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In living organisms, the central control of nutrition is a highly complex and vital mechanism. Central control of nutrition 
occurs in various regions of the brain, with the hypothalamus being the most important of which is the hypothalamus. 
Th e hypothalamus controls feeding behaviors through neural circuits, specialized nuclei, and central neurotransmitters. 
Diff erent hypothalamic nuclei involved in regulating food intake include ARC, PVN, LHA, VMH, and DMH. Th e DMH 
infl uences feeding behavior by modulating the activity of diff erent neurotransmitters in the brain. Th is nucleus receives 
both orexigenic and anorexic inputs through neural connections with the ARC and other regions of the brain. Due to its 
location in the brain, the ARC has access to nutritional inputs from the circulation. Within this nucleus, there exist two 
distinct neuronal populations, namely NPY and POMC. Diff erent inputs from circulation aff ect two neuronal popula-
tions in the ARC. Th ese inputs are related to second-order neurons, including DMH. Th e DMH integrates these inputs 
and sends the fi nal output to PVN and LHA. Th erefore, DMH aff ects the central control of feeding regulation through 
these neural pathways.
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CNS: Central Nervous System
 ARC: Arcuate nucleus
 VMH: Ventromedial hypothalamus

 PVN: Paraventricular
 LHA: Lateral hypothalamus area
 DMH: Dorsomedial hypothalamus
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Introduction  

The ability to maintain a balance between ener-
gy intake and consumption is very important 

in living things. Researchers have conducted many 
types of research on this subject [1]. It has been shown 
that CNS plays a key role in controlling this balance 
[2]. Research conducted on CNS includes brain neu-
roanatomical constructions, peripheral and central 
hormonal and metabolic signals, as well as examining 
cellular and molecular pathways [3]. Among diff erent 
brain regions, the hypothalamus plays an important 
role in controlling the mentioned pathways [4].

Numerous neurotransmitters and neuropeptides 
aff ect the central control of feeding via the hypothal-
amus. Th is region plays a crucial role in monitoring 
basic behavior patterns, particularly feeding behav-
ior [5]. Diff erent types of stimulating and inhibitory 
peptides generated in the CNS aff ect feeding (Figure 
1) [6]. Th e central regulation of feeding behavior and 
energy homeostasis in the body is a highly complex 
process that requires extensive research. Neuroscience 
researchers have discovered that special hypothalamic 
nuclei, as well as brain neurotransmitters and neuro-
modulators, play an important role in the central con-
trol of nutritional behaviors [7-15].

Hypothalamus exerts its controlling role through 
its special nuclei. Th ese nuclei include ARC (fi rst-order 
neuron), VMH, PVN, LHA, and DMH (second-order 
neurons) [16-18]. Th e ARC in the middle eminence is 
not covered by the BBB, so it has direct access to the 
signals of energy regulation with blood origin. Th is 
nucleus, with its two important neuronal populations 
(NPY and POMC), plays a very important role in the 
central control of food intake [19]. By receiving blood 
signals, the neuronal population in this nucleus sends 
the necessary message to change the nutritional sta-

tus and neuronal activity of the second-order neuron 
[4]. Th e VMH is called the center of satiety and plays 
a role in energy homeostasis and body weight. It re-
ceives diff erent signals from ARC and PVN through 
its receptors, modulates these messages, and sends 
appropriate output to ARC, PVN, and other brain re-
gions involved in the central control of feeding [17, 
20]. Th e PVN is the center of hunger and is the main 
output center of the hypothalamus. It receives multi-
ple inputs from the ARC and subcortical regions. It 
then issues the appropriate response to the LHA and 
other brain regions [16, 21].  Th e most important task 
of LHA is to control nutrition according to the chang-
es in the body's energy status. Th is nucleus receives 
the necessary messages to control the nutritional sta-
tus of the body, especially from the ARC, PVN [18], 
and DMH [22, 23]. Th en, by integrating these messag-
es, it issues the appropriate stimulus response to VTA 
and other brain centers involved in the central control 
of food intake [24].

Th e DMH plays an important role in controlling 
feeding, body weight, and digestive behaviors [22, 23]. 
It is located in the tubular part of the hypothalamus 
and the area between the periventricular and lateral 
regions. In rodents, this nucleus is easily divided into 
several identifi able sub-regions [25]. Th e DMH con-
tains two important neural populations, namely NPY 
and CART neurons, which are the most important 
ones in the central control of food intake [26]. Th e 
DMH receives diverse inputs and integrates them 
and issues the appropriate response through these 
two neuronal populations [27]. Th is nucleus has ex-
tensive connections with other hypothalamic nuclei 
in the central control of food intake. Th is nucleus re-
ceives multiple inputs from all the anterior, middle, 
and posterior nuclei of the hypothalamus [28]. Th e 
DMH also receives signals of blood origin through 
the cerebellum. Th e cerebellum transmits various in-
puts from the vagus nerve and signals of blood origin 
to the DMH. Th erefore, through DMH, the hypothal-
amus is connected to other neural networks involved 
in the central control of nutrition, including the cer-
ebellum-vagus nerve [29]. Th e DMH sends extensive 
nerve projections to all nuclei of the periventricular 
zone of the hypothalamus, such as PVN, LHA (except 
ARC), septum, hippocampus, and amygdala [27].

In the fi eld of neurophysiology, several types of 
research have been conducted on distinct hypotha-
lamic nuclei, and their roles have been investigat-
ed separately. Th e DMH has received little attention 
among these nuclei [23]. Th erefore, considering the 
role of DMH in the central control of food input, we 
review the role of this nucleus in controlling central 
nutritional behavior.

Abbreviations-Cont'd
 BBB: Blood-brain barrier
 NPY: Neuropeptide Y
 POMC: Pro-opiomelanocortin
 VTA: Ventral tegmental area
 CART: Cocaine- and amphetamine-regulated transcript
 GALRs: Galanin receptors
 GPCR: G protein-coupled receptors
 PeH: Periventricular hypothalamus
 ICV: Intracerebroventricular
 GALP: Galanin-like peptide
 L-bR: Leptin receptors
 DR: Dopaminergic receptors
 NPYR: NPY receptor
 MCR: Melanocortin receptor
 GHSR 1a: Growth hormone secretagogue receptor 1a
MBH: Mediobasal hypothalamic
 AgRP: Agouti-related peptide
 α-MSH: alpha-melanocyte-stimulating hormone.



3

REVIEW ARTICLE IRANIAN JOURNAL OF VETERINARY SCIENCE AND TECHNOLOGY

Yousefvand et al., IJVST 2023; Vol.15, No.2
DOI: 10.22067/ijvst.2023.79476.1203

Dorsomedial nucleus and feeding behaviour

Figure 1. 
Nutritional status and energy balance hypothalamic peptidergic circuitry in the rat. Receptors and communities of peptidergic neu-
rons with their projections were defi ned. Th e middle group of hypothalamic nuclei, including the arcuate nucleus, retrochiasmatic 
area, dorsomedial, and ventromedial nuclei have long-form leptin receptors (ObRb, open triangles). Arcuate neuron has the mRNA 
of neuropeptide Y (NPY) and agouti-related protein (AgRP). Th ese neuron populations project output to the paraventricular nucleus 
(PVN) and the perifornical/lateral hypothalamus (PeF). Th ese neuron populations project output to autonomic and motor areas of the 
brainstem and spinal cord, PVN and DMH, and other brain areas (not shown). One neuron group that receives input from these ARC 
projections in the lateral hypothalamus (LHA) involves MCH, CART, orexin-A (OREX), and dynorphin (DYN). Various populations of 
these neurochemically special cell groups produce ‘ascending’ (cortex, amygdala, hippocampus, thalamus) and ‘descending’ projections 
to promotor (medullary motor nuclei), locomotor (pedunculopontine locomotor area and spinal cord), and autonomic premotor and 
motor areas (dorsal motor nucleus of the vagus, A5, RVLM, and ILM) (dorsal motor nucleus of the vagus, A5, RVLM, and ILM) [81].

Study design
Several reliable papers from electronic sources 

were used in this review article. Creditable articles in-
dexed in the Web of Science, Scopus, PubMed, SID, 
Google Scholar, and ISI databases using the keywords 
“feeding central regulation”, “hypothalamic dorsome-
dial nucleus”, “brain neurotransmitters”, and “brain 
neuromodulator” were surveyed.

Galanin
Galanin is a neuropeptide found in CNS, especial-

ly the hypothalamus, and exerts its eff ect via GALRs 
(Table 1). It helps regulate feeding, body weight, re-
production, and growth. Th e GALRs, as members of 
the GPCR family, are classifi ed into three types [5, 30]. 
GALR1 is mostly found in the prefrontal cortex, me-
dial thalamus, and central amygdala. GALR2 is pre-
sented in the granule cell layer of the dentate gyrus, 
cerebellar cortex, and mammillary bodies. GALR3 is 
found in the hypothalamus [31]. In mice, galanin is 
distributed in all special nuclei of the hypothalamus, 

especially VMH. In rats, galanin is most distributed 
in DMH and PeH [32]. Galanin stimulates eating 
through various brain regions, especially DMH [33]. 
Central administration of galanin increased food 
consumption in rodents. As well as, intracerebroven-
tricular (ICV) administration of  galanin stimulates 
feeding in various hypothalamic nuclei such as DMH 
in satiated rats [34]. Moreover, the ICV injection of 
1 nmol galanin increased feeding in rats with free 
access to food and water (Table 2). Galanin causes 
a central increase in food intake via up-regulating 
c-FOS in GALR1 in DMH [31]. 

Galanin-like peptide
Th e GALP, a 60-amino acid neuropeptide, was 

discovered in the hypothalamus of pigs and is linked 
to GALRs (Table 1) [30]. GALR1 is mostly distributed 
in the CNS, while GALR2 and 3 were distributed to a 
lesser extent in the CNS and peripheral tissues [35]. 
GALP has a higher affi  nity for binding to GALR2 
than other receptors and functions in the hypothala-
mus via GALR2 [36]. In mice, the GLAP neurons are 
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Table 1.
Basic receptors involved in the central control of feeding in DMH.

Ref.Action MechanismAction (s)Receptor Location (s)Receptor Cat-
egoryReceptor

[36]Increased c-Fos expressionIncreased food intakeDMHGPCRGALR2

[48]Inhibits the formation of 
cAMPDecreased food intakeDMHGPCRDR2

[60]Increased c-Fos expressionIncreased food intakeARC, and DMHGPCRGHSR

[79]Increased c-Fos expressionDecreased food intakeARC, and DMHClass 1 cytokine 
receptorLb-R

[74]Increase in the GABA re-
lease to the POMC neuronIncreased food intakeARC, PVN, VMH, and DMHGPCRNPYR

distributed in the ARC [37]. Leptin receptors (L-bR) 
are expressed in the GALP neurons. Th erefore, GALP 
has a direct eff ect on food intake by communicating 
with leptin [30, 37]. In rats and mice, GALP seems to 
have diff erent eff ects. In rats, this leads to a temporary 
rise in feeding, followed by a reduction in eating and 
body weight [38]. Th is transient increase in feeding 
is linked to the activation of orexin neurons in LHA 
and NPY neurons in DMH [36, 39]. In mice, it only 
reduces food intake and body weight [40]. In mice, 
the repeated intranasal administration of 2 nmol of 
GALP reduced food intake, water intake, and body 
weight in 24 hours [30]. Diff erent doses of GALP have 
diverse eff ects on feeding. A low dose (1-2 nmol) re-
duces food intake, whereas a high dose (4 nmol) does 
not aff ect feeding. High doses may reduce receptor 
expression and sensitivity to GALP [41]. In another 
study, it has been shown that galanin ICV injection 
increased food intake for the initial 2 hours in rats. 
GALP upregulates NPY neurons in the DMH. It also 
raises the level of c-Fos expression in these neurons 
and augments food intake (Table 2) [36]. As a result, 
GALP in mice decreased food intake via communi-
cation with leptin neurons. In rats, GALP increased 
food intake via activating orexin neurons in LHA and 
c-FOS expression in NPY neurons.

Dopamine
Dopamine is a vital neurotransmitter in the CNS, 

which is produced from tyrosine amino acid [42]. 
Dopamine neurons are found in the hypothalamus, 
especially in ARC, DMH, and LHA [43]. Dopaminer-
gic neurons in the hypothalamus communicate with 
GABAergic, and POMC neurons in ARC and trans-
mit nerve projections to PVN and LHA [44]. Do-
pamine exerts its eff ects on feeding control through 
DRs, which are GPCR. Th ese receptors include DR1-
DR5. Dopamine aff ects feeding via DR1 and DR2 
[45]. DR1 was found in suprachiasmatic nuclei, PVN, 
LHA, VMH, and DMH. DR2 was expressed in LHA, 

PVN, VMH, and ARC (Table 1) [43]. Th e impacts 
of dopamine on the central control of eating depend 
on the type of nucleus, receptor, and overall energy 
condition of the body [45]. As well, dopamine seems 
to have diverse eff ects on feeding in LHA and VMH 
[3]. In LHA, dopamine levels are high in response to 
feeding and during feeding. Dopamine levels in VMH 
increased during fasting and aft er feeding. DR2 was 
found in NPY neurons, ARC, and PVN. When dopa-
mine binds to DR2 in NPY neurons in PVN and ARC, 
inhibits NPY neurons in ARC and PVN. Consequent-
ly, NPY level declines and NPY does not bind NPYRs 
in DMH. Th e NPY cannot stimulate DMH. Finally, 
decreased food intake in rat[43, 46]. As well, dopa-
mine binds to DR1 in POMC neurons, stimulating it. 
POMC via MCR4 inhibited DMH orexigenic output. 
As a result, food intake is suppressed in mice via indi-
rect eff ects (Table 2) [43, 46, 47]. Furthermore, DMH 
sends these neural projections to LHA and suppresses 
feeding [48]. Dopamine inhibits feeding by inhibit-
ing NPY neurons and stimulating POMC neurons via 
DMH.

Ghrelin
Ghrelin is a peptide with 28 amino acids derived 

from the stomach and released in reaction to a change 
in nutritional status [49]. It is synthesized and secreted 
in low volumes in the brain [50]. Th is hormone is orex-
igenic and increases in response to a massive decrease 
in energy [51]. Ghrelin is considered a blood glucose 
regulator, appetite controller, and anti-depressant [52, 
53]. Ghrelin neurons transmit nerve projection to hy-
pothalamic nuclei, including ARC, PVN, VMH, and 
DMH [54]. Ghrelin exerts its multiple and essential 
functions through GHSR1a, which is a part of GPCR 
(Table 1) [55]. Th is receptor is widely expressed in the 
hypothalamus, especially in MBH, ARC, PVN, VMH, 
and DMH [56, 57]. Moreover, ghrelin projection is 
transmitted to extra hypothalamic regions, namely 
the amygdala and septum [50]. Among diff erent hy-
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pothalamic nuclei, DMH is sensitive to the regulation 
of ghrelin secretion in response to feeding behaviors 
stimuli [58]. Peripheral and central administration of 
ghrelin increases feed consumption and body weight 
[59]. GHSR1a expresses NPY/AgRP neurons in ARC 
[60] and DMH [61]. It increases the activity of these 
neurons and upregulates NPY. Th e NPY neurons 
transmit orexigenic output to DMH. Th erefore, DMH 
sends orexigenic output to the PVN [62]. Th e ICV 
and peripheral injection of ghrelin-induced feeding 
in rats that had free access to food [63, 64], and also 
upregulated c-Fos in NPY neurons in ARC. Further-
more, induced c-Fos expression in DMH and PVN. 
Following the stimulation of NPY neurons in ARC, 
this nucleus sends excitatory projections to DMH, 
stimulating it. With DMH activation orexigenic out-
put is sent to PVN [65]. Th erefore, via this pathway, 
DMH exerts its orexigenic eff ect on feeding in rats 
(Table 2) [66]. Ghrelin also aff ects nutrition by reduc-
ing signaling from dopamine and serotonin [67]. In 
the brain, ghrelin neurons interact with dopaminer-
gic neurons, and dopamine modulates an increased 
eff ect of ghrelin in nutritional behavior [68]. In ad-
dition, ghrelin reduces serotonin release to synaptic 
cleft  [69]. Ghrelin raises NPY activity in ARC and 
DMH via binding to GHSR1a. In addition to directly 
increasing the level of NPY in the DMH, the level of 
this neuropeptide is increased in the ARC and sends 
excitatory input to the DMH. Next, DMH sends orex-
igenic messages to PVN.

Neuropeptide Y
Th e NPY is a vital and strong orexigenic com-

pound in CNS and is synthesized in ARC and DMH. 
DMH contains NPYR [61]. NPY is a 36-amino acid 
peptide, which is a member of the pancreatic polypep-
tide family. NPY is distributed in CNS, especially the 
hypothalamus [7], and plays an orexigenic role with 
NPYR. Th e NPYR belongs to the GPCR family. NPY 
has multiple receptors, including NPYR1, NPYR2, 
NPYR4, and NPYR5. Th e DMH contains NPY1R and 
NPY5R (Table 1) [70]. NPY exerts orexigenic eff ects 
via these receptors. Th e NPY neurons in DMH are 
considered gabaergic and non-sensitive neurons to 
leptin [71]. NPY levels in DMH increase in response to 
food deprivation and stimulate this nucleus. Now, this 
nucleus transmits orexigenic output to other nuclei 
[61]. In mice, NPY neurons in DMH are involved in 
central feeding regulation [72, 73]. It has been shown 
that POMC neurons in ARC may have an inhibitory 
role on NPY neurons in DMH. Th e POMC-GABAer-
gic neurons in ARC send inhibitory output to DMH. 
In DMH, MCR4 is expressed. Th e POMC neuron via 
MCR4 exerts an inhibitory eff ect on NPY neurons [1]. 
During starvation in rats, NPY levels are increased in 
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Conclusion
DMH plays an important role in the central con-

trol of feeding, but it has received very little attention. 
NPY in this nucleus plays a critical role in the cen-
tral stimulation of food intake. Galanin and GALP 
stimulate central feeding behavior via their receptors 
in this nucleus. Th e eff ect of dopamine on the central 
control of food intake appears to be highly dependent 
on the nutritional level, receptor type, and nucleus 
involved. Dopamine inhibits NPY neurons and stim-
ulates POMC neurons via dopaminergic receptors, re-
sulting in a central decrease in digestion. Ghrelin also 
increases central food intake by raising NPY levels. 
Leptin reduces central food intake by decreasing NPY 
levels (graphical abstract). 

Future directions
Considering the eff ect of DMH on the central 

control of nutritional behavior, the authors recom-
mend that future research be conducted on the eff ect 
of other neurotransmitters on the central control of 
feed intake via this nucleus.

Funding
Th is review article did not receive any specifi c 

grant from funding agencies in the public, commer-
cial, and not-for-profi t sectors.
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Th is study has not been performed on any hu-
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the ARC [74] and DMH [75]. Also, the GABAergic 
inhibitory branch inhibits the  POMC neurons in the 
ARC. As a result, their inhibitory eff ect is removed 
from NPY neurons in DMH. Th en, NPY exerts its 
additive eff ect on food intake by sending excitatory 
outputs to other brain regions [72]. Th e main brain 
neurotransmitter for controlling feeding in DMH is 
NPY. Central injection of NPY augments feeding and 
body weight (Table 2) [75]. In response to starvation, 
the NPY level rises in both ARC and DMH. On the 
other hand, the inhibitory GABAergic branch of ARC 
inhibits POMC neurons. As a result, NPY stimulates 
DMH, and DMH exports the necessary orexigenic 
message.

Leptin
Leptin is an adipose tissue-derived hormone 

that inhibits ingestion and facilitates weight mainte-
nance. Lack of leptin or reduced sensitivity to leptin 
causes obesity. Th erefore, leptin is a vital hormone 
in controlling food intake. Th e Lb-R, which is found 
throughout CNS, is a member of the class 1 cytokine 
receptor family (Table 1) [18]. Leptin is highly ex-
pressed in the hypothalamus particularly ARC, VMH, 
and DMH [71]. Leptin has a receptor on GABAergic 
neurons in DMH. Th erefore, leptin inhibits GABAer-
gic neurons via Lb-R and restrains projection trans-
mitted to PVN. Leptin reduces feeding in rats via 
this pathway [76, 77]. Furthermore, leptin suppresses 
feeding and promotes energy consumption by activat-
ing other neuron populations [78]. Leptin exerts its 
eff ect on nutritional behavior via increased c-Fos ex-
pression in ARC, DMH, and PVN [79]. Th e NPY neu-
rons in ARC transmitted nerve projection to DMH. 
Th e main site of leptin action is the hypothalamus. It 
has been shown that the ICV injection of leptin reduc-
es digestion by aff ecting the hypothalamus (Table 2). 
Furthermore, circulating leptin enters CNS through 
MBH, and then exerts its eff ect on food intake by 
transmitting nerve projections from ARC to DMH, 
and then to PVN. Finally, feeding is reduced. Leptin 
inhibits the expression of NPY mRNA and increases 
the level of α-MSH in the hypothalamus. It also reduc-
es the level of this neurotransmitter in ARC, DMH, 
and PVN. Neurons expressing Lb-R in DMH play a 
key and essential role in feeding control [80]. Leptin 
inhibits GABAergic neurons in DMH through Lb-R. 
It also down-regulates NPY and up-regulates α-MSH 
in ARC and DMH. As a result, through these path-
ways, the increasing eff ects of DMH on food intake 
are inhibited, and it reduces food intake.
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