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Abstract

In this study, a modified model of HIV with therapeutic and preventive
controls is developed. Moreover, a simple evaluation of the optimal control
problem is investigated. We construct the Hamiltonian function by way
of integrating Pontryagin’s maximal principle to achieve the point-wise
optimal solution. The effects obtained from the version analysis strengthen
public health education to a conscious population, PrEP for early activation
of HIV infection prevention, and early treatment with artwork for safe
life after HIV infection. Moreover, numerical simulations are done using
the MATLAB platform to illustrate the qualitative conduct of the HIV
infection. In the end, we receive that adhering to ART protective prone
people, the usage of PrEP along with different prevention control is safer
control measures.

AMS subject classifications (2020): Primary 45D05; Secondary 42C10, 65G99.

Keywords: HIV; Optimal control problem; Basic reproduction number, Nu-
merical simulation.

1 Introduction

Human immunodeficiency virus (HIV), the cause of HIV infection, has no
curative medication until now [2]. Moreover, the long-time existence of the
virus in the body leads to a serious infection called acquired immunodefi-
ciency syndrome (AIDS) disease [6]. However, optimal controls are the ef-
fective way to combat HIV transmission and progression in the community
[2, 6]. Public health education, condom, and anti-retrovirus therapy are the
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major measures taken by both governmental and nongovernmental institu-
tions to stop further progression and transmission of HIV in the populations
[1, 3, 4, 5, 7, 8, 9, 12]. Moreover, effective pre-exposure prophylaxis (PrEP)
is the drug used to prevent the survival of HIV in the human blood [14].
On the other hand, the abstinence of sexual practices through the activation
of public health education reduces the fate of acquiring HIV from poten-
tially infectious individuals. Mathematical models are very important tools
to describe the behavior of biological events. Particularly, with the great
contribution of Pontryagin’s Maximum Principle (PMP) in the construction
of optimal control problems, the nature of biological dynamics is studied in-
tensively [13, 14, 15, 18, 19, 20, 10, 22, 23]. Based on the works done in [12],
the motivation of this study is due to the significant contribution of pub-
lic health education and prophylaxis in controlling the transmission of HIV
infection among human individuals. Particularly, abstinence due to consol-
idated public health education builds positive awareness toward controlling
oneself, whereas prophylaxis helps to prevent the progression of HIV in the
human body. Mathematical models are important tools to control infections
[11, 16, 17, 24, 25, 26, 27]. In this study, we have included prophylaxis, an-
tiretroviral therapy (ART), and prevention for controlling the transmission
of HIV infection by modifying the model studied in [12].

2 Formulation of model

In this study, a mathematical model is formulated by classifying the total
population into compartments of (i) Susceptible individuals (S), (ii) Individ-
uals on Pre-exposure prophylaxis (E), (iii) HIV infected with primary stage
(P), (iv) Not on treatment HIV infected individuals (J), (v) HIV Undetectable
individuals (U), and (vi) On treatment HIV infected individuals (I).

Moreover, the subsequent assumptions are considered in the modeling of
the infection (i) a new susceptible individuals becomes susceptible at recruit-
ment rate of λ, (ii) individuals in S transfer to E due to taking PrEP at the
rate of ρ; (iii) transmission rate of HIV infection from individuals in P to S is
β1 and transmission rate of HIV infection from I to S is β2; (iv) individuals
transfer from P to I at progression rate of ξ; (v) individuals transfer from P
to J at transfer rate of η; (vi) individuals transfer from J to I at transfer rate
of γ; (vii) individuals in the compartment J die due to infection at the rate
ζ; (viii) individuals transfer from I to U due to adherence to ART at trans-
ferring rate of θ; (ix) individuals transfer from U to I due to default using of
ART at the rate of ϕ; (x) natural induced death rate of all people is µ; (xi)
AIDS induced death rate is δ; (xii) in this study, standard incidence rate is
applied; (xiii) PrEP engagement effort is u3; (xiv) Condom using effort is u1;
(xv) ART using effort is u2.

The pictorial representation of the deterministic model with control mea-
sures is given in Figure 1.

Iran. J. Numer. Anal. Optim., Vol. 13, No. 4, 2023, pp 747–762



749 Optimal control analysis for modeling ...

Figure 1: Schematic diagram of HIV transmission dynamics.

The deterministic model of population dynamics subject to HIV infection
in the presence of control measures is given by

dS

dt
= λ− (1− u1)S (β1P + β2I + β3J)

N
+ ψE − (u3ρ+ µ)S,

dE

dt
= u3ρS − (µ+ ψ)E,

dP

dt
=

(1− u1)S (β1P + β2I + β3J)

N
− (ξ + η + µ)P,

dJ

dt
= ηP − (γ + ζ + µ)J,

dI

dt
= ξP + γJ + ϕU − (u2θ + µ+ δ) I,

dU

dt
= u2θI − (ϕ+ µ)U,

(1)

with initial conditions: S(0) ≥ 0, E(0) ≥ 0, P (0) ≥ 0, J(0) ≥ 0, I(0) ≥
0, U(0) ≥ 0, 0 ≤ ui ≤ 1, i = 1, 2, 3, 4.

3 Analysis of the model without control

3.1 Invariant region

Theorem 1. The solution of model (1) is invariant in the region Ω proper-
subset of six-dimensional space over the set of nonnegative real numbers such
that

Ω = {(S,E, P, J, U, I) ∈ R6
+ : N(0) ≤ λ

µ
}. (2)

Proof. The equations of model (1) gives the subsequent equation:
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dN

dt
= λ− µN − δI − ζJ,

which implies
dN

dt
≤ λ− µN.

Applying mathematical procedures, the preceding inequality gives

N(t) ≤ λ

µ
−

(
λ

µ
−N(0)

)
e−µt,

which implies, as time t varies, the total population size is bounded for all
time t, with the given initial condition.

3.2 Nonnegative property

Theorem 2. All solution variables of model (1) without control are nonneg-
ative in the stated invariant region of the solution.

Proof. Consider the first equation of model (1) without control. Then

dS

dt
= λ− S (β1P + β2I + β3J)

N
+ ψE − µS, (3)

which implies
dS

dt
≥ −S (β1P + β2I + β3J)

N
− µS. (4)

Solving the preceding inequality, we get

S(t) ≥ S(0)e−µt−
∫ t
0

(β1P (ξ)+β2I(ξ)+β3J(ξ))

N(ξ) dξ. (5)

Hence, based on the initial condition, the susceptible population size is non-
negative for all time t.

3.3 Basic reproduction number

The basic reproduction number R0 of model (1) without control is the average
number of infected individuals produced by typical infectious individuals in
the susceptible population during the entire period of infection. Based on the
techniques applied, we compute basic reproduction numbers from model (1)
without control as follows. Let F and V be the Jacobian matrices obtained
from model (1) as given below:
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F =


β1 β2 β3 0
0 0 0 0
0 0 0 0
0 0 0 0

 , V =


ξ + η + µ 0 0 0

−η γ + ζ + µ 0 0
−ξ −γ δ + µ −ϕ
0 0 0 ϕ+ µ

 .

The spectral radius ρ
(
FV −1

)
computed from next-generation matrix

FV −1 of foregoing matrices is given by

ρ
(
FV −1

)
=

β1
ξ + η + µ

+
β2η

(ξ + η + µ)(γ + ζ + µ)

+
β3(ξµ+ ξγ + ξζ + ηγ)

(δ + µ)(ξ + η + µ)(γ + ζ + µ)
.

Therefore, by the definition, we obtain

R0 =
β1

ξ + η + µ
+

β2η

(ξ + η + µ)(γ + ζ + µ)

+
β3(ξµ+ ξγ + ξζ + ηγ)

(δ + µ)(ξ + η + µ)(γ + ζ + µ)
.

3.4 Global stability of disease-free equilibrium

Theorem 3. The global stability of a disease-free equilibrium point is de-
scribed as a steady state where the trajectory of solution shows the tendency
of moving toward it for all time t.

Proof. To show the global stability of disease-free equilibrium, we incorporate
the method applied in the works of [21]. Next, from the computed matrices
for construction of next-generation, we obtain

F =


β1 β2 β3 0
0 0 0 0
0 0 0 0
0 0 0 0

 , V =


ξ + η + µ 0 0 0

−η γ + ζ + µ 0 0
−ξ −γ δ + µ −ϕ
0 0 0 ϕ+ µ

 .

Moreover, the rate of change of variables (P, J, I, U) at disease-free equilib-
rium can be written as 

dP
dt
dJ
dt
dI
dt
dU
dt

 ≤ (F − V )


P
J
I
U

 .

Therefore, by the comparison method applied in [21], we justify that
model (1) without control has a globally asymptotically stable disease-free
equilibrium.
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4 Extension to control problem

The deterministic model of population dynamics subject to HIV infection, in
the presence of control measures, is given by

dS

dt
= λ− (1− u1)S (β1P + β2I + β3J)

N
+ ψE − (u3ρ+ µ)S,

dE

dt
= u3ρS − (µ+ ψ)E,

dP

dt
=

(1− u1)S (β1P + β2I + β3J)

N
− (ξ + η + µ)P,

dJ

dt
= ηP − (γ + ζ + µ)J,

dI

dt
= ξP + γJ + ϕU − (u2θ + δ + µ) I,

dU

dt
= u2θI − (ϕ+ µ)U,

(6)

with initial conditions S(0) ≥ 0, E(0) ≥ 0, P (0) ≥ 0, J(0) ≥ 0, I(0) ≥
0, U(0) ≥ 0, 0 ≤ ui ≤ 1, i = 1, 2, 3.
To study the optimal levels of the controls, we define the Lebesgue measurable
control set U as

U = {(u1, u2, u3) : 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, 0 ≤ u3 ≤ 1, 0 ≤ t ≤ tf}. (7)

Our goal is to find the optimal controls that minimize objective functional J
given by

J = min
(u1,u2,u3)

∫ tf

0

c1P + c2I + c3J +
1

2

(
w1u

2
1 + w2u

2
2 + w3u

2
3

)
, (8)

where cj , j = 1, 2, 3 and wi , i = 1, 2, 3 are constants. The expressions
0.5wiu

2
i , i = 1, 2, 3 are costs associated with controls. The form of cost is

quadratic because we assumed it to be nonlinear in nature [24]. Also, for
four optimal controls u∗1, u∗2, u∗3, we have

J(u∗1, u
∗
2, u

∗
3) = min{J(u1, u2, u3) : u1, u2, u3 ∈ U},

where U = {(u1, u2, u3) : 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, 0 ≤ u3 ≤ 1}. Furthermore,
u1, u2andu3 are measurable controls.
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4.1 Existence of optimal control solution

Theorem 4. The optimal control solution of a control problem exists if the
following Fleming’s and Rishel’s conditions are satisfied:

(i) The set of all solutions to optimal control problem and objective func-
tional must be nonempty.

(ii) The state system is a linear function of controls with coefficients de-
pendent on state variables and time.

(iii) The integrand in objective functional is convex and bounded above by
d1(|u1|2+|u2|2+|u3|2)d−d2 ≤ c1P+c2I+c3J+

1
2

(
w1u

2
1 + w2u

2
2 + w3u

2
3

)
, d1 >

0 and d > 1.

Proof. We employ the method from to demonstrate the existence of opti-
mal control. The condition (i) is satisfied if the state system has bounded
coefficients. Additionally, the state system operates in accordance with
controls, satisfying requirement (ii). The integrand in the objective func-
tional is used to demonstrate condition (iii). Moreover, c1P + c2I + c3J +
1
2

(
w1u

2
1 + w2u

2
2 + w3u

2
3

)
is convex on U as any constant, linear and quadratic

are convex. Furthermore, assume that there are d1, d2 > 0, and d > 1 satisfy-
ing d1(|u1|2+|u2|2+|u3|2)d−d2 ≤ c1P+c2I+c3J+

1
2

(
w1u

2
1 + w2u

2
2 + w3u

2
3

)
, d1 =

min {wi, i = 1, 2, 3}, d = 2, and d2 is the half of coefficient of control func-
tions. Therefore, the optimal solution exists.

4.2 The Hamiltonian and optimality system

The PMP stated the necessary conditions that are satisfied optimal pair.
Hence, by this principle, we obtain the Hamiltonian function (H) defined as
[24]

H(x, u, t) =c1P + c2I + c3J +
1

2

(
w1u

2
1 + w2u

2
2 + w3u

2
3

)
+ λ1

dS

dt
+ λ2

dE

dt
+ λ3

dP

dt
+ λ4

dJ

dt
+ λ5

dI

dt
+ λ6

dU

dt
,

where λi, i = 1, 2, 3, 4, 5, 6 are the adjoint variable corresponding to state
variables S,E, P, J, I, and U , respectively, and to be determined using the
PMP for the existence of optimal pairs.

Theorem 5. Let S,E, P, J, I, U be optimal state variables and let optimal
control ui, i = 1, 2, 3 be the optimal controls. Then there exist costate vari-
ables λ1, λ2, λ3, λ4, λ5, andλ6 that satisfy
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dλ1
dt

= −∂H
∂S

,
dλ2
dt

= −∂H
∂E

,

dλ3
dt

= −∂H
∂P

,
dλ4
dt

= −∂H
∂J

,

dλ5
dt

= −∂H
∂I

,
dλ6
dt

= −∂H
∂U

,

with transversality or final time conditions λ1(tf ) = λ2(tf ) = λ3(tf ) =
λ4(tf ) = λ5(tf ) = λ6(tf ) = 0, where H is the Hamiltonian function. More-
over, the optimal controls u∗1, u∗2, and u∗3 are u∗1 = min{0,max{βSI(λ2−λ1)

(w1N) , 1}}
and u∗2 = min{0,max{αI(λ4−λ2)

(w2N) , 1}}, over the constraints 0 ≤ u1 ≤ 1, 0 ≤
u2 ≤ 1.

Proof. The PMP gives the standard form of adjoint equation with transver-
sality conditions. Now, differentiating the Hamiltonian function with respect
to state variables, we have

dλ1
dt

= −∂H
∂S

=(1− u1)
(β1P + β2I + β3J)N − S (β1P + β2I + β3J)

N2
(λ1 − λ3)

+ u3ρ (λ1 − λ2) + µλ1,

dλ2
dt

= −∂H
∂E

=ψ (λ2 − λ1) + µλ2,

dλ3
dt

= −∂H
∂P

=− c1 +
(1− u1) (β1SN − S (β1P + β2I + β3J))

N2
(λ1 − λ3)

+ ξ (λ3 − λ5) + η (λ3 − λ4) + µλ3,

dλ4
dt

= −∂H
∂J

=
(1− u1) (β3SN − S (β1P + β2I + β3J))

N2
(λ1 − λ3)

+ γ (λ4 − λ5) + (ζ + µ)λ4,

dλ5
dt

= −∂H
∂I

=− c2 +
(1− u1)(β2SN − S(β1P + β2I + β3J))

N2
(λ1 − λ3)

+ u2θ(λ5 − λ6) + (δ + µ)λ5,

dλ6
dt

= −∂H
∂U

= ϕ(λ6 − λ5) + µλ6.

Furthermore, the characterization of optimal controls u∗1, u∗2 and u∗3 shows
that

∂H

∂u1
=
∂H

∂u2
=
∂H

∂u3
= 0.

Hence, optimal controls over 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, 0 ≤ u3 ≤ 1 are given by

u∗1 = u1 =
S (β1P + β2I + β3J) (λ3 − λ1)

w1N
,
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u∗2 = u2 =
θI (λ5 − λ6)

w2
,

u∗3 = u3 =
ρS (λ1 − λ2)

w3
.

Therefore, the bounds of the optimal control variables are given by

u∗1 =


S(β1P+β2I+β3J)(λ3−λ1)

w1N
if 0 < S(β1P+β2I+β3J)(λ3−λ1)

w1N
< 1,

0 if S(β1P+β2I+β3J)(λ3−λ1)
w1N

≤ 0,

1 if 1 ≤ S(β1P+β2I+β3J)(λ3−λ1)
w1N

,

u∗2 =


θI(λ5−λ6)

w2
if 0 < θI(λ5−λ6)

w2
< 1,

0 if θI(λ5−λ6)
w2

≤ 0,

1 if 1 ≤ θI(λ5−λ6)
w2

,

u∗3 =


ρS(λ1−λ2)

w3
if 0 < ρS(λ1−λ2)

w3
< 1,

0 if ρS(λ1−λ2)
w3

≤ 0,

1 if 1 ≤ ρS(λ1−λ2)
w3

.

In a compact form, the optimal controls can be written as
u∗1 = min{0,max{S(β1P+β2I+β3J)(λ3−λ1)

w1N
, 1}},

u∗2 = min{0,max{ θI(λ5−λ6)
w2

, 1}},
u∗3 = min{0,max{ρS(λ1−λ2)

w3
, 1}}.

Moreover, the optimality system of the optimal control problem can be
written as

dS

dt
=λ− (1− u1)S (β1P + β2I + β3J)

N
+ ψE − (u3ρ+ µ)S,

dE

dt
=u3ρS − (µ+ ψ)E,

dP

dt
=
(1− u1)S (β1P + β2I + β3J)

N
− (ξ + η + µ)P,

dJ

dt
=ηP − (γ + ζ + µ)J,

dI

dt
=ξP + γJ + ϕU − (u2θ + δ + µ) I,

dU

dt
=u2θI − (ϕ+ µ)U,

dλ1
dt

=(1− u1)
(β1P + β2I + β3J)N − S (β1P + β2I + β3J)

N2
(λ1 − λ3)

+ u3ρ (λ1 − λ2) + µλ1,
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dλ2
dt

=ψ (λ2 − λ1) + µλ2,

dλ3
dt

=− c1 +
(1− u1) (β1SN − S (β1P + β2I + β3J))

N2
(λ1 − λ3)

+ ξ (λ3 − λ5) + η (λ3 − λ4) + µλ3,

dλ4
dt

=
(1− u1) (β3SN − S (β1P + β2I + β3J))

N2
(λ1 − λ3)

+ γ (λ4 − λ5) + (ζ + µ)λ4,

dλ5
dt

=− c2 +
(1− u1)(β2SN − S(β1P + β2I + β3J))

N2
(λ1 − λ3)

+ u2θ(λ5 − λ6) + (δ + µ)λ5,

dλ6
dt

=ϕ(λ6 − λ5) + µλ6,

with λ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = λ5(tf ) = λ6(tf ) = 0, S(0) =
S0, P (0) = P0, J(0) = J0, I(0) = I0, U(0) = U0.

4.3 Numerical simulations and discussion

4.3.1 Analysis using the numerical methods

In this study, the numerical methods are involved in simulating the general
results of the analytical findings that give real meaning to both the mathe-
matical and biological communities. Furthermore, the parameter values used
in the simulation are either taken from the literature or assumed, as given
in Table 1. Also, w1 = 50, w2 = 20, w3 = 30, c1 = 5, c2 = 25, T = 20, S(0) =
1000,H(0) = 0,W (0) = 300, I(0) = 500, U(0) = 0, A(0) = 0.
Moreover, MATLAB software is applied in the simulation process. Fractional
derivatives and stochastic findings are widely applied as reviewed in this pa-
per. Hence, we incorporate both forward and backward sweep methods of
fourth-order Runge–Kutta method to simulate the results. The applied con-
trol strategies are as follows:
Strategy 1: Using together control measures u1 and u2.
Strategy 2: Using together control measures u1 and u3.
Strategy 3: Using together control measures u2 and u3.
Strategy 4: Using together control measures u1, u2, and u3.
Moreover, we have used the parameters given in Table 1 to simulate subse-
quent numerical solutions.
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Table 1: Parameter/constants value.

Parameter/constants Value
λ 200
β1 0.9915
β2 0.75
β3 0.9815
ξ 0.5
µ 0.02
η 0.5
ζ 0.1
ϕ 0.09
θ 0.5
δ 1
ρ 0 .1
γ 0.1
ψ 0.001

Based on the aforementioned control strategies, the following numerical
simulations are performed.

Figure 2: Primary HIV infected population.
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Figure 3: HIV not tested population.

Figure 4: HIV infected and on treatment individuals.

Figure 5: Control functions effect illustration.
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Figure 6: Adjoint variables condition descriptions.

4.3.2 Numerical results and discussion

This study develops and analyzes a mathematical model of HIV with the best
possible control measures. The conceptual diagram for population dynamics
is shown in Figure 1. The inclusion of the intervention with control serves
to emphasize the significance of control measures in minimizing the effects of
HIV infection. The numerical simulation results are shown in Figure 2 and
show how a successful combination of control methods lowers the number
of newly infected people. The numerical results in Figure 3 show that a
reduction in the number of people who have not begun ART is shown when
an intervention with control functions is present. Figure 4 shows a simulation
of the number of HIV-positive people who are now receiving treatment. The
results show that the intervention with three control groups dramatically
lowers the number of people infected with HIV. When applied correctly, u1
and u2 are effective from the beginning to the end of initiation, as seen in
Figure 5, where the applied control functions are simulated. Control u3, on
the other hand, makes a smaller contribution to regulating HIV infection
dynamics because of its limited availability. In Figure 6, the adjoint variable
is simulated to show that the transversal requirement has been satisfied.

5 Conclusion

According to the results of analytical and numerical simulations, adopting
the best control measures to stop the further progression and transmission
of HIV dynamics is more successful if done before the HIV infection even
begins to spread. Additionally, maintaining ART and protecting those who
are susceptible are considered the most crucial ways to lessen the effects of
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HIV infection. Intervention with pre-exposure prophylaxis contributes less
to lowering the risk of HIV infection since it is less affordable and accessible.
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