- Abbas, A., Khan, S., Hussain, N., Hanjra, M.A., & Akbar, S. (2013). Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Physics and Chemistry of the Earth, 55–57, 43–52. https://doi.org/ 10.1016/j.pce.2010.12.004
- Abdel Latef, A.A., Shaddad, M.A.K., Ismail, A.M., & Abu Alhmad, M.F.A. (2009). Benzyladenine can alleviate saline injury of two Roselle (Hibiscus sabdariffa) cultivars via equilibration of cytosolutes including anthocyanins. International Journal of Agriculture and Biology, 11, 151–157
- Abdel Latef, A.A.H., & Chaoxing, H. (2014). Does inoculation with Glomus mosseae improve salt tolerance in pepper plants? Journal of Plant Growth Regulation, 33, 644–653. https://doi.org/10.1007/s00344-014-9414-4
- Ai, Y., & Jane, J.L. (2016). Macronutrients in corn and human nutrition. Comprehensive Reviews in Food Science and Food Safety, 15, 581–598. https://doi.org/10.1111/1541-4337.12192
- Amanifar, S., Khodabandeloo, M., Mohseni Fard, E., Askari, M.S., & Ashrafi, M. (2019). Alleviation of Salt Stress and Changes in Glycyrrhizin Accumulation by Arbuscular Mycorrhiza in Liquorice (Glycyrrhiza glabra) Grown Under Salinity Stress. Environmental and Experimental Botany, 160, 25–34. https://doi.org/10.1016/ j.envexpbot.2019.01.001
- Armada, E., Probanza, A., Roldán, A., &. Azcón, R. (2016). Native Plant Growth Promoting Bacteria Bacillus thuringiensis and Mixed or Individual Mycorrhizal Species Improved Drought Tolerance and Oxidative Metabolism in Lavandula dentata Journal of Plant Physiology,192, 1–12. https://doi.org/10.1016/j.jplph.2015.11.007
- Arnon, A.N. (1967). Method of Extraction of Chlorophyll in the Plants. Agronomy Journal, 23, 112–12.1
- Asad, S.Q., Tesfaye, E., & Melese, M. (2018). Prospects of Alternative Copping Systems for Salt-Affected Soils in Ethiopia. Journal of Soil Science and Environmental Management, 9, 98–107. https://doi.org/10.5897/jssem2018. 0686
- Augé, R.M. (2001). Water Relations, Drought and Vesicular-Arbuscular Mycorrhizal Symbiosis. Mycorrhiza, 11, 3–42. https://doi.org/10.1007/s005720100097
- Barea, J.M., Pozo, M.J., Azcon, R., & Azcon-Aguilar, C. (2005). Microbial Co-Operation in the Rhizosphere. Journal of Experimental Botany, 56, 1761–1778. https://doi.org/10.1093/jxb/eri197
- Barin, M., Ali, A.N., & Samadi, A. (2006). Effects of NaCl-Induced and Salts Mixture Salinity on Leaf Proline and Growth of Tomato in Symbiosis with Arbuscular Mycorrhizal Fungi. ranian Journal of Agriculture Science, 37(1), 139-147. (In Persian).
- Bates, L.S., Waldren, R.P., & Teare, I.D. (1973). Rapid determination of free Proline for Water-Stress Studies. Plant and Soil, 39, 205–207. https://doi.org/10.1007/BF00018060
- Bharti, N., & Barnawal, D. (2019). Amelioration of salinity stress by PGPR. In: PGPR amelioration in sustainable agriculture. Food Security and Environmental Management, 85–106. https://doi.org/10.1016/B978-0-12-815879-1.00005-7
- Bothe, H. (2012). Arbuscular mycorrhiza and salt tolerance of plants. Symbiosis, 58, 7–16. https://doi.org/10.1007/s13199-012-0196-9
- Bourles, A., Guentas, L., Charvis, C., Gensous, S., Majorel, C., Crossay, T., Cavaloc, Y., Burtet-Sarramegna, V., Jourand, P., & Amir, H. (2020). Co-inoculation with a bacterium and arbuscular mycorrhizal fungi improves root colonization, plant mineral nutrition, and plant growth of a Cyperaceae plant in an ultramafic soil. Mycorrhiza, 30, 121–131. https://doi.org/10.1007/s00572-019-00929-8
- Camejo, D., Jiménez, A., Alarcón, J.J., Torres, W., Gómez, J.M., & Sevilla, F. (2006). Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Functional Plant Biology, 33, 177–187. https://doi.org/10.1071/FP05067
- Campos, P.S., Quartin, V., Ramalho, J.C., & Nunes, M.A. (2003). Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea plants. Journal of Plant Physiology, 160, 283–292. https://doi.org/10.1078/ 0176-1617-00833
- Carter, M.R., & Gregorich, E.G. (2007). Soil sampling and methods of analysis. CRC press. https://doi.org/ 10.1201/9781420005271
- Chen, M., Wang, Y., Chen, G., Ji, R., & Shi, W. (2021a). Effects of nitrogen fertilizer levels on nitrogen balance index and yield of hybrid super rice. Soils, 53, 700–706. https://doi.org/10.13758/j.cnki.tr.2021.04.005
- Chen, M., Zhang, S., Liu, L., Wu, L., & Ding, X. (2021b). Combined organic amendments and mineral fertilizer application increase rice yield by improving soil structure, P availability and root growth in saline-alkaline soil. Soil and Tillage Research, 212, 105060. https://doi.org/10.1016/j.still.2021.105060
- Chon, S.U., Boo, HO., Heo, B.G., & Gorinstein, S. (2012). Anthocyanin content and the activities of polyphenol oxidase, peroxidase and phenylalanine ammonia-lyase in lettuce cultivars. International Journal of Food Sciences and Nutrition, 63, 45–48. https://doi.org/10.3109/09637486.2011.595704
- Chu, T.N., Tran, B.T.H., Van Bui, L., & Hoang, M.T.T. (2019). Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana. BMC Research Notes, 12, 1–7. https://doi.org/ 10.1186/s13104-019-4046-1
- Csonka, L.N. (1989). Physiological and genetic responses of bacteria to osmotic stress. Microbiology Reviews, 53, 121–147. https://doi.org/10.1128/mmbr.53.1.121-147.1989
- Cui, Q., Xia, J., Yang, H., Liu, J., & Shao, P. (2021). Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the yellow river Delta, China. Science of the Total Environment, 756, 143801. https://doi.org/10.1016/j.scitotenv.2020.143801
- Daliran, T., Halajnia, A., & Lakzian, A. (2022). Thiobacillus bacteria-enhanced iron biofortification of soybean in a calcareous soil enriched with ferrous sulfate, mill scale, and Pyrite. Journal of Soil Science and Plant Nutrition, 22, 2221–2234. https://doi.org/10.1007/s42729-022-00804-0
- Demidchik, V., Straltsova, D., Medvedev, S.S., Pozhvanov, G.A., Sokolik, A., & Yurin V. (2014). Stress-induced electrolyte leakage: The role of K+-Permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65, 1259–1270. https://doi.org/10.1093/jxb/eru004
- Duc, N.H., Csintalan, Z., & Posta, K. (2018). Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiology and Biochemistry, 132, 297–307. https://doi.org/ 10.1016/j.plaphy.2018.09.011
- Eren, E. (2022). The effect of plant growth promoting rhizobacteria (PGPRs) on yield and some guality parameters during shelf life in white button mushroom (Agaricus bisporus ). Journal of Fungi, 27, 10-16. https://doi.org/10.3390/jof8101016
- Eroğlu, G., Cabral, C., Ravnskov, S., Bak Topbjerg, H., & Wollenweber, B. (2020). Arbuscular mycorrhiza influences carbon-use efficiency and grain yield of wheat grown under pre- and post-anthesis salinity stress. Plant Biology, 22, 863–871. https://doi.org/10.1111/plb.13123
- FAO. (1947). Food and agriculture organization of the United Nations. International Organization, 1, 350–353. https://doi.org/10.1017/S0020818300006160
- Fazal, A., & Bano, A. (2016). Role of plant growth-promoting rhizobacteria (PGPR), biochar, and chemical fertilizer under salinity stress. Communications in Soil Science and Plant Analysis, 47, 1985–1993. https://doi.org/10.1080/00103624.2016.1216562
- Frey-Klett, P., Garbaye, J., & Tarkka, M. (2007). The mycorrhiza helper bacteria revisited. New Phytologist, 176, 22–36. https://doi.org/10.1111/j.1469-8137.2007.02191.x
- Garbaye, J. (1994). Tansley Review No. 76 Helper Bacteria: A new dimension to the mycorrhizal symbiosis. New Phytologist, 128, 197–210. https://doi.org/10.1111/j.1469-8137.1994.tb04003.x
- Garcia Junior, O. (1992). O enxofre e suas transformações microbianas. Microbiol do solo, 319–329
- Geetha, S., Sai Ram, M., Mongia, S.S., Singh, V., Ilavazhagan, G., & Sawhney, R.C. (2003). Evaluation of antioxidant activity of leaf extract of Seabuckthorn (Hippophae rhamnoides ) on chromium (VI) induced oxidative stress in albino rats. Journal of Ethnopharmacology, 87, 247–251. https://doi.org/10.1016/S0378-8741(03)00154-5
- Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x
- Hajiboland, R. (2013). Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad, P., Azooz, M.M., Prasad, M.N.V. (eds) Salt Stress in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6108-1_13
- Hameed, A., Dilfuza, E., Abd-Allah, E.F., Hashem, A., Kumar, A., & Ahmad, P. (2014). Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Miransari, M. (eds) Use of Microbes for the Alleviation of Soil Stresses, Volume 1. Springer, New York, NY. 139–159. https://doi.org/10.1007/978-1-4614-9466-9_7
- Hamidian, M., Movahhedi-Dehnavi, M., Sayyed, R.Z., Almalki, W.H., Gafur, A., & Fazeli-Nasab, B. (2023). Author correction: Co-application of mycorrhiza and methyl jasmonate regulates morpho-physiological and antioxidant responses of Crocus sativus (Saffron) under salinity stress conditions. Scientific Reports, 13, 73-78. https://doi.org/ 10.1038/s41598-023-35118-3
- He, Z.Q,. He, C.X., Zhang, Z.B., Zou, Z.R., & Wang, H.S. (2007). Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surfaces B: Biointerfaces, 59, 128–133. https://doi.org/10.1016/j.colsurfb.2007.04.023
- Heydari, S., & Pirzad, A. (2021a). Improvement of the yield-related response of mycorrhized Lallemantia iberica to salinity through sulfur-oxidizing bacteria. Journal of the Science of Food and Agriculture, 101, 3758–3766. https://doi.org/10.1002/jsfa.11007
- Heydari, S., & Pirzad, A. (2021b). Efficiency of Funneliformis mosseae and Thiobacillus sp. on the secondary metabolites (essential oil, seed oil and mucilage) of Lallemantia iberica under salinity stress. Journal of Horticultural Science and Biotechnology, 96, 249–259. https://doi.org/10.1080/14620316.2020.1833764
- Heydari, S., & Pirzad, A. (2020). Mycorrhizal fungi and Thiobacillus co-inoculation improve the physiological indices of Lallemantia iberica under salinity stress. Current Microbiology, 77, 2523–2534. https://doi.org/10.1007/s00284-020-02034-y
- Jahantigh, O., Najafi, F., Naghdi Badi, H.A., Khavari-Nejad, R.A., & Sanjarian, F. (2016). Changes in antioxidant enzymes activities and proline, total phenol and anthocyanine contents in Hyssopus officinalis plants under salt stress. Biologia Futura, 67, 195–204. https://doi.org/10.1556/018.67.2016.2.7
- Jaleel, C.A., Manivannan, P., Lakshmanan, G.M.A., Sridharan, R., & Panneerselvam, R. (2007). NaCl as a physiological modulator of proline metabolism and antioxidant potential in Phyllanthus amarus. Comptes Rendus Biologies, 330, 806–813. https://doi.org/10.1016/j.crvi.2007.08.009
- Kandpal, G. (2021). Review on impact of chemical fertilizers on environment. International Journal of Modern Agriculture, 10(1), 758–763.
- Karlidag, H., Yildirim, E., Turan, M., Pehluvan, M., & Donmez, F. (2013). Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria ananassa). HortScience, 48, 563–567. https://doi.org/10.21273/hortsci.48.5.563
- Kaur, S., Tiwari, V., Kumari, A., Chaudhary, E,m Sharma, A., Ali, U., & Garg, M. (2023). Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustainable agriculture. Journal of Biotechnology, 361, 12–29. https://doi.org/10.1016/j.jbiotec.2022.11.009
- Koç, A., Balcı, G., Ertürk, Y., Keles, H., Bakoğlu, N., & Ercişli, S. (2016). Influence of arbuscular mycorrhizae and plant growth promoting rhizobacteria on proline content, membrane permeability and growth of strawberry (Fragaria x ananassa Duch.) under salt stress. Journal of Applied Botany and Food Quality, 89, 89-97. https://doi.org/10.5073/JABFQ.2016.089.011
- Krizek, D.T., Britz, S.J., & Mirecki, R.M. (1998). Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of CV. new red fire lettuce. Plant Physiology, 103, 1–7. https://doi.org/10.1034/j.1399-3054.1998.1030101.x
- Kumar, S. (2012). Assay guided comparison for enzymatic and non-enzymatic antioxidant activities with special reference to medicinal plants. Antioxidant Enzyme, 14, 382–400. https://doi.org/10.5772/50782
- Labbé, J.L., Weston, D.J., Dunkirk, N., Pelletier, D.A., & Tuskan, G.A. (2014). Newly identified helper bacteria stimulate ectomycorrhizal formation in populus. Front Plant Science, 5, 579. https://doi.org/10.3389/fpls.2014.00579
- Lei, P., Xu, Z., Liang, J., Luo, X., Zhang, Y., Feng, X., & Xu, H. (2016). Poly (γ-glutamic acid) enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus Plant Growth Regulation, 78, 233–241. https://doi.org/10.1007/s10725-015-0088-0
- Li, P., Qian, H., Howard, K.W.F., & Wu, J. (2015). Building a new and sustainable ‘silk road economic Belt’ Environmental Earth Sciences, 74, 7267–7270. https://doi.org/10.1007/s12665-015-4739-2
- Liu, H., Tang, H., Ni, X., Zhang, Y., & Wang,Y. (2022). Impact of an arbuscular mycorrhizal fungal inoculum and exogenous methyl jasmonate on the performance of tall fescue under saline-alkali condition. Frontiers in Microbiology, 13, 902667. https://doi.org/10.3389/fmicb.2022.902667
- Mamba, S.F., Salam, A., & Peter, G. (2016). Farmers’ perception of climate change a case study in Swaziland. Journal of Food Security, 3, 47–61. https://doi.org/10.12691/jfs-3-2-3
- Mcfarland, J. (1907). The nephelometer: An instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. The Journal of the American Medical Association, XLIX, 1176–1178. https://doi.org/10.1001/jama.1907.25320140022001f
- Mohamed, A.A., Eweda, W.E.E., Heggo, A.M., & Hassan, E.A. (2014). Effect of dual inoculation with arbuscular mycorrhizal fungi and sulphur-oxidising bacteria on onion (Allium cepa ) and maize (Zea mays L.) grown in sandy soil under green house conditions. Annals of Agricultural Sciences, 59, 109–118. https://doi.org/10.1016/ j.aoas.2014.06.015
- Heidari, M. (2011). Effects of salinity stress on growth, chlorophyll content and osmotic components of two Basil (Ocimum basilicum ) genotypes. African Journal of Biotechnology, 11, 379–384. https://doi.org/10.5897/ ajb11.2572
- Mostafavian, S.R., Pirdashti, H., Ramzanpour, M.R., Andarkhor, A.A., & Shahsavari, A. (2008). Effect of mycorrhizae, Thiobacillus and sulfur nutrition on the chemical composition of soybean [Glycine max (L.)] Merr. Seed. Pakistan Journal of Biological Sciences, 11, 826–835. https://doi.org/10.3923/pjbs.2008.826.835
- Oliveira, M de S., da Silva Campos, M.A., de Albuquerque, U.P., & da Silva, F.S.B. (2013). Arbuscular Mycorrhizal Fungi (AMF) Affects Biomolecules Content in Myracrodruon urundeuva Industrial Crops and Products, 50, 244–247. https://doi.org/10.1016/j.indcrop.2013.07.041
- Phillips, J.M., & Hayman, D.S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158-IN18. https://doi.org/10.1016/s0007-1536(70)80110-3
- Pirzad, A., & Mohammadzadeh, S. (2018). Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris). Agricultural Water Management, 204, 1–10. https://doi. org/10.1016/j.agwat.2018.03.020
- Pokorna, D., & Zabranska, J. (2015). Sulfur-oxidizing bacteria in environmental technology. Biotechnology Advances, 33, 1246–1259. https://doi.org/10.1016/j.biotechadv.2015.02.007
- Rahimzadeh, S., Sohrabi, Y., Heidari, G., Pirzad, A., & Ghassemi Golezani, K. (2016). Effect of bio-fertilizers on the essential oil yield and components isolated from Dracocephalum moldavica using nanoscale injection method. Journal of Essential Oil Bearing Plants, 19, 529–541. https://doi.org/10.1080/0972060X.2014.935057
- Ratti, N., Verma, H.N., & Gautam, S.P. (2010). Effect of Glomus species on physiology and biochemistry of Catharanthus roseus. Indian Journal of Microbiology, 50, 355–360. https://doi.org/10.1007/s12088-010-0012-2
- Santander, C., Sanhueza, M., Olave, J., Borie, F., Valentine, A., & Cornejo, P. (2019). Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance. Journal of Soil Science and Plant Nutrition, 19, 321–331. https://doi.org/10.1007/s42729-019-00032-z
- Sarker, U., Islam, M.T., & Oba, S. (2019). Salinity Stress Accelerates Nutrients, Dietary Fiber, Minerals, Phytochemicals and Antioxidant Activity in Amaranthus tricolor PLoS One, 13, e0206388. https://doi.org/ 10.1371/journal.pone.0206388
- Singh, J., & Thakur, J.K. (2018). Photosynthesis and Abiotic Stress in Plants. In: Vats, S. (eds) Biotic and Abiotic Stress Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-9029-5_2
- Wagner, G.J. (1979). Content and Vacuole/Extravacuole Distribution of Neutral Sugars, Free Amino Acids, and Anthocyanin in Protoplasts. Plant Physiology, 64, 88–93. https://doi.org/10.1104/pp.64.1.88
- Wang, Y.F., Wang, S.P., Cui, X.Y., Chen, Z.Z., Schnug, E., & Haneklau, S. (2003). Effects of sulphur supply on the morphology of shoots and roots of alfalfa (Medicago sativa L.). Grass and Forage Science, 58, 160–167. https:// doi.org/10.1046/j.1365-2494.2003.00366.x
- Zhang, T., Hu, Y., Zhang, K., Tian, C., & Guo, J. (2018) Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Industrial Crops and Products, 117, 13–19. https://doi.org/10.1016/j.indcrop.2018.02.087
|