اداره کل منابع طبیعی و آبخیزداری استان گلستان؛ 1386. مطالعه هیدرولوژی حوزه آبخیزه قرهچای رامیان. مهندسی مشاور شمال. 28 ص.
وزیری، فریبرر؛ صیاد مشتاق، شاهین؛ ناصری نوعدوست، میرناظر؛ پیمان، بهروز؛ فتحی، ولیالله؛ 1363. تجزیهوتحلیل رگبارها در نقاط مختلف ایران، جهاد دانشگاهی دانشـگاه خواجـه نصـیرالدین طوسـی، واحـد طـرح و تحقیقات. 205 ص. https://www.sid.ir/paper/789303/fa
Amrei, D. and Britta, S., 2020. Flood hazard analysis in small catchments: comparison of hydrological and hydrodynamic approaches by the use of direct rainfall. Journal of flood risk management, 13: 26 p. https://doi.org/DOI:10.1016/j.jhydrol.2013.02.010.
Arcement, G. J., and Schneider, V. R. 1989. Guide for selecting Manning’s roughness coefficients for natural channels and flood plains: U. S. Geological Survey Water-Supply Paper 2339, 38 p. https://doi.org/10.3133/wsp2339
Arnell, N,W., Gosling, S. N., 2013. The impacts of climate change on river flow regimes at the global scale. J. Hydrology, 486: 351–364. https://doi.org/10.1016/j.jhydrol.2013.02.010.
Association of state floodplain managers., 2004. Reducing flood losses: is the 1% chance (100-year) flood standard sufficient? National Academies Disasters Roundtable, Assembly of the Gilbert F. White National Flood Policy Forum, Washington DC, 142. https:// biotech.law. lsu.edu/blog/nrcs143_009401.pdf
Chow VT., 1959. Open-Channel hydrulics. McGRAW·hill book company; I: 350. https:// heidarpour. iut.ac.ir/ sites/heidarpour.iut.ac.ir/ files/u32/open-chow.pdf
Costabile. P., Costanzo, C., Ferraro, D., Macchione, F., and Petaccia, G., 2020. Performances of the new HEC-RAS version 5 for 2-D Hydrodynamic-Based Rainfall-Runo Simulations at basin scale: comparison with a State-of-the Art Model.Water, 12 (2326): 19 p. https://doi.org/10.3390/w12092326.
Di Baldassarre, G., Schumann, G., Bates, P. D., Jim, E.,a nd Beven, J., 2010. Flood-plain mapping: a critical discussion of deterministic and probabilistic approaches. Hydrological Sciences Journal, 55 (3): 364-376. https://doi.org/10.1080/02626661003683389.
Ferri, M., Wehnm U., See, L., Monego, M., and Fritz, S., 2020. The value of citizen science for flood risk reduction: cost–benefit analysis of a citizen observatory in the Brenta-Bacchiglione catchment. Hydrology and Earth System Sciences, 24 (12): 5781-5798. https://doi.org/10.5194/hess-24-5781-2020.
Ghanbarpour, M. R., Salimi, S.h., Mohseni, S. M., and Zare, M., 2011. Calibration of river hydraulic model combined with GIS analysis using ground-based observation data. Research Journal of Applied Sciences, Engineering and Technology, 3 (5): 456-463. https://portal.research.lu.se/en/publications/calibration-of-river-hydraulic-model-combined-with-gis-analysis-u.
HEC-RAS River Analysis System., 2016. User's Manual Version 5.0. U. S Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Centre (HEC). 538 p. https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%205 .0% 20 Users% 20Manual.pdf
Krause, P., Boyle, D. P., and Base, F. 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5: 89–97. https://doi.org/10.5194/ adgeo-5-89-2005.
Kumar, N., Kumar, M., Sherring, A., Suryavanshi, S., Ahmad, A., and Lal, D., 2019. Applicability of HEC-RAS 2D and GFMS for flood extent mapping: a case study of Sangam area, Prayagraj, India. Model. Earth Syst. Environ, 6: 397–405. https://doi.org/10.1007/ s40808-019-00687-8.
McIntyre, N., and Al-Qurashi, A., 2009. Performance of ten rainfall–runoff models applied to an arid catchment in Oman.Environmental Modeling and Software, 24 (6): 726-738. https://doi.org/10.1016/j.envsoft.2008.11.001.
Mihu-Pintilie, A., Cimpianu, C. I.; Stoleriu, C. C., Pérez, M. N., and Paveluc, L. E., 2019. Using high-density LiDAR data and 2D streamflow hydraulic modeling to improve urban flood hazard maps: A HEC-RAS multi-scenario approach. Water, 11 (9) 1832: 24 p. https://doi.org/10.3390/w11091832.
Moriasi, D., Arnold, J., Van, L., Michael, W., Bingner, R., Harmel, R. D, and Veith, T L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3): 885-900. http://dx.doi.org/10.13031/ 2013.23153.
Moya Quiroga, V., Kure, S., Udo, K., and Mano, A., 2016. Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Revista Iberoamericana Del Agua (RIBAGUA), 3 (1): Pages 25-33. https://doi.org/ 10.1016/j.riba.2015.12.001.
Naeem, B., Azmat, M., Ahmad, S. H., Khattak, M. U, Haider, S., Ahmad, S., Khero, Z., and Goodell, Ch. R., 2021. Flood hazard assessment for the Tori Levee Breach of the Indus River Basin, Pakistan. Water, 13 (5): 19 p. https://doi.org/ 10.3390/w13050604.
Ongdas, N., Akiyanova, F., Karakulov, Y., Muratbayeva, A., and Zinabdin, N., 2020. Application of HEC-RAS (2D) for flood hazard maps generation for Yesil (Ishim) River in Kazakhstan. Water, 12 (10): 20 p. https://doi.org/10.3390/w12102672.
Phogat, V., Skewes, M. A., Cox, J. W, and Simunek, J., 2016. Statistical assessment of a numerical model simulating agro hydro-chemical processes in soil under Drip Fertigated Mandarin Tree. Irrigat Drainage Sys Eng, 5: 155. 9 p. https://doi.org/10.4172/2168-9768.1000155.
Pinos, Juan., and Timbe, Luis., 2019. Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in mountain river basins. Water Science and Engineering, 12 (1): 11-18. https://doi.org/10.1016/j.wse.2019.03.001.
Rangari, V. A, Umamahesh, N. V, and Bhatt, C. M., 2019. Assessment of inundation risk in urban foods using HEC RAS 2D. Modeling Earth Systems and Environment, Springer Nature Switzerland AG. 13 p. https://Doi.org/10.1007/s40808-019-00641-8.
Raposo, J. R, Molinero J, and Dafonte J., 2012. Parameterization and quantification of recharge in crystalline fractured be rocks in Galicia-Costa (NW Spain). Hydrol, Earth Syst. Sci. Discuss, 9: 1919–1960. https://doi.org/10.5194/hess-16-1667-2012.
Sahoo, S. N, and Sreeja, P., 2017. Sensitivity of imperviousness determination methodology on runoff prediction, ISH Journal of Hydraulic Engineering, Taylor and Francis, 23 (3): 276-282. https://doi.org/10.1177/ASWR.S36089.
Shahiri Parsa, A., Nori, M., Heydari, M., and Rashidi, M., 2016. Floodplain zoning simulation by using HEC-RAS and CCHE2D Models in the Sungai Maka River. Air, Soil and Water Research, 9: 55–62. https://doi.org/10.4137/ASWR.S3608.
Soler, C., Sentelhas, P., and Hoogenboom, G., 2007. Application CSMCERES maize model for planting date evaluation and yield forecasting for maize grown off season in a subtropical environment. Eur. J. Agron, 27:165-177. https://doi.org/10.1016/j.eja.2007.03.002.
Tellman, B.; Sullivan, J. A.; Kuhn, C.; Kettner, A. J; Doyle, C. S. Brakenridge, G. R., Erickson, T. A., and Slayback, D.A., 2021. Satellite imaging reveals increased proportion of population exposed to floods. Nature, 596: 80–86. https://doi.org/10.1038/s41586-021-03695-w.
Trinh, M. X., and Molkenthin, F., 2021. Flood hazard mapping for data‑scarce and ungauged coastal river basins using advanced hydrodynamic models, high temporal‑spatial resolution remote sensing precipitation data, and satellite imageries. Natural Hazards, 109:441–469. https://doi.org/10.1007/s11069-021-04843-1.
Viglione, A. and M. Rogger., 2015. Flood Processes and Hazards. Paron P, Baldassarre GD, (Editors). Hydro-Meteorological Hazards, Risks and Disasters, 289. https://doi.org/10.1016/ B978-0-12-394846-5.00001-1.
|