اثر ناحیه جزرومدی، مکملهای سیمانی و مصالح دریایی بر برخی از پارامترهای دوام بتن
مهندسی عمران فردوسی
مقاله 5 ، دوره 36، شماره 3 - شماره پیاپی 43 ، مهر 1402، صفحه 63-82 اصل مقاله (1.92 M )
نوع مقاله: مقاله پژوهشی
شناسه دیجیتال (DOI): 10.22067/jfcei.2023.83067.1239
نویسندگان
محمد جهانی* 1 ؛ شهره شاهنوری 2 ؛ سعید مرادی 3 ؛ محمد یزدانی 1 ؛ سیروس ارشادی 4
1 سازههای دریایی، گروه مهندسی عمران، دانشگاه هرمزگان - ایران
2 دانشکده عمران، دانشگاه صنعتی آیندهوون، هلند
3 مرکز تحقیقات راه، مسکن و شهرسازی، بندرعباس، ایران
4 گروه عمران، دانشکده فنی مهندسی، دانشگاه هرمزگان، بندرعباس، ایران
چکیده
استفاده از ماسه لایروبیشده و آب دریا در تولید بتن با توجه به منابع اولیه این مواد، عملاً درمحیطهای دریایی، جزایر و بنادر توجیه پذیرتر است. از طرفی، بررسی پارامترهای دوام سازه های بتنی در محیطهای دریایی خصوصا در شرایط جزرومدی بسیار حساس میباشد. بدلیل آنکه در این مناطق چرخههای متوالی خشک/مرطوب، گرادیان دما و رطوبت در طول زمان، روند کربناسیون و انتشار یونهای رسانا را تشدید، و نهایتا زوال فیزیکی و شیمیایی بتن را تسریع میکند. هدف این تحقیق بررسی تاثیر پوزولانهای متاکائولن، دوده سیلیس و سرباره کوره ذوب آهن بر خواص مکانیکی و ریزساختار بتن ساخته شده از ماسه و آب دریا در شرایط جزرومدی می باشد. نتایج نشان داد که استفاده از آب و ماسه دریا در بتن، به دلیل حضور نمک های کلرید و همچنین پرشدن خلل وفرج توسط اترینگایت ناشی از حمله ی سولفاتها، بهبود 8%/6 خواص مکانیکی در سنین اولیه را به دنبال داشت، ولی پس از آن افت چشمگیری را تجربه کرد. دوده سیلیس به دلیل منبع بالای SiO2 و همینطور واکنش پذیری بالا، با تسریع روند مصرف کلسیم هیدروکسید، ضمن جلوگیری از پیشروی کربناسیون، باعث تشکیل ژل کلسیم-سیلیکات-هیدرات متراکم با سطح مخصوص بالا در ریزساختار ناحیه ی انتقال بتن ساخته شده از آب و ماسه دریا شد. همچنین در حضور سولفات منیزیم، دوده سیلیس بهتر از سرباره و متاکائولن، از تشکیل اترینگایت و نهایتا گسترش حفرات و ریزترک ها جلوگیری کرد.
کلیدواژهها
دوام بتن ؛ خواص مکانیکی ؛ ریزساختار بتن ؛ ماسه لایروبیشده ؛ شرایط جزرومدی
مراجع
[1] M. Khatibmasjedi, S. Ramanathan, P. Suraneni, and A. Nanni, “Compressive strength development of seawater-mixed concrete subject to different curing regimes,” ACI Mater. J., vol. 117, no. 5, 2020. doi: 10.14359/51725973.
[2] U. Ebead, D. Lau, F. Lollini, A. Nanni, P. Suraneni, and T. Yu, “A review of recent advances in the science and technology of seawater-mixed concrete,” Cement and Concrete Research, vol. 152, p. 106666, 2022. https://doi.org/10.1016/j.cemconres.2021.106666
[3] M. Jahani, S. Shahnoori, S. Moradi, and C. Ershadi, “Cleaner Production Towards a Green Concrete ; Multi-scale Experimental Study on Long-Term Performance of a Sustainable Modified-SWSSC,” vol. 6, no. 6, pp. 43–59, 2022. https://doi.org/10.11648/j.ajcbm.20220601.14
[4] S. Moradi, S. Shahnoori, S. T. Tabatabaei Aghda, and C. Ershadi, “Study of resistance and durability parameters of Roller Compacted Concrete Pavement made of Dredged Marine Sand extracted from the coastal areas of Persian Gulf (Shahid Rajaee port),” Concr. Res., vol. 11, no. 3, pp. 41–53, 2018. (In Persian). https://doi.org/10.22124/jcr.2018.7437.1239
[5] S. Moradi, and S. Shahnoori, “Eco-friendly mix for Roller-Compacted Concrete: Effects of Persian-Gulf-Dredged marine sand on durability and resistance parameters of concrete,” Construction and building Materials, vol. 281, pp. 122555, 2021. https://doi.org/10.1016/j.conbuildmat.2021.122555.
[6] A. Shayan, A. Xu, G. Chirgwin, and H. Morris, “Effects of seawater on AAR expansion of concrete,” Cement Concrete Research, vol. 40, no. 4, pp. 563-568, 2010. https://doi.org/10.1016/j.cemconres.2009.09.008
[7] H. H. Steinour, “Concrete Mix Water--How Impure Can It Be?,” 1960.
[8] M. Jahani, S. Shahnoori, and S. Moradi, “Long Term observations in an Experimental study on durability of a Sustainable Concrete Made with Sea-water and Sea-sand in Tidal Conditions,” 2022.
[9] M. Khatibmasjedi, S. Ramanthan, P. Suraneni, and A. Nanni, “Shrinkage behavior of cementitious mortars mixed with seawater,” Adv. Civ. Eng. Mater., vol. 8, no. 2, pp. 64–78, 2019. https://doi.org/10.1520/ACEM20180110
[10] A. M. Rashad, and A. S. Ouda, “Effect of tidal zone and seawater attack on high-volume fly ash pastes enhanced with metakaolin and quartz powder in the marine environment,” Microporous and Mesoporous Materials, vol. 324, pp. 111261, 2021. https://doi.org/10.1016/j.micromeso.2021.111261
[11] X. Shen, Q. F. Liu, Z. Hu, W. Q. Jiang, X. Lin, D. Hou, and P. Hao, “Combine ingress of chloride and carbonation in marine-exposed concrete under unsaturated environment: A numerical study,” Ocean Engineering, vol. 189, pp. 106350, 2019. https://doi.org/10.1016/j.oceaneng.2019.106350
[12] Y. Yi, D. Zhu, S. Guo, Z. Zhang, and C. Shi, “A review on the deterioration and approaches to enhance the durability of concrete in the marine environment,” Cement Concrete Composites, vol. 113, pp. 103695, 2020. https://doi.org/10.1016/j.cemconcomp.2020.103695
[13] X. Jiang, S. Mu, Z. Yang, J. Tang, and T. Li, “Effect of temperature on durability of cement-based material to physical sulfate attack,” Construction and Building Materials, vol. 266, pp. 120936, 2021. https://doi.org/10.1016/j.conbuildmat.2020.120936
[14] J. Liu, G. Ou, Q. Qiu, X. Chen, J. Hong, and F. Xing, “Chloride transport and microstructure of concrete with/without fly ash under atmospheric chloride condition,” Construction and Building Materials, vol. 146, pp. 493–501, 2017. https://doi.org/10.1016/j.conbuildmat.2017.04.018
[15] R. M. De Gutiérrez, L. N. Diaz, and S. Delvasto, “Effect of pozzolans on the performance of fiber-reinforced mortars,” Cement Concrete Composites, vol. 27, no. 5, pp. 593–598, 2005. https://doi.org/10.1016/j.cemconcomp.2004.09.010
[16] S. Cheng, Z. Shui, T. Sun, Y. Huang, and K. Liu, “Effects of seawater and supplementary cementitious materials on the durability and microstructure of lightweight aggregate concrete,” Construction and building Materials, vol. 190, pp. 1081–1090, 2018. https://doi.org/10.1016/j.conbuildmat.2018.09.178
[17] D. L. Pillay, O. B. Olalusi, M. W. Kiliswa, P. O. Awoyera, J. T. Kolawole, and A. J. Babafemi, “Engineering performance of metakaolin based concrete,” Cleaner Engineering and Technology, vol. 6, p. 100383, 2022. https://doi.org/10.1016/j.clet.2021.100383
[18] M. Valipour, F. Pargar, M. Shekarchi, and S. Khani, “Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study,” Construction and building Materials, vol. 41, pp. 879–888, 2013. https://doi.org/10.1016/j.conbuildmat.2012.11.054
[19] W. A. Al-Kutti and N. M. Al-Akhras, “The durability of partially-damaged concrete with the addition of silica fume and ground granulated blast furnace slag,” Key Engineering Materials, vol. 711, pp. 277–284, 2016. https://doi.org/10.4028/www.scientific.net/KEM.711.277
[20] Jahani, A., Estabragh, A. R., Khajepour, H., & Amini, M. (2022). Comparison of the Effect of Cement, Ground Granulated Blast-Furnace Slag (GGBS), and Activated GGBS on Stabilization of a Clay Soil. Ferdowsi Civil Engineering, vol.35, no.3. doi:10.22067/jfcei.2022.74908.1115
[21] A. R. Estabragh, A. Jahani, A. A. Javadi, and M. Babalar, “Assessment of different agents for stabilisation of a clay soil,” International Journal of Pavement Engineering, vol. 23, no. 2, 2022. https://doi.org/10.1080/10298436.2020.1736293
[22] ASTM Committee, “Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying, ASTM C566-97,” Annu. B. ASTM Stand., vol. 97, no. Reapproved 2004, pp. 5–7, 1997.
[23] C128/C128M, “Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption,” ASTM International, pp. 1–6, 2001.
[24] ASTM C143/C143M, “Standard Test Method for Slump of Hydraulic-Cement Concrete,” Astm C143, no. 1, pp. 1–4, 2015.
[25] Z. Shi, Z. Shui, Q. Li, and H. Geng, “Combined effect of metakaolin and sea water on performance and microstructures of concrete,” Construction and building Materials, vol. 74, pp. 57-64, 2015. https://doi.org/10.1016/j.conbuildmat.2014.10.023
[26] “Bs 1881 Part 124 Pdf 14l 1 / 3,” pp. 3–5, 1881.
[27] ACI Committee 222, “Protection of Metals in Concrete Against Corrosion,” Aci 222R-01, pp. 1–41, 2001.
[28] Limeira, J., Etxeberria, M., Agulló, L., & Molina, D. (2011). Mechanical and durability properties of concrete made with dredged marine sand. Construction and building materials, 25(11), 4165-4174. https:// doi.org/10.1016/j.conbuildmat.2011.04.053
[29] O. Cascudo, P. Pires, H. Carasek, A. De Castro, and A. Lopes, “Evaluation of the pore solution of concretes with mineral additions subjected to 14 years of natural carbonation,” Cement Concrete Composites, vol. 115, pp. 103858, 2021. https://doi.org/10.1016/j.cemconcomp.2020.103858
[30] A. Younis, U. Ebead, P. Suraneni, and A. Nanni, “Fresh and hardened properties of seawater-mixed concrete,” Construction and building Materials, vol. 190, pp. 276–286, 2018. https://doi.org/10.1016/j.conbuildmat.2018.09.126
[31] P. Sikora, K. Cendrowski, M. Abd Elrahman, S. Y. Chung, E. Mijowska, and D. Stephan, “The effects of seawater on the hydration, microstructure and strength development of Portland cement pastes incorporating colloidal silica,” Applied Nanoscience, vol. 10, no. 8, pp. 2627-2638, 2020. https://doi.org/10.1007/s13204-019-00993-8
[32] Y. Demir, H. Yaprak, and O. ŞİMŞEK, “The effect of sea water on the properties of concrete with silica fume admixture,” Cem. Wapno Bet., vol. 15, no. 1, 2010.
[33] M. Williams, J. M. Ortega, I. Sánchez, M. Cabeza, and M. Á. Climent, “Non-destructive study of the microstructural effects of sodium and magnesium sulphate attack on mortars containing silica fume using impedance spectroscopy,” Applied Science, vol. 7, no. 7, p. 648, 2017. https://doi.org/10.3390/app7070648
[34] H. W. Song, S. W. Pack, S. H. Nam, J. C. Jang, and V. Saraswathy, “Estimation of the permeability of silica fume cement concrete,” Construction and building Materials, vol. 24, no. 3, pp. 315–321, 2010. https://doi.org/10.1016/j.conbuildmat.2009.08.033
[35] M. R. Akram, and S. Raza, “Effect of micro silica and ggbs on compressive strength and permeability of impervious concrete as a cement replacement,” Eur. Acad. Res., vol. 3, no. 7, pp. 7456–7468, 2015.
[36] S. A. Barbhuiya, P. A. M. Basheer, M. W. Clark, and G. I. B. Rankin, “Effects of seawater-neutralised bauxite refinery residue on properties of concrete,” Cement Concrete Composites, vol. 33, no. 6, pp. 668–679, 2011. https://doi.org/10.1016/j.cemconcomp.2011.03.010
[37] S. Sadati, M. K. Moradllo, and M. Shekarchi, “Long-term durability of onshore coated concrete—chloride ion and carbonation effects,” Frontiers of Structural and Civil Engineering, vol. 10, no. 2, pp. 150–161, 2016. https://doi.org/10.1007/s11709-016-0341-2
[38] H. Li, N. Farzadnia, and C. Shi, “The role of seawater in interaction of slag and silica fume with cement in low water-to-binder ratio pastes at the early age of hydration,” Construction and building Materials, vol. 185, pp. 508-518, 2018. https://doi.org/10.1016/j.conbuildmat.2018.07.091
[39] M. Guo, B. Hu, F. Xing, X. Zhou, M. Sun, L. Sui, and Y. Zhou, “Characterization of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis,” Construction and building Materials, vol. 234, pp. 117339, 2020. https://doi.org/10.1016/j.conbuildmat.2019.117339
[40] M. Jahani, S. Moradi, S. Shahnoori, “4-year monitoring of degradation mechanisms of seawater sea-sand concrete exposed to tidal conditions: development of chemical composition and micro-performance,” Constr. Build. Mater., vol. 409, pp. 133475, 2023. https:// doi.org/10.1016/j.conbuildmat.2023.133475
آمار
تعداد مشاهده مقاله: 1,039
تعداد دریافت فایل اصل مقاله: 400