
∂3v
∂t3 (t, s)

∣∣∣
t=ζ±

k

,

in which ξ−k , ζ−k ∈ (tk−1, tk) and ξ+k , ζ
+
k ∈ (tk, tk+1) and

a±0,k =

1∑
j=0

(−1)j

2− α− j

(
1

j

)
(t2−α−j

k±1 − t2−α−j
k )tjk

∓ 1

2h

2∑
j=0

(−1)j

3− α− j

(
2

j

)
(t3−α−j

k±1 − t3−α−j
k )tjk (8a)

a±1,k = ± 1

2h

2∑
j=0

(−1)j

3− α− j

(
2

j

)
(t3−α−j

k±1 − t3−α−j
k )tjk, (8b)

a±2,k =
1

6

3∑
j=0

(−1)j

4− α− j

(
3

j

)
(t4−α−j

k±1 − t4−α−j
k )tjk

∓h

4

2∑
j=0

(−1)j

3− α− j

(
2

j

)
(t3−α−j

k±1 − t3−α−j
k )tjk, (8c)

a±3,k = ±h

4

2∑
j=0

(−1)j

3− α− j

(
2

j

)
(t3−α−j

k±1 − t3−α−j
k )tjk. (8d)

Assume that the functions f (4)(t) and ∂4v
∂t4 (t, s) are continuous. Then there

are the values ςk, ς̃k ∈ (tk−1, tk+1) and ζk, ζ̃k ∈ (min(ξ±k ),max(ξ±k )) such that
1

Tk−1
f−
k +

1

Tk
f+
k = φ0

kf(tk) + φ−
k f(tk−1) + φ+

k f(tk+1) + ek(f), (9a)

1

Tk−1
v−k (s) +

1

Tk
v+k (s) = φ0

kv(tk, s) + φ−
k v(tk−1, s) + φ+

k v(tk+1, s) + ek(v(·, s)), (9b)

where φ0
k = b0,k − 2

h2 b2,k, φ±
k = 1

Tk−1
a±1,k + 1

h2 b2,k, ek(f) = − 1
12h

2b2,kf
(4)(ςk) + b3,kf

(3)(ζk),

ek(v(·, s)) = − 1
12h

2b2,k
∂4v
∂t4 (t, s)

∣∣∣
t=ς̃k

+ b3,k
∂3v
∂t3 (t, s)

∣∣∣
t=ζ̃k

,

and bl,k = 1
Tk−1

a−l,k+
1
Tk

a+l,k, l = 0, 2, 3. Finally, by applying the relations (9)
and utilizing a suitable numerical quadrature method of order q with weights
w = (w0, w1, . . . , wN )⊤, (7) can be reformulated as
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−
1

Tk−1
yk−1 +

(
1

Tk−1
+

1

Tk

)
yk −

1

Tk
yk+1 + F̂k + h

N∑
n=0

wnunV̂k,n = ek(f) +O(hq+1),

(10)

where for k = 1, . . . , N − 1 and n = 0, 1, . . . , N , we set
un := u(yn),

F̂k := φ0
kfk + φ−

k fk−1 + φ+
k fk+1,

V̂k,n := φ0
kvk,n + φ−

k vk−1,n + φ+
k vk+1,n.

Therefore, an approximate method to solve the problem (1) can be formulated
as follows:

− 1

Tk−1
Yk−1 +

(
1

Tk−1
+

1

Tk

)
Yk − 1

Tk
Yk+1 + F̂k + h

N∑
n=0

wnUnV̂k,n = 0,

(11)

where Un = u(Yn). Take note that the Newton method can be used to solve
the derived nonlinear equations. Let us set Y = (Y1, . . . , YN−1)

⊤, F =

(F̂1, . . . , F̂N−1)
⊤,V =

[
V1, . . . ,VN−1

]
, and Vk =

(
V̂1,k, V̂2,k, . . . , V̂N−1,k

)⊤
for k = 1, . . . , N − 1. Then the matrix formulation of the proposed method
(11) is also written in the following form:

T Y + h L u(Y) = −F −w0U0V0 −wNUNVN + τ0Y0I1 + τNYNIN−1, (12)

where W = diag(w1, . . . , wN−1), L = VW and

T = tridiag(−T1
N−2,T0

N−2 + T1
N−1,−T1

N−2), (13)

is a tridiagonal matrix with Tk
n = [τk, τk+1, . . . , τn]

⊤ and τk = 1
Tk

for k =

0, 1, . . . , N . The symbol Ii signifies an (N − 1)-column vector with entry 1
in the position i and 0 elsewhere, where i = 1, N − 1.

Remark 1. It is worth noting that according to the relation tαy′′ = (tαy′)
′−

αtα−1y′, the presented technique may be utilized for the singularly perturbed
Fredholm integro-differential equations discussed in [1, 6, 8, 7], as well as the
singularly perturbed boundary value problems considered in [10, 13].

2.1 Convergence analysis

In this section, the convergence analysis of the presented method (11) to solve
the SFIDE (1) is performed. To this end, we set y = (y1, y2, . . . , yN−1)

⊤.
Then a matrix formulation of (10) is also derived as
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T y + h L u(y) =E(f)− F − w0U0V0 − wNUNVN + τ0Y0I1
+ τNYNIN−1 +O(hq+1)1N−1, (14)

where E(f) = (e1(f), e2(f), . . . , eN−1(f))
⊤ and 1N−1 = (1, 1, . . . , 1)⊤ ∈

RN−1. By subtracting (12) from (14), the error equation can be derived
as

T(y − Y) + h L
(
u(y)− u(Y)

)
= Ē,

where Ē = E(f) +O(hq+1)1N−1. Thus we have

(T + h LJU )(y − Y) = Ē, (15)

where JU is a diagonal matrix containing the Jacobian of kernel u(y). That
is, JU = diag(

[
∂
∂yu(y)

∣∣
y=yk

]N−1

k=1
). To formulate an upper bound for the

L2-error ∥y − Y2∥ derived in (15), we first prove the following lemmas.

Lemma 1. Let A ∈ Rn×n and x ∈ Rn. Then

∥Ax∥2 ≥ σmin(A)∥x∥2,

in which σmin(A) is the smallest singular value of matrix A.

Proof. If we consider the singular value decomposition of the form A =
SΣZ⊤, where S and Z are orthogonal and Σ = diag(σ1, . . . , σn) is the diago-
nal matrix with singular values σk, k = 1, . . . , n. Then from the orthogonality
of S and Z, we have

∥Ax∥2 =
∥∥SΣZ⊤x

∥∥
2
=
∥∥S(ΣZ⊤x)

∥∥
2
=
∥∥ΣZ⊤x

∥∥
2

=

∥∥∥∥∥∥∥
σ1

∑n
i=1 z1,ixi

...
σn

∑n
i=1 zn,ixi


∥∥∥∥∥∥∥
2

=

√√√√ n∑
k=1

σ2
k

(
n∑

i=1

zk,ixi

)2

,

where x = (x1, . . . , xN )⊤. Let σmin(A) = min{σk; k = 1, . . . , n}. This con-
cludes that

∥Ax∥2 ≥ σmin(A)

√√√√ n∑
k=1

(
n∑

i=1

zk,ixi

)2

= σmin(A)||Z⊤x||2 = σmin(A)||x||2.

In the following, we may try to construct lower and upper triangular
matrices L1 and U1 such that the tridiagonal matrix A can be expressed as
the product A = L1U1 of the form
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d1 c1
a1 d2 c2

. . . . . . . . .
an−2 dn−1 cn−1

an−1 dn

 =

︸ ︷︷ ︸
A


1
l1 1

. . . . . .
ln−1 1


︸ ︷︷ ︸

L1


p1 c1

p2
. . .
. . . cn−1

pn

 .

︸ ︷︷ ︸
U1 (16)

Indeed, multiplying L1 by U1 yields the following recursive relations:

p1 = d1, lk =
ak
pk

, pk+1 = dk+1 − lkck, k = 1, 2, . . . , n− 1. (17)

In the following lemma, we will exhibit that the decomposition (16)–(17) for
the matrices with the property of strictly diagonally dominant is unique.

Lemma 2. If A is a strictly diagonally dominant matrix, then it has a unique
LU-factorization of the form (16)–(17).

Proof. It is sufficient to show that the elements pk in (17) are nonzero for
k = 1, . . . , n. It can be done by induction. So, we show that |pk| ≥ δk + |ck|,
where δk = |dk| − |ak−1| − |ck| > 0, k = 1, 2, . . . , n, and a0 = cn = 0. Since
|p1| = |d1| = δ1 + |c1|, assuming |pk| ≥ δk + |ck| for some k = 1, 2, . . . , n− 1,

concludes that |ck|
|pk| < 1. Therefore, according to (17) and the strictly diagonal

dominant of the matrix A, we have

|pk+1| = |dk+1 − lkck| =
∣∣∣∣dk+1 −

akck
pk

∣∣∣∣ ≥ |dk+1| −
|ak||ck|
|pk|

≥ |dk+1| − |ak| = δk+1 + |ck+1|.

In the next lemma, we can see that under some conditions there is an
LU-factorization in the form (16)–(17) for every weak dominant tridiagonal
matrix.

Lemma 3. Assume that A is a tridiagonal matrix with the property of
weakly diagonally dominant. If in addition |d1| > |c1| and ak ̸= 0, k =
1, 2, . . . , n − 2, then it has a unique LU-factorization of the form (16)–(17).
Moreover, if dn ̸= 0, then A is nonsingular.

Proof. The proof of this lemma is similar to Lemma 2.

In the next step, we investigate some properties of the matrix T given by
(13). Since T is a weak diagonal dominant symmetric matrix with positive
diagonal elements, then it is a positive semidefinite matrix. It is easily seen
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that the elements of T0
n and T1

n are not vanished. Consequently, from Lemma
3, we conclude that |T| ̸= 0 and pk > 0 for k = 1, 2, . . . , N−1. This yields that
all of the singular values σk as well as eigenvalues λk of T are positive. Now we
establish that λmin(T) > h. To this end, we first define M = 1

hT− I, in which
I is the identity matrix of order N − 1. So, if λ is an eigenvalue of T, then
( 1hλ− 1) is the eigenvalue of M. Hence, it is sufficient to prove that λmin(M)
(the smallest eigenvalue of M) is positive. Since M is a strictly diagonally
dominant matrix, then from Lemma 2, there exists a unique LU-factorization
of the form (16)–(17) for this matrix with the following coefficients:{

dk = 1
h (τk−1 + τk)− 1, k = 1, 2, . . . , N − 1,

ak = ck = − 1
hτk, k = 1, 2, . . . , N − 2.

Remark 2. Since h = 1
N , the coefficients given by (8)–(9) can be approxi-

mated as

τk ∼
tαk
h
, a±1,k ∼

h2

6
t−α
k , b0,k ∼ h, b2,k ∼ −h3

12
, b3,k ∼ −h5

24
, (18)

as h → 0. Therefore, the elements φ±
k , φ

0
k, and V n of the matrix V will be of

order O(h). Finally, we conclude that the elements of the matrix L will be
of order O(h).

Lemma 4. If there is an LU-factorization for the matrix M in the form
(16)–(17), then |M| > 0 and pk > 0 for k = 1, . . . , N − 1.

Proof. Putting p̄k = hpk, l̄k = −lk and utilizing (17) yield p̄k+1 = τk+1+τk−
h− τk l̄k. Therefore, we get,

l̄k+1 =
γk+1

γk+1 + 1− l̄k − h/τk
,

in which γk+1 = τk+1

τk
, k = 1, . . . , N − 1. It should be mentioned that l̄1 =

τ1
τ0+τ1

< 1 and lim
k→∞

l̄k = 1. So, for sufficiently small h, assuming l̄k <

1 − h
τk−1

< 1 concludes l̄k+1 < 1 − h
τk

< 1. Totally, we have 0 < l̄k < 1, k =

1, . . . , N − 1. Therefore, with the help of (18), we get

p̄k+1 > τk+1 − h > k.

From Lemma 4, we can reach that the determinant of all upper-left sub-
matrices of M is positive. Thanks [24, Theorem 7.2], this implies that M is
a positive definite matrix and all its eigenvalues are positive. It means that
eigenvalues of T must be fulfilled λ > h. Now, We set A = (T + hLJU ) and
x = y − Y. Then, using the Lemma 1 for (15), we conclude that
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∥y − Y∥2 ≤ ∥Ē∥2
σmin (T + hLJU )

. (19)

Since T is a nonsingular positive semidefinite tridiagonal matrix and using
Remark 2, we can easily deduce that σmin (T + hLJU ) ∼ σmin (T).

Theorem 1. Let the fourth-order derivatives of functions f(t), v(t, s), u(y(t))
are continuous. Then for all α ∈ (0, 1), we have ∥y − Y∥2 = O(hmin{ 7

2 ,q−
1
2}).

Proof. From the continuity of third and fourth order derivative of the corre-
sponding functions and according to the relations (9) and (18), we conclude
that there exists constant c̄ ∈ R such that∥∥Ē

∥∥
2
≤ c̄h

9
2 + chq+ 1

2 ,

and so, from (19), we get

∥y − Y∥2 ≤ c̄h
9
2 + chq+ 1

2

λmin (T)
≤ c̄h

9
2 + chq+ 1

2

h
= c̄h

7
2 + chq− 1

2 .

According to Theorem 1, the maximum order of convergence is achieved
when q ≥ 4. Therefore, we use a Simpson quadrature rule to discretize the
integral parts of (6).

Remark 3. As is well known, all norms are equivalent for every z ∈ Rn; that
is, ∥z∥1 ≤

√
n∥z∥2 ≤ n∥z∥∞. As a result, if q ≥ 4, then ∥y − Y∥1 = O(h3)

and ∥y − Y∥∞ = O(h4) for the proposed method (11).

3 Numerical examples

The performance of the proposed method to solve the SFIDE (1) is demon-
strated in this section. In the following numerical simulations, the step size is
selected as h = 2−k, k = 2, . . . , 8, and then the error ∥y − Y∥2 is computed.

Example 1. As a first example for SFIDE (1), we consider u(y) = exp(−y)
and

v(t, s) =v0 t1+2αs2+α sin
(
µπt3+α

)
sin
(
µπs3+α

)
,

f(t) =t1+2α (3 + α)
(
−µ2π2t3+α (3 + α) cos

(
µπt3+α

)
−2 (µπ + 1) (1 + α) sin

(
µπt3+α

))
.

Then the exact solution is y(t) = cos
(
µπtα+3

)
, where v0 = 2µπ(α+1)(α+3)2

exp(− cos(µπ))−exp(−1)

and α ∈ (0, 1).
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Table 1: L2 error and order of the method (11) for Example 1.

N α = µ = 1
2 Order α = 1

2 , µ = 1 Order α = 1
8 , µ = 5

2 Order
4 8.9150e-02 — 6.1400e-01 — 3.0755e+00 —
8 5.9426e-03 3.90 7.0005e-02 3.13 7.0548e-01 2.12
16 4.6722e-04 3.66 6.2258e-03 3.49 6.8774e-02 3.35
32 3.2741e-05 3.83 4.3233e-04 3.84 8.1641e-03 3.07
64 1.1031e-04 3.60 3.5398e-05 3.61 6.9052e-04 3.56
128 2.6914e-06 3.52 3.0591e-06 3.53 6.1420e-05 3.49
256 2.0531e-08 3.50 2.6884e-07 3.50 5.4073e-06 3.50

It should be mentioned that, in this example, the Jacobian of the kernel
u(y) is not positive and that increasing µ causes more oscillations of the
solution y. We computed the numerical solution of this singular problem
by the proposed method (11). The numerical results of this test problem
in the form of the L2 error and the order of the method are reported in
Table 1. From this table, we can see that the desired order of convergence
of the presented method is obtained. In Figure 1(a), the exact solution of
the problem given by Example 1 is compared with the approximate solution
derived by the proposed method (11) when h = 2−8, α = 2

3 , and µ = 7
2 .

The absolute error of the present method to solve this example is plotted in
Figure 1(b).
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(a) Exact and approximate solutions for h = 2−8. (b) Absolute error.

Figure 1: Numerical results of the proposed method to solve Example 1 with α = 2
3
, µ =

7
2

.

Example 2. As a second example for SFIDE (1), we consider u(y) = exp(y)
and

v(t, s) = µ0 t1+2αs2+α cos
(
t3+α

)
cos
(
s3+α

)
, f(t) = −(α+ 3)2 t4+3α sin

(
t3+α

)
.

Then the exact solution will be y(t) = sin
(
tα+3

)
, where µ0 = 2(1+α)(3+α)2

exp(sin(1))−1

for α ∈ (0, 1).

This example and Example 1 are similar, but the sign of its Jacobian JU
of the kernel u(y) is unlike that of the ones in Example 1. We report the
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(a) Exact and approximate solutions for h = 2−8. (b) Absolute error.

Figure 2: Numerical results of the proposed method to solve Example 2 with α = 1
5

.

Table 2: L2 error and order of the method (11) for Example 2.

N α = 1
3 Order α = 1

2 Order α = 2
3 Order

4 2.2839e-02 — 3.1452e-02 — 4.3256e-02 —
8 2.6238e-03 3.12 3.8926e-03 3.01 5.7418e-03 2.91
16 2.1676e-04 3.59 3.3580e-04 3.53 5.1593e-04 3.47
32 1.7916e-05 3.59 2.8937e-05 3.53 4.5736e-05 3.49
64 1.4922e-06 3.58 2.5547e-06 3.50 4.1658e-06 3.45
128 1.2372e-07 3.59 2.1784e-07 3.55 3.7527e-07 3.47
256 1.0570e-08 3.54 1.8648e-08 3.54 3.3067e-08 3.50

numerical results of this example with various values of α and step size h.
Again, from Table 2, we can observe that the expected order of convergence
7
2 is achieved. For α = 1

5 and h = 2−8, the exact and approximate solutions
are depicted in Figure 2(a). The absolute error plotting in Figure 2(b) shows
that the present method is accurate and successful.

Example 3. As a third example for SFIDE (1), we consider u(y) = −y5 and

v(t, s) = v0 t2αs1+α
(
1 + t2+α

)β−1
, f(t) = f0 t2+3α

(
1 + t2+α

)−2+β
.

Then the exact solution will be y(t) =
(
1 + tα+2

)β , where v0 = β(5β+1)(1+2α)(2+α)2

1−25β+1

and f0 = β(β − 1)(2 + α)2 for α ∈ (0, 1) and β > 0.

We solved this singular boundary value problem for some selected values
of α and β. The L2 norm of the errors is computed for the presented method
(11) and then is exhibited in Table 3. It can be seen that the numerical results
verify that the claimed order of the convergence of the method is achieved.

Example 4. Consider the nonlinear SPFIDE from [6] as{
−εy′′(t) + (2− exp(−t))y(t) + 1

2

∫ 1

0
(exp(t cos(πs))− 1) y(s)ds = 1

1+t ,

y(0) = 1 y(1) = 0,
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Table 3: L2 error and order of the method (11) for Example 3.

N α = 0.25, β = 3 Order α = 0.5, β = 3 Order α = 0.75, β = 4 Order
4 9.9948e-01 — 1.5924e+00 — 1.0037e+01 —
8 4.9934e-01 1.00 2.5881e-01 2.62 2.1306e+00 2.23
16 7.3623e-02 2.76 3.0132e-02 3.10 2.9483e-01 2.85
32 5.6781e-03 3.69 2.9081e-03 3.37 3.1017e-02 3.24
64 5.0210e-04 3.49 2.6321e-04 3.46 2.8995e-03 3.41
128 4.0819e-05 3.62 2.3407e-05 3.49 2.6351e-04 3.45
256 3.4354e-06 3.57 2.0688e-06 3.50 2.3132e-05 3.50

where ε ∈ (0, 1] is a perturbation parameter. Since the exact solution to
this problem is unknown, we can use the double-mesh principle to estimate
the errors and compute numerical solutions [6]. The errors obtained so are
denoted by

Eh
ε = max

k

∣∣∣Y ε,h
k − Y

ε,h/2
k

∣∣∣ ,
in which Y ε,h

k is the corresponding approximate solution with respect to ε
and step size h.

In the reported numerical results, we try to compute the estimated con-
vergence rates

phε = log2
(

Eh
ε

E
h/2
ε

)
, ph = log2

(
Eh

Eh/2

)
,

where Eh = maxε E
h
ε . The maximum pointwise errors and the rates of

convergence phε , pε are obtained for the values ε = 4−j , j = 0, . . . , 4, and
N = 2l, l = 5, . . . , 10, by the proposed method. In this example, the nu-
merical results of the presented method will be compared with those of the
numerical reports in [6]. According to the computational results in Table
4, we observe that the presented method is more accurate than that of the
method presented in [6]. It can be seen that the numerical results confirm
that the methods have achieved the declared order of convergence. Based on
Table 4, we can conclude that the order of convergence of the present method
is 4 in the L∞ norm, while the method of [6] is of order 2 with respect to the
L∞ norm.

Example 5. As a final example, we consider the following linear singularly
perturbed boundary value problem [21, 16, 13]{

εy′′(t) + y′(t) = 1 + 2t, 0 ≤ t ≤ 1,

y(0) = 0, y(1) = 1.

The analytical solution of this problem is
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Table 4: L∞ error and order of the methods for Example 4.

Present method with α = 1e− 6

ε N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

1 7.024e-07 4.390e-08 2.751e-09 1.719e-10 1.074e-11 6.528e-13
3.999 3.997 4.000 4.001 4.040

4−1 2.591e-06 1.594e-07 9.958e-09 6.218e-10 3.888e-11 2.323e-12
4.023 4.001 4.001 3.999 4.065

4−2 3.537e-05 2.638e-06 1.727e-07 1.090e-08 6.827e-10 4.264e-11
3.745 3.933 3.986 3.997 4.001

4−3 2.305e-04 1.931e-05 1.283e-06 8.137e-08 5.104e-09 3.197e-10
3.577 3.912 3.979 3.995 3.999

4−4 4.185e-04 3.902e-05 2.625e-06 1.669e-07 1.048e-08 6.563e-10
3.423 3.894 3.975 3.993 3.997

Eh 4.185e-04 3.902e-05 2.625e-06 1.669e-07 1.048e-08 6.563e-10
ph 3.423 3.894 3.975 3.993 3.997

Method of [6]

ε N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

1 2.882e-02 7.291e-03 1.839e-03 4.624e-04 1.161e-04 2.906e-05
1.983 1.987 1.992 1.994 1.998

4−1 2.861e-02 7.251e-03 1.832e-03 4.614e-04 1.507e-04 3.785e-05
1.98 1.985 1.989 1.991 1.993

4−2 4.001e-02 1.016e-02 2.575e-03 6.508e-04 1.643e-04 4.139e-05
1.978 1.98 1.984 1.986 1.989

4−3 4.331e-02 1.100e-02 2.791e-03 7.070e-04 1.790e-04 4.527e-05
1.977 1.979 1.981 1.982 1.983

4−4 4.343e-02 1.105e-02 2.804e-03 7.123e-04 1.809e-04 4.593e-05
1.975 1.978 1.977 1.977 1.978

Eh 4.343e-02 1.105e-02 2.804e-03 7.123e-04 1.809e-04 4.593e-05
ph 1.975 1.978 1.977 1.977 1.978

y(t) = t(t+ 1− 2ε) +
(2ε− 1)(1− exp(−t/ε))

1− exp(−1/ε)
.

In this example, we consider the methods [21, 16, 13] to compare the
obtained numerical results with the present method. Table 5 contains the
computed numerical solution achieved by our method and other methods.
From this table, it can be seen that the present method is more accurate
than methods [21, 16, 13].
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Table 5: Comparison of the approximate solutions of Example 5 for ε = h = 10−3.

t Method [21] Method [16] Method [13] Present method Analytical solution
(α = 1e− 6)

0.001 -1.0009970 -0.6311195 -0.6293169 -0.6298615715 -0.6298573177
0.010 -0.9918800 -0.9898546 -0.9878740 -0.9878746043 -0.9878746909
0.020 -0.9815600 -0.9796000 -0.9776400 -0.9776399939 -0.9776399980
0.030 -0.9710400 -0.9691000 -0.9671600 -0.9671599962 -0.9671599999
0.040 -0.9603199 -0.9584000 -0.9564800 -0.9564800000 -0.9564800000
0.050 -0.9493999 -0.9475000 -0.9456000 -0.9456000079 -0.9456000000
0.100 -0.8918000 -0.8900000 -0.8882000 -0.8882000032 -0.8882000000
0.300 -0.6114000 -0.6100000 -0.6086000 -0.6086000008 -0.6086000000
0.500 -0.2510000 -0.2500000 -0.2490000 -0.2490000008 -0.2490000000
0.700 0.1894000 0.1900000 0.1906000 0.1906000004 0.1906000000
0.900 0.7098000 0.7099999 0.7102000 0.7102000001 0.7102000000
1.000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

4 Conclusions

In this work, an effective and high-order numerical method for solving a class
of nonlinear singular two-point boundary value Fredholm integro-differential
equations was presented. After formulation of the method, as well as uti-
lizing an appropriate numerical integration, the original problem was con-
verted to a nonlinear algebraic system. The error analysis was performed to
demonstrate the robustness of the method. It was observed that the present
methods achieved the order of convergence O(hmin{ 7

2 ,q−
1
2}) in the L2 norm,

where q is the order of the quadrature method. Here, some test problems of
type SFIDEs and SPFIDEs are solved numerically. Numerical simulations
confirmed the theoretical analysis and efficiency of the new method.
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