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This study addresses simulating manufacturing processes and maintenance activities in a multi-product industry 

to model the complexity of interactions between maintenance strategies and their effects on a manufacturing 

system. A novel simulation model has been developed using Discrete Event Simulation (DES) to investigate 

interactions between manufacturing and maintenance systems. A real two-product manufacturing line in an 

automotive factory was studied to demonstrate the proposed model's efficacy. Two significant challenges were 

considering Preventative Maintenance (PM) as imperfect PM activities and estimating unknown probability 

distribution in a real industry. These are new assumptions that generally have not been considered in the prior 

studies. To overcome these problems, imperfect maintenance activities are defined as different scenarios and 

unknown probability distributions are estimated based on historical records in the case study. A simulation-based 

optimization method was developed using OptQuest, and the results of the proposed method were then compared 

with the current values in the case study. The findings illustrate that the proposed model can reduce the system's 

manufacturing and maintenance costs by 13%. In addition, the implementation of maintenance planning in this 

research improved some factors in the manufacturing system efficiently. 
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1. Introduction 

Research on maintenance planning was established decades ago, and different approaches are 

applied to investigate efficient maintenance operations. Some studies are reviewed in the 

literature in two separate parts, including mathematical and simulation models. The majority of 

mathematical models have discussed costs and reliability. De Almeida (2012) proposed a multi-

criteria decision making (MCDM) approach to select the best preventive maintenance intervals 

that reduce total cost. Wang and Zhang (2013) surveyed the replacement problem, which 

consists of two types of failures. The first one is repairable in which maintenance activities are 

carried out by technicians to repair the system and the second one is unrepairable that the whole 

system needs replacing at once. The process aims to find the optimal replacement policy, which 

leads to the minimum average cost rates. Chen et al. (2015) focused on a prognostic model that 

determines physical deterioration in a stochastic process to minimize the total operational costs, 

including preventive/corrective, replacement, and downtime costs. Imperfect maintenance is 

another principal issue related to the optimization of complex maintenance systems. Lim et al. 

(2016) proposed a repair model, which could find the optimal replacement age in a system with 

an imperfect repair policy. Aghezzaf et al. (2016) also developed a Mixed Integer Nonlinear 

Programming (MINP) to represent a manufacturing system where production and maintenance 

decisions are assumed integrated and preventive maintenance activities occur imperfectly. A 

heuristic procedure was applied to solve this complex problem. Concerning safety in an 

industrial environment, Martón et al. (2016) developed Multiple Objective Optimization 

Problems (MOP) to obtain the optimal maintenance intervals in a maintenance system. The 

application case that contains multiple items appears that efficient test intervals and 

maintenance activities had a significant impact on detecting hidden failures. Jun et al. (2017) 

proposed a mathematical model to estimate the long-run cost Condition-Based Maintenance 

(CBM) system. To illustrate the maintenance policy, a case study is employed, and the 

degradation process is described with known and unknown distribution parameters. It is realized 

that the distribution of the system's lifetime was deeply affected by the degradation rate. 

Driessen et al. (2017) considered three deterioration states, including normal, defective, and 

failed states to minimize the average cost over an infinite time horizon by optimizing the 

maintenance policy. The numerical study demonstrates that the model with constant 

probabilities costs, on average, 19% higher than non-constant probabilities of inspection errors. 

Liu et al. (2018) created an integrated decision model that coordinates degradation information 

of maintenance activities, taking into account the health status and machines' age. A single-
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machine system is used as a case study to demonstrate the value of the proposed method. 

Nguyen et al. (2019) defined a new objective of grouping individual PM strategies to maximize 

the planning horizon's profit. On the other hand, some studies do not restrict the maintenance 

grouping into finite planning and propose a model without specifying the horizon (Wu et al., 

2020). Furthermore, some researchers applied predictive group maintenance for multi-system 

multi-components networks (Liang and Parlikad, 2020) and then, forecast demand distribution 

for spare parts based on the maintenance plan (Zhu et al., 2020). All these studies entailed 

mathematical models to optimize maintenance intervals and replacement strategies. It is 

observed from the literature that most studies considered cost and reliability functions as 

objectives.  

One of the most common approaches in simulating the maintenance system is Monte Carlo 

simulation. Besnard and Bertling (2010) applied Monte Carlo simulation to compare three 

maintenance strategies: visual inspection, inspection with a condition-monitoring technique, 

and online condition monitoring. The results showed that for systems with high rate failure, 

online condition monitoring is the optimal strategy. Liu et al. (2016)  developed a maintenance 

model that considers long-run cost rates as objective and aims to find the optimal threshold for 

imperfect PM action. Some previous studies extended the simulation-optimization approach to 

integrating maintenance and manufacturing systems. Roux et al. (2013) combined several tools 

to ensure a low frequency of failures and efficient preventative maintenance thresholds. 

Furthermore, the impact of PM strategy on the production line was studied in this proposed 

model. Alrabghi and Tiwari (2016) proposed a simulation approach to minimizing the total cost 

consists of the maintenance cost, spare parts cost, and unavailability cost. To optimize the 

problem, Simulated Annealing (SA) was used, and the results were compared with other 

optimization algorithms. Lam and Banjevic (2015) used a proportional hazards model for risk 

of failure and a Markovian process to model the system covariates. This approach is studied to 

determine the optimal maintenance inspection in a CBM model. Many studies on maintenance 

systems used simulation as a vital tool to find the best maintenance decision in complex and 

multi-component systems (Coit et al., 2015, Sharifi and Taghipour, 2023, Bisht and Singh, 

2023). Babishin and Taghipour (2016) studied a multi-component system to obtain the optimal 

maintenance policy. Their research considers hard and hidden failures for all components and 

periodic inspection interval is found for the system. Hajipour and Taghipour (2016) developed 

a simulation model to obtain optimal non-periodic inspection intervals in different multi-

component systems. A Genetic Algorithm (GA) was applied to find the minimum total expected 

https://doi.org/10.22067/JSTINP.2023.84099.1072
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cost over the system's lifecycle. Nyemba and Mbohwa (2017) simulated both material flow and 

maintenance in a multi-product manufacturing system by Arena Simulation Software. Alrabghi 

et al. (2017) applied a stochastic Discrete Event Simulation (DES) approach to finding the 

optimal maintenance strategy in two industrial systems. These strategies include Corrective 

Maintenance (CM), PM, Opportunistic Maintenance (OM), and CBM. The findings suggest a 

new approach to considering production dynamics in maintenance planning. Regarding spare 

parts planning, Sharma et al. (2017) proposed a simulation-optimization approach that could 

forecast future failures while keeping the cost to a minimum. Using GA and simulation, the 

model aimed to determine the number of spare parts for army equipment with selective 

maintenance strategies. Wakiru et al. (2019) also defined a simulation approach that study some 

effective factors such as repair time and availability in a thermal power plant. Finally, different 

maintenance strategies, the time between overhaul and spare parts have been introduced as the 

most effective factors for reducing the repair time. Also, the impact of the maintenance policy 

on the inventory system was investigated in a simulated numerical study (Poppe et al., 2017b). 

It is understood from the literature that the majority of studies apply a simulation approach to 

optimize maintenance planning and decrease maintenance costs. Studies that employed 

simulation in maintenance are highlighted in Table 1. Finally, the new decision variables and 

approaches in the current research are mentioned and compared with previous studies. 

To summarize, maintenance activities typically take the time that could be allocated for 

manufacturing; however, delaying maintenance may increase the probability of machine 

failure. Consequently, trade-offs and conflicts between maintenance planning and 

manufacturing systems should be considered in real industrial environments (Liu et al., 2018). 

Maintenance in manufacturing systems with an integrated assembly line is particularly crucial 

because if a workstation or machine fails in this kind of system, the full line may stop working. 

Thus, maintenance activities are essential to keep the manufacturing system or to restore it to 

an acceptable productivity level (Aghezzaf et al., 2016). 

This paper aims to develop a model to generate optimal imperfect PM periods by considering 

the relevant manufacturing data in a real industrial case. Based on previous maintenance 

research, simulation models, which are typically appropriate models to consider both 

manufacturing and maintenance systems in detail, is used in this paper. The key questions are 

“How to illustrate a methodology to model the maintenance system in this two-product 

manufacturing line” and “What is the effect of considering imperfect PM activities in a real 

industrial environment. To overcome these challenges, this paper proposes a new approach to 

model maintenance activities in the factory. Imperfect PM maintenance activities are defined 

https://doi.org/10.22067/JSTINP.2023.84099.1072
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as three scenarios in which total costs are evaluated. Then the best scenario is selected to fulfill 

in the case study. Another new assumption is that some data such as repair time and Mean Time 

Between Failures (MFTB) were unknown in the case study, so they needed to be estimated 

based on recorded data. Overall, this model enables the decision-makers to decide about PM 

intervals while the manufacturing system is operating and costs are evaluated in the whole 

system. Simulation-based optimization  is applied to obtain the optimal decision variables. The 

proposed model could successfully decrease the costs and improve some factors in the 

manufacturing system. 

The remainder of the paper is organized as follows. Section 2 discusses the methodology and 

explains the assumptions in the model. Section 3 introduces the proposed simulation model in 

detail. Section 4 indicates the case study and the results. Section 5 discusses the results, and 

finally, Section 6 summarizes the conclusions.  

Table 1. Summary of simulation-based approaches for maintenance strategies 

Research Objective function Decision variables Solution Method Case study 

Liu et al., 

)2018) 

and Production cost 

tardiness cost 

Job sequence 

PM intervals 
GA 

A research 

laboratory 

facility 

Besnard and 

Bertling, 

)2010) 

Costs of 

strategymaintenance  
Maintenance inspection time 

Monte Carlo 

simulation 
Wind turbine 

Liu et al., 

)2016) 
cost rate run-Long 

The threshold for imperfect PM 

action 

Monte Carlo 

simulation 
- 

Roux et al., 

(2013) 

Unavailability of the 

system 
PM inspection interval 

Nelder–Mead 

(Simplex) method 
- 

Alrabghi 

and Tiwari 

)2016( 

Total cost 

e cost, maintenanc(

spare parts cost, and 

)unavailability cost 

Preventive maintenance frequency, 

and the type of maintenance 

strategy 

Simulated 

Annealing (SA) 
- 

Lam and 

Banjevic 

)2015( 

Costs of 

maintenance policy 

per unit time 

PM inspection timeNext  

Simulate possible 

scenarios by 

Markovian process 

- 

Babishin 

and 

Taghipour 

)2016( 

The total cost of 

maintenance and 

repair policy 

Periodic inspection interval 

Simulation 

Of each 

maintenance 

policy 

- 

Hajipour 

and 

Taghipour 

(2016) 

The total expected 

cost of the system 

over the lifecycle 

periodic inspection-non 

scheme 

Simulation and 

GA 
-  

Nyemba and 

Mbohwa 

(2017) 

Production costs 
Production and maintenance 

intervals 

Simulation via 

software 

Furniture 

assembling 

plant 

abghi et Alr

al., (2017) 

Maintenance cost 

and the production 

throughput 

Maintenance strategy 

Non-dominated 

Sorting Genetic 

Algorithms 

(NSGA II) 

 

-A tyre re

treading factory 

and a 

petrochemical 

plant 

Sharma et 

al., (2017) 
intenance costMa Maintenance replacements GA 

Army 

equipment 

https://doi.org/10.22067/JSTINP.2023.84099.1072
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Research Objective function Decision variables Solution Method Case study 

Wakiru et 

al., (2019) 

Total 

repair time 

The time between overhaul, Fill 

rate that deals with the inventory 

policy, Maintenance strategy 

reliance factors 

Design of 

Experiment (DOE) 

Thermal power 

plant 

Poppe et al., 

(2017a) 

Inventory costs of 

maintenance policy, 

Maintenance 

intervention costs of 

maintenance policy 

,Reorder point 

,Order quantity 

Maintenance interval in running 

,hours under a PM policy 

Intervention threshold 

Simulation via 

software 

Equipment 

manufacturing 

in the 

compressed air 

industry 

Madu 

)2000( 

Availability and total 

maintenance cost 

etween failure, The time The time b

between failure of components 
DES algorithm 

Mining 

industry 

Present 

study 

Total costs 

maintenance and (

)production 

PM intervals, Imperfect PM 

intervals, the number of technicians 

in maintenance, and buffer size 

OptQuest 
 Automotive

industry 

2. Methodology 

The combination of simulation and optimization is a new and powerful approach to 

maintenance planning problems. This approach can be applied in different ways; it depends on 

the simulation pattern that is selected in maintenance problems. Some simulation ways such as 

the Markovian process (Lam and Banjevic, 2015), DES (Roux et al., 2013, Alrabghi and Tiwari, 

2016), and Monte Carlo method (Liu et al., 2016, Besnard and Bertling, 2010) can be found in 

maintenance problems. In this study, due to the interactions between machines and the effect 

of maintenance on production, discrete-event simulation (DES) is applied and implemented by 

the Arena simulation software package. DES is a technique representing changes and real-world 

behavior in industrial systems (Roux et al., 2013, Alrabghi and Tiwari, 2016).The simulation-

based optimization method also allows the decision-makers to observe both the maintenance 

and manufacturing processes at the same time and then find the optimal decision variables. In 

this section, the assumptions and mathematical model in this research are defined. 

2.1. Assumptions 

The main model assumptions are as follows: 

 The case study is a multi-product manufacturing system with different workstations and 

non-identical machines  

 Mean Time Between Failures (MTBF) is unknown. Historical data captured over three 

months in the factory were used to estimate MTBF for each machine.  

 PM and CM activities are scheduled in the model. Likewise, in the proposed model, PM 

activities will carry out imperfectly. 

 To carry out maintenance activities, the production line should be stopped. 

 Total costs formulated in the objective function include both production cost and 

maintenance cost. 

 Repair time and MTBF distributions are unknown, and a tool in Arena software is used 

to estimate them. 

https://doi.org/10.22067/JSTINP.2023.84099.1072
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2.2. Modelling manufacturing system and preventive maintenance 

The optimization model, which defines the decision variables in the maintenance and 

manufacturing system, is mentioned in this subsection. There is a notation of variables and 

information used in the model.   

2.2.1. Notations 

 Sets: 

 J: Set of machines in the manufacturing system- indexed by j 

2.2.2. Parameters: 

𝐵𝑙𝑗: Lower bound for buffer capacity in machine j ∈ 𝐽 

𝐵𝑢𝑗: Upper bound for buffer capacity in machine j ∈ 𝐽  

𝑃𝑀𝐼𝑙𝑗: Lower bound for PM activity interval in machine j ∈ 𝐽 

𝑃𝑀𝐼𝑢𝑗: Upper bound for PM activity interval in machine j ∈ 𝐽 

𝑃𝑀𝐼𝑗: PM intervals for machine j∈ 𝐽 

𝐻𝑅𝑙: Minimum number of available technicians in the maintenance system 

𝐻𝑅𝑢: Maximum number of available technicians in the maintenance system 

2.2.3. Decision variables 

 𝐵𝑢𝑓𝑗: Buffer capacity in machine j ∈ 𝐽 

 𝐻𝑅 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒: Number of available technicians in the maintenance   system 

2.2.4. Objective function 

𝑍: Total cost  

To optimize the maintenance and manufacturing system, the objective function should include 

both maintenance and manufacturing costs. As a result, the total cost formulated as follows: 

 Minimize total cost = Maintenance cost +  Manufacturing cost 

 Maintenance cost = PM cost + CM cost +labor cost 

 Manufacturing cost = Variable cost of manufacturing +         Fixed cost of manufacturing +
 Holding cost at buffer 

PM and CM costs are evaluated per each maintenance task. Labor costs in this maintenance 

system concentrate on technicians' wages and are calculated per hour. In the manufacturing 

system, fixed costs refer to costs that do not change when output changes. However, variable 

cost is dependent on the number of products produced. Holding cost at buffer also refers to how 

https://doi.org/10.22067/JSTINP.2023.84099.1072
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much holding a unit of product costs per day.  All of the manufacturing and maintenance 

systems' expenses were collected from prior recorded data in the factory. To define new 

decision variables in the problem and determine bounds for them, some discussions were 

conducted with experts in the manufacturing and maintenance team, respectively. In the 

following model, equation (1) demonstrates the objective function. 

(1) Minimize  Z = Total cost 

 Subject to: 

(2) 𝐵𝑙𝑗 ≤ 𝐵𝑢𝑓𝑗 ≤ 𝐵𝑢𝑗 

(3) 𝑃𝑀𝐼𝑙𝑗 ≤ 𝑃𝑀𝐼𝑗 ≤ 𝑃𝑀𝐼𝑢𝑗    

(4) 𝐻𝑅𝑙 ≤ 𝐻𝑅 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 ≤ 𝐻𝑅𝑢 

Constraint (2) shows the minimum and maximum of products that can be stored in the buffer 

and mentions buffer capacity ranges between 𝐵𝑙𝑗 and 𝐵𝑢𝑗. Constraint (3) mentions that PM 

intervals range between 𝑃𝑀𝐼𝑙𝑗 and 𝑃𝑀𝐼𝑢𝑗 for machine j. In addition, constraint (4) shows 

available technicians in the maintenance system range between 𝐻𝑅𝑙 and 𝐻𝑅𝑢. The optimal 

value for the buffer size, PM intervals, and technicians system will be determined in the 

simulation-optimization model.  

2.3. A novel approach to model maintenance systems 

Notation 

T: Simulation run length 

Type 1 PM: The PM activities that only control and inspect different parts of machines 

Type 2 PM: In addition to inspection of the system, theses PM activities repair the broken-down 

parts 

3. Simulation model 

To simplify the industrial environment, we developed a generic simulation model in Figure 1, 

which involves manufacturing systems and maintenance strategies. The simulation model 

begins with the manufacturing system, some information such as manufacturing sequence for 

each product, machines᾿ cycle time, buffers, and product's transfer time were collected and 

considered in the model. 

https://doi.org/10.22067/JSTINP.2023.84099.1072
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3.1. Maintenance model 

Required maintenance data such as maintenance cost, repair time, MTBF, and the number of 

technicians engaged in the maintenance system are identified in the model. Then, we considered 

that when the simulation runs, the simulation clock moves forward to the next event. A novel 

approach for maintenance modelling is presented in Figure 1. At first, it is checked if failures 

occur in the system, a CM activity must be carried out to repair the system. Thus, production 

processes are stopped, and the machine's state is changed to the inactive state. Having done CM 

action, the manufacturing system can start operation again. 

Additionally, if any failures do not happen in the system, CM activity will be suspended until 

the simulation clock exceeds the MTBF. To carry out PM activities, at first, it is monitored that 

CM and PM do not happen simultaneously. Then, to begin a PM activity machine's state is 

changed to an inactive state. The type 2 PM  takes more time and needs more technicians 

because more actions should be carried out to repair the parts. Then, having done these steps, 

the cost will be updated, and human resources will be released. The simulation model inputs 

are PM and CM cost, variable and fixed cost at manufacturing, and holding cost at buffer. The 

simulation model output is the total cost. Until the simulation clock reaches simulation run 

length, the same steps as described above are followed.   

 

Figure 1. A generic approach to model maintenance systems 

https://doi.org/10.22067/JSTINP.2023.84099.1072
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3.2. Simulation-based optimization approach 

A simulation-based optimization approach has been a common method in maintenance 

problems. OptQuest is a tool that can consider a series of simulations to uncover optimal or 

near-optimal solution scenarios. OptQuest is a generic optimizer that runs the simulation model 

and the optimization method separately. There are interactions between simulation and 

optimization procedures, enabling decision-makers to apply optimization methods in their 

simulation models (Nakagawa and Zhao, 2015). OptQuest uses a group of meta-heuristics, 

including Neural Networks, Scatter Search, Tabu search, and then combines them into a single 

search heuristic (Golbasi and Turan, 2020). Metaheuristics are methods, which guide other 

procedures (heuristic or truncated exact methods) to enable them to overcome the trap of local 

optimality for complex optimization problems (Glover et al., 1999). If a candidate solution does 

not fit the constraints, that solution is eliminated, and OptQuest explores candidates that are 

more likely to be better. Thanks to OptQuest, it allows users to define integer and linear 

constraints on the deterministic simulation inputs. It also enables users to control the search by 

defining different criteria. In addition, It allows different precision criteria for objective and the 

constrained simulation outputs. For instance, the user can specify a fixed or the number of 

replicates between lower and upper bounds, stopping the replication if any inferior solution is 

found. OptQuest also allows various stopping criteria; for example, the search can be stopped 

after a specific time duration or after specific non-improving solutions. We can obtain the 

optimal PM intervals, buffer size, and the number of technicians, using only available 

algorithms via OptQuest. For this problem, to create a relationship between the optimization 

process and simulation model, the number of replications is investigated in more detail in the 

optimization results section.  

4. Case study and computation results 

To illustrate the value of the model, an industrial case was used in the research. To find an 

empirical case, initial discussions were conducted to choose the most critical manufacturing 

line in the factory. Finally, a production line where automotive weather-stripping was produced, 

with high-tech machines, was selected. A case study will be explained in detail in the following 

sections, and the results will be argued. 

  

https://doi.org/10.22067/JSTINP.2023.84099.1072
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4.1. Manufacturing system  

The manufacturing line is a multi-product system that consists of five non-identical machines. 

Two types of weather-stripping are produced for a car in this production line, which we called 

them product A and product B. Product A is the outer weather-stripping, and product B is the 

inner weather-stripping that their manufacturing process is slightly different. Figure 2  shows 

the manufacturing process and its equipment in this factory. Both products enter the 

manufacturing system simultaneously, whereas product B needs an additional stage, processed 

by machine 5 (M5). There is a buffer after machine 4 (M4), where products are prepared for 

the next stage; we define its size as a decision variable. Each machine needs an operator in order 

to run the machine and transfer products to subsequent steps. 

 

Figure 2.  Production processes in the manufacturing system 

The production line involves five processes as follows: 

1. Injection: preformed rubber material and other chemicals are mixed in machine 1 (M1). 

2. Extrusion: rubber seals are measured and cut (M2). 

3. Moulding: rubber strips are moulded into particular shapes (M3). 

4. Velvet insertion: rubber strips are covered with a velvet layer in machine 4 (M4). After 

that, rubber strips are gathered in the buffer to cool down.  

5. Metal insertion: rubber strips are covered with a metal layer (M5). This process is only 

done for product B. 

Cycle times related to each machine are given in Table 2. All machines need labor to operate. 

Table 2. Cycle times for the machines in the manufacturing system 

Machine Process 
Cycle time 

Product A (minute) Product B (minute) 
1 
2 
3 
4 
5 

Injection 
Extrusion 
Moulding 

Velvet insertion 
Metal insertion 

1 
6 
4 
3 
- 

1 
11 
4 
3 
7 

 

Product B 

Product A 

M1 

M5 

Buffer M3 M4 
00 

M2 

M1 M3 M4 
00 

M2 

https://doi.org/10.22067/JSTINP.2023.84099.1072
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    Index j that represents the machines in the manufacturing system range between 1 and 5. 

The manufacturing costs during the simulation are as follows:  

Variable cost of manufacturing = 150000/ unit 

Fixed cost of manufacturing = 200000/ set up 

Holding cost at buffer = 12000/unit/hour 

In the manufacturing system, the buffer capacity ranges between 600 and 880. 

(5) 600 ≤ BUF ≤ 880 

4.2. Maintenance system  

 In the maintenance system, two maintenance strategies are carried out; PM activities 

considered as decision variables and CM activities. To study the maintenance system, 

historical data were used to fit all probability distributions. MTBF, which shows when a CM 

action is carried out, follows BETA. Repair times for CM and PM activities follow Triangle 

distribution and vary between machines. All distributions for the maintenance system are 

shown in Table 3. P-value is more than 0.15, which indicates the similarity between data and 

estimated distributions is acceptable. 

Table 3. MTBF and repair time distributions in the maintenance system 

Machines MTBF (Mean Time 

Between Failure)* CM repair time 

PM repair time 

in type 1 PM 
 

PM repair time in 

type 2 PM 

Correspondi

ng p-value 

K-S test1 

1 25 + 48 BETA 

(0.0156, 0.0159) 
TRIA2(6.5, 7, 8.5) TRIA(4.5, 5, 6.5) TRIA(5.5, 6, 7.5) > 0.15 

2 248 + 188 BETA 

(0.246, 0.173) TRIA(4.5, 5, 6.5) TRIA(4.5, 5, 6.5) TRIA(5.5, 6, 7.5) > 0.15 

3 258 + GAMMA 

(289, 0.335) TRIA(2.5, 3, 4.5) TRIA(4, 4.5, 6) TRIA(4, 4.5, 6) > 0.15 

4 148 + 188 BETA 

(0.246, 0.173) TRIA(8,8.5, 10) TRIA(4.5, 5, 6.5) TRIA(5, 5.5, 7) > 0.22 

5 87 + 102 BETA 

(0.192, 0.147) TRIA(3.5, 4, 5.5) TRIA(4.5, 5, 6.5) TRIA(5.5, 6, 7.5) > 0.15 

*MTBF is assumed as the CM threshold in this study. In other words, after machines failed, the CM action is performed. 

PM intervals (PMI) and the available number of technicians (HR maintenance) in the 

maintenance system are as follows: 

                                                 

1 Kolmogorov–Smirnov test 

2 Triangular  
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(6) 10 ≤ 𝑃𝑀𝐼 ≤ 16 

(7) 12 ≤ 𝐻𝑅 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 ≤ 16 

4.3. Imperfect PM maintenance scenarios  

In this research, a new approach is proposed to consider PM strategies imperfectly. The concept 

of imperfect maintenance refers to a maintenance operation, which leads to a system that brings 

to an operating state between the two extreme operating states called the 'as bad as old' and the 

'as good as new' states. Consequently, to add imperfect PM strategies to the model, three 

scenarios are defined in Table 4. Each scenario presents the quality and accuracy of PM 

strategies. A weak strategy is the cheapest one, but it cannot influence failures' distribution. 

Weak strategy means a PM takes place with low-quality spare parts or unskilled technicians 

and only increases Mean Time Between Failures (MTBF) by 20 percent. However, the most 

expensive PM strategy, which is called high, uses the best spare parts and skilled technicians 

and can increase MTBF significantly. 

Moreover, the average strategy is cheaper than high strategy, which provides technicians and 

spare parts with the quality level between weak and the high strategy. It is also assumed that 

imperfect maintenance has an impact on the mean time between failures. As a result, the mean 

time between failures is expected to increase specific amounts. We simply define α (α ≥1) 

coefficient that increases MTBFs; after each imperfect maintenance, the MTBF of the machines 

is modified to become α×MTBF. For instance, the time interval between the two failures 

increased by 20 percent in the weak strategy. The last PM strategy explains the current PM 

activities that are carried out in the industrial case study. The scenarios illustrated in Table 4, 

and all required data are captured from the maintenance team and management. 

Table 4. Imperfect PM Scenarios based on expert's knowledge 

PM scenarios  PM cost Increase in MTBF α New MFTB 

Weak 210000/task 20  percent 1.2  

 

α × MTBF 

 

 

Average 238000/task 50 percent 1.5 

High 300000/task 90  percent 1.9 

Factory 230000/task - 1 

4.4. Comparison of scenarios for imperfect preventive maintenance 

We employed the Process Analyzer tool in Arena software to decide about three scenarios and 

the factory's current maintenance strategy. Table 5 illustrates controls and responses for 

imperfect PM maintenance scenarios in Process Analyzer. Figure 3, a result of Arena software, 
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compares the objective function (total cost) of scenarios and shows that the Average scenario 

is the best PM strategy with the minimum total cost. Consequently, in the rest of the study, the 

Average scenario is called the proposed scenario. The following data will be optimized in 

OptQuest, and the findings will be compared with the current case. 

Table 5. Comparison of  imperfect preventive scenarios 

Scenarios 

properties 
Controls Response 

Name 
Replicati

ons 

PMI[M1]*3 

(Days) 
PMI[M2] PMI[M3] PMI[M4] PMI[M5] α 

HR 

Maintenance 
PM cost Total cost 

Weak 20 10 10 10 10 10 1.2 13000 2100000 270501400 

Average 20 12 12 12 12 12 1.5 15000 2380000 255155750 

     High 20 16 16 16 16 16 1.9 17000 300000 289822400 

    Factory 20 14 14 14 14 14 1 15000 230000 279091845 

 

 

Figure 3. Comparison between scenarios and current maintenance strategy 

4.5. Optimization results 

The OptQuest tool in Arena simulation software package (V.14) allows the user to select 

special parameters and then begins to find the optimal values while simultaneously changing 

these parameters (Kelton et al., 2009).This tool is used to optimize the simulation model in 

this paper, and Table 7 show the optimal buffer size, the optimal number of technicians in the 

maintenance system, and the optimal PM intervals for the current model in the factory and the 

proposed scenario respectively. 

 

                                                 

3 PMI [M1]: PM inspection for machine 1 
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Table 6. The optimal solution for the current model in the factory 

Decision variables Current values in 

factory Optimal values 

Buffer size 652 758 
HR Maintenance 15 12 

PMI[M1] 14 10 
PMI[M2] 14 11 
PMI[M3] 14 11 
PMI[M4] 14 10 
PMI[M5] 14 10 

Optimal total cost: 261099800 

Surprisingly, if PM activities take place imperfectly, as mentioned in Table 7, this study's 

proposed maintenance scenario causes a significant decrease in total cost. To be precise, 

imperfect PM activities cause a 13.03 percent fall in the total cost function. To determine the 

sufficient number of replications, a 95% confidence interval of 'Total cost' is considered, then 

around 30 replications, the half-width achieves less than 5 million units. Hence, the number of 

replications is set to 30 to ensure we obtain a better estimate of 'Total cost'. The objective, the 

total cost is also calculated for 50 simulation runs with 30 replications. Figure 4 shows the 

optimization graph for the total cost associated with the case study's current model. According 

to the graph, the best total cost is attained at the 27th simulation, and no further change is seen. 

Table 7. The optimal solution for the proposed scenario 

Decision variables Default values in the 

scenario Optimal values 

Buffer size 652 773 
HR Maintenance 12 12 

PMI[M1] 12 16 
PMI[M2] 12 16 
PMI[M3] 12 16 
PMI[M4] 12 13 
PMI[M5] 12 15 

Optimal total cost: 227053900 
 

 
Figure 4. Optimization graph for the total cost of the current model in the factory  
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Furthermore, other factors, which are effective in deciding on the maintenance and 

manufacturing system, have been studied in the models. As seen in Table 8, wait time, WIP , 

and the number of waiting in the queue are extracted from the Arena software reports. To 

evaluate whether the differences between the current model and optimal design were 

statistically meaningful, 95% confidence intervals for these four factors are obtained after 30 

simulations in Table 8. 

Table 8. Comparative results of the simulation-based optimization method 

Factors 
Current 

design 

Optimal design 

(proposed model) 

Improvement 

mean 
Confidence 

interval (95%) 
Significance 

Wait 

time 

Product A 295.42 294.69 0.24 % (0.217,0.473) Yes 

Product B 389.27 384.09 1.33  % (0.791,1.057) Yes 

Work In 

Process 

Product A 795.62 778.97 2.92 % (0.294,0.451) Yes 

Product B 5955.53 5943.14 0.208 % (-0.215,0.107) No 

Number 

of 

waiting 

Machine 1 62.1439 389.829 37.26 % (-5.31,2.08) No 

Machine 2 118.57 107.11 9.66 % (0.65,0.84) Yes 

Machine 3 38.98 28.37 27.2 % (0.126,0.39) Yes 

Machine 4 23.87 12.96 45.7 % (0.146,0.935) Yes 

Machine 5 19.36 13.02 32 % (0.369,0.564) Yes 

Total cost 146289690 138278177 5.47 % (0.449,2.69) Yes 

The confidence intervals confirm that the mean is statistically significant at the significance 

level of 0.05. As Table 8 indicates, all values are significant with the exception of WIP for 

product B and the number waiting for machine 1.  

5. Results and discussion 

Concerning the optimization results in Section 4.5, it is evident that the proposed maintenance 

strategy leads to a lower cost and could improve some important factors. Wait time, which 

shows that each product is waiting in the system, decreases by 0.24 and 1.33 percent for 

products A and B, respectively. After optimizing the problem, there is a decrease in the number 

of waiting products for product A, falling from 795.62 to 778.97; however, a decrease in WIP 

for product B is not statistically significant. While the number of waiting products improves in 

all machines, a decrease in this criterion for machine 1 is not statistically appropriate; this 

indicates that the number of waiting factor does not depend on the simulation-based 

optimization method. The total cost improvement is considerable, decreasing by 5.47%, falling 

from 146289690 in current design to 138278177 in optimal design. Therefore, it is shown that 

the proposed model and optimization approach was employed in this research can boost several 

factors in the maintenance and manufacturing system. Moreover, as Table 6 and Table 7 show, 

we find the optimal decision variables for PM intervals, the number of technicians, and buffer 
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size by the proposed model causing a 13.03% decrease in the total cost. This paper's current 

approach can be used for planning maintenance activities in industrial environments with 

integrated production lines that a failure in a workstation may cause a full stop in the assembly 

line. However, based on confidence intervals, some factors did not change logically. The 

number waiting for machine 1, for instance, does not change after optimization, which may 

depend on other factors such as the machine's age since machine 1 was the oldest in our case 

study.   

In prior studies, very little was found on discussing the scope of optimization, finding a new 

approach for maintenance action in a real case industry; however, this research aimed to create 

a simulation model and proper optimization process to address the gaps. While the majority of 

prior studies concentrated on mathematical models to consider imperfect maintenance 

activities, this paper tried to model maintenance activities by a simulation model. Although 

many studies in maintenance research used numerical examples to verify their model, current 

research developed an attempt to find an appropriate industrial case as a result; a factory that 

produced plastic automotive parts was selected as a case study. 

6. Conclusion 

This paper develops a new model to plan maintenance activities by considering the 

manufacturing data in industrial environments. Consequently, in addition to PM intervals and 

the number of technicians, buffer size was assumed to be the model's decision variables. We 

propose a novel approach for CM and PM activities to plan and model these activities in 

maintenance systems. A new assumption is carrying out PM activities imperfectly. Three 

scenarios were defined based on the expert's knowledge to add imperfect maintenance 

assumptions, and then the best scenario was selected to carry out imperfect maintenance 

activities in the model. The results have shown that the model can lead to a noticeable decrease 

in the total cost, and it offers different impacts on other factors in a manufacturing system. In 

addition to maintenance, data wait time, work in process, and the number of waiting were 

studied in the manufacturing system. Finally, after the optimization of an automotive factory, 

the findings support the hypothesis that maintenance improvement plays a role in boosting other 

manufacturing systems. There was a limitation to find a case study because only factories with 

high-tech machines could provide accurate information for this model; therefore, we 

investigated a particular factory, however; only one production line in the factory provides data 

for the model.   
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Future research can be undertaken to implement the proposed approach to other case studies 

with more details. For example, the spare parts management or inventory costs can be 

considered in future studies. Also, the equipment's age can be studied in a manufacturing system 

with different MTBF distribution. It is possible to formulate other functions such as reliability 

in the objective function and change the model to a multi-objective problem. It is also suggested 

that the currently proposed model can be used with other maintenance policies such as OM and 

CBM. 
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