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Abstract

The conjugate gradient method is one of the most important ideas in sci-
entific computing. It is applied to solving linear systems of equations and
nonlinear optimization problems. In this paper, based on a variant of the
Hestenes–Stiefel (HS) method and Polak–Ribière–Polyak (PRP) method,
two modified conjugate gradient methods (named MHS∗ and MPRP∗) are
presented and analyzed. The search direction of the presented methods
fulfills the sufficient descent condition at each iteration. We establish the
global convergence of the proposed algorithms under normal assumptions
and strong Wolfe line search. Preliminary elementary numerical experi-
ment results are presented, demonstrating the promise and the effective-
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ness of the proposed methods. Finally, the proposed methods are further
extended to solve the problem of conditional model regression function.
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1 Introduction

Optimization methods are widely used to obtain the numerical solution of the
optimal control problems arising in scientific and engineering computation,
especially for solving large-scale problems. The nonlinear conjugate gradient
(CG) method is welcomed for its simple iteration and little storage. In this
work, we consider the unconstrained optimization problem

min {f(x) : x ∈ Rn} , (1)

where f is a continuously differentiable function. The nonlinear CG method is
one of the convincing methods for solving problem (1). Its iterative procedure
is expressed as follows:

xk+1 = xk + αkdk, (2)

where xk is the current iteration point, the stepsize αk is a positive scalar
determined by some line search, and dk is the search direction defined by the
following formula:

dk+1 = −gk+1 + βkdk; d0 = −g0, (3)

where gk = ∇f(xk) is the gradient of f at xk and βk is known as the CG
coefficient. There are some established formulas for βk, which are provided
as follows:

βDY
k =

∥gk+1∥2

yTk dk
[6], βFR

k =
∥gk+1∥2

∥gk∥2
[11], βCD

k =
∥gk+1∥2

−gTk dk
[10],
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3 Global convergence of modified conjugate gradient methods ...

βHS
k =

gTk+1yk

yTk dk
[13], βPRP

k =
gTk+1yk

∥gk∥2
[19]− [20], βLS

k =
gTk+1yk

−gTk dk
[16],

where yk is defined as the difference between gk+1 and gk, and ∥·∥ represents
the Euclidean norm. The step length αk is very important for the global
convergence of CG methods. One often requires the line search to satisfy the
Wolfe line search (WLS) conditions:

f(xk + αkdk)− f(xk) ≤ δαkg
T
k dk, (4)

and
gTk+1dk ≥ σgTk dk. (5)

Also, the strong Wolfe line search (SWLS) conditions consist of (4) and∣∣gTk+1dk
∣∣ ≤ −σgTk dk, (6)

where 0 < δ < σ < 1. From a practical computations point of view, if the
FR method produces a bad direction and a little step from xk to xk+1, the
next direction and the next step are also probable to be poor unless a reboot
along the negative gradient direction is executed [21]. Although there is such
a drawback, it has been shown that the FR method has strong convergent
properties [7]. The numerical performances of the CD and DY methods are
very similar to the FR method since the scalar βk in these three methods has
the same numerator.

In the past few years, the Polak–Ribière–Polyak (PRP) method has gen-
erally been regarded to be one of the most efficient CG methods in practical
computation. A wonderful property of the PRP method is that it auto-
matically performs a restart if a bad direction occurs [12]. The numerical
performances of the Hestenes–Stiefel (HS) and LS methods are very similar
to the PRP method since the coefficient βk in these methods has the same
numerator. However, the convergence properties of the PRP, HS, and LS
methods are not so good [22]. In recent years, based on the above six formu-
las and their hybridization, many works putting effort into seeking new CG
methods with only good convergence properties and also excellent numerical
effects were published.
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In (2006) ,Wei, Yao, and Liu [24] gave a variant of the PRP method
called the WY L method, where the parameter βk is yielded by

βWYL
k =

∥gk+1∥2 − ∥gk+1∥
∥gk∥ gTk+1gk

∥gk∥2
.

The WYL method inherits the properties of PRP. Under the SWLS with
σ < 1

4 , Huang, Wei, and Yao [15] demonstrated that the WYL method
adheres to the sufficient descent condition and achieves global convergence.

Yao, Wei, and Huang [25] expanded upon this concept to the HS method.
This modification is referred to as the MHS approach, and the parameter βk

within this method is defined as follows:

βMHS
k =

∥gk+1∥2 − ∥gk+1∥
∥gk∥ gTk+1gk

dTk (gk+1 − gk)
.

The authors analyzed the sufficient descent property and global convergence
when SWLS is employed [25]. In 2009, Zhang [26] gave two modified CG
methods, proposing the following formula:

βNPRP
k =

∥gk+1∥2 − ∥gk+1∥
∥gk∥

∣∣gTk+1gk
∣∣

∥gk∥2
and βNHS

k =
∥gk+1∥2 − ∥gk+1∥

∥gk∥
∣∣gTk+1gk

∣∣
dTk (gk+1 − gk)

.

The NPRP and NHS methods have sufficient descent conditions and are
globally convergent if the SWLS is utilized with the parameter σ < 1

2 [26].
Soon afterward, based on the CG method DY , Huang [14] proposed a new
CG formula, where βk is written as

βMDY
k =

∥gk+1∥2 −
(gT

k+1dk)
2

∥dk∥2

dTk (gk+1 − gk)
.

Huang [14] proved that the MDY method satisfies the sufficient descent con-
dition and converges globally under the SWLS. Moreover, Du, Zhang, and Ma
[9] proposed two modified CG methods, denoted by NVHS ∗ and NVPRP∗.
The parameter βk in the NVHS∗ and NVPRP* methods are given by

βNVHS∗

k =
∥gk+1∥2 −

|gT
k+1gk|
∥gk∥2 gTk+1gk

dTk (gk+1 − gk)
and βNVPRP∗

k =
∥gk+1∥2 −

|gT
k+1gk|
∥gk∥2 gTk+1gk

∥gk∥2
.
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5 Global convergence of modified conjugate gradient methods ...

The convergence of the two methods with the SWLS is established, and
numerical results show that these computational schemes are efficient [9].

Continuing previous results, we propose two efficient CG methods for solv-
ing unconstrained optimization problems. Under the SWLS, we establish the
convergence properties of the MHS∗ and MPRP∗ CG methods. Numerical
results show that the two modifications are efficient, robust and each of these
modifications outperforms the four CG methods famous. Finally, an appli-
cation of our methods in nonparametric mode conditional estimator is also
considered.

The rest of the paper is organized as follows. In section 2, we introduce
the two modified methods and algorithms. In section 3 presents the suffi-
cient descent condition and the global convergence proof of the two proposed
methods. The numerical results and discussions are contained in section 4. In
section 5, we focus on applying the new methods in nonparametric statistics.
Conclusions and discussions are made in the last section.

2 Modified formulas and algorithms

In this section, we propose modified CG methods to solve unconstrained
optimization problems (1) The sufficient descent condition of our methods is
analyzed and established.

2.1 Main contributions

The two methods presented are the result of monitoring the construction
of CG parameters in the NHS and NPRP methods. Clearly, βNHS

k and
βNPRP
k have the same mathematical expression for the numerator, that is,

∥gk+1∥2 − ∥gk+1∥
∥gk∥

∣∣gTk+1gk
∣∣.

By considering the numerators of the previous two methods, we see that
the parameter βk can also be chosen as

βMHS∗

k =
∥gk+1∥2 − η1

|gT
k+1dk||gT

k+1gk|
∥dk∥∥gk∥

dTk (gk+1 − gk) + ξ1 ∥dk∥ ∥gk+1∥
, η1 ∈ [0, 1] and ξ1 > 1. (7)
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That is, we replace the term ∥gk+1∥
∥gk∥

∣∣gTk+1gk
∣∣ in βNHS

k by η1
|gT

k+1dk||gT
k+1gk|

∥dk∥∥gk∥ in
βMHS∗

k . Also, add ξ1 ∥gk+1∥ ∥dk∥ to the denominator.

Second, we define the parameters βMPRP∗

k of the MPRP∗ method as
follows:

βMPRP∗

k =
∥gk+1∥2 − η2

|gT
k+1dk||gT

k+1gk|
∥dk∥∥gk∥

∥gk∥2 + ξ2 ∥dk∥ ∥gk+1∥
, η2 ∈ [0, 1] and ξ2 > 0. (8)

The primary attributes of these methods are as follows:

• A modified CG methods are introduced for solving nonparametric es-
timators of the conditional mode function.

• All search directions satisfy the sufficient descent condition.

• The proposed methods provide global convergence.

• Evaluation of performance based on the tool of Dolan and Mor [8]
showed that the proposed methods are more efficient and effective than
conventional methods.

2.2 Algorithms

In this subsection, we present the MHS∗ and MPRP∗ algorithms with the
SWLS.

2.2.1 MHS∗ algorithm

2.2.2 MPRP∗ algorithm

The MPRP∗ algorithm shares similarities with the MHS∗ algorithm, with
the key difference being that in Step 4, we substitute (7) with (8).
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7 Global convergence of modified conjugate gradient methods ...

Algorithm 1:
Step 1: Initialization.
Select x0 ∈ Rn, and choose parameters δ and σ such that
0 < δ < σ < 1. Calculate f(x0) and g0. Let d0 = −g0.

Step 2: Test for a continuation of iterations.
If the value of ∥gk∥∞ is less than or equal to 10−6, then terminate
the procedure. Otherwise, continue to the next step.

Step 3: Line search.
Determine the value of αk that satisfies (4) and (6), and update the
variables with the following equation xk+1 = xk + αkdk.

Step 4: Calculate βk using (7).
Step 5: Use (3) to determine the search direction.
Step 6: Go to Step 2 after setting k = k + 1.

2.3 The sufficient descent direction

If gTk dk ≤ −c ∥gk∥2 with c ≥ 0, this indicates that the search direction dk

possesses the sufficient descent conditions, which is an important property
for the global convergence.

The following Theorem shows that the MHS∗ method generates satisfies
sufficient descent conditions directions with the strong WLS.

Theorem 1. Let the sequences {gk}k≥0 and {dk}k≥0 be generated by MHS∗

algorithm, then for positive constant c,

gTk dk ≤ −c ∥gk∥2 , for allk ⩾ 0. (9)

Proof. The following proof is by induction. For k = 0, gT0 d0 = −∥g0∥2,
we conclude that the sufficient descent condition holds for k = 0. Now, we
assume that (9) holds for k and prove that for k + 1.

From (6) and (9), we obtain

dTk (gk+1 − gk) ≥ (1− σ)
(
−dTk gk

)
≥ 0. (10)

It follows from (10) and Cauchy–Schwarz inequality, that
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βMHS∗

k ≥
∥gk+1∥2 − η1

∥gk+1∥∥dk∥∥gk+1∥∥gk∥
∥dk∥∥gk∥

dTk (gk+1 − gk) + ξ1 ∥gk+1∥ ∥dk∥

=
∥gk+1∥2 (1− η1)

dTk (gk+1 − gk) + ξ1 ∥gk+1∥ ∥dk∥
≥ 0. (11)

Using the definition of βMHS∗

k and (10), we have

βMHS∗

k =
∥gk+1∥2 −

η1|gT
k+1dk||gT

k+1gk|
∥dk∥∥gk∥

dTk (gk+1 − gk) + ξ1 ∥gk+1∥ ∥dk∥
≤ ∥gk+1∥2

ξ1 ∥gk+1∥ ∥dk∥
. (12)

From (3), (11), (12) and the Cauchy–Schwarz inequality, it is clear that

gTk+1dk+1 ≤ −∥gk+1∥2 +
∥gk+1∥2

ξ1 ∥gk+1∥ ∥dk∥
∥gk+1∥ ∥dk∥ = −c ∥gk+1∥2 ,

where c = 1− 1
ξ1
, so there is a constant c > 0 with ξ1 > 1.

We give a theorem, which shows that the MPRP∗ method possesses the
sufficient descent property if the step size αk is determined by the SWLS
with 0 < σ < 1

2 .

Theorem 2. Let the direction dk be yielded by the MPRP∗ method. If
σ < 1

2 , then the relations

− 1

1− σ
≤ gTk dk

∥gk∥2
≤ −1− 2σ

1− σ
, (13)

hold. So, the search direction dk generated by the MPRP∗ method is suffi-
cient descent.

Proof. The proof is by induction. The result clearly holds for k = 0, since
the middle term equals −1 and 0 ≤ σ < 1. Assume that (13) holds for some
k ≥ 0. This implies that gTk dk < 0, since

−1− 2σ

1− σ
< 0.

From the Cauchy–Schwarz inequality, η2 ∈ [0, 1], and ξ2 > 0, we have

βMPRP∗

k ≥
∥gk+1∥2 − η2

∥gk+1∥∥dk∥∥gk+1∥∥gk∥
∥dk∥∥gk∥

∥gk∥2 + ξ2 ∥gk+1∥ ∥dk∥
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9 Global convergence of modified conjugate gradient methods ...

=
∥gk+1∥2 (1− η2)

∥gk∥2 + ξ2 ∥gk+1∥ ∥dk∥
≥ 0.

On the other hand,

βMPRP∗

k =
∥gk+1∥2 −

η2|gT
k+1dk||gT

k+1gk|
∥dk∥∥gk∥

∥gk∥2 + ξ2 ∥gk+1∥ ∥dk∥
≤ ∥gk+1∥2

∥gk∥2
= βFR

k .

We concluded
0 ≤ βMPRP∗

k ≤ βFR
k . (14)

From (3), we have

gTk+1dk+1

∥gk+1∥2
= −1 + βMPRP∗

k

gTk+1dk

∥gk+1∥2
= −1 +

βMPRP∗

k

βFR
k

gTk+1dk

∥gk∥2
. (15)

Using (6) and (14), we have

βMPRP∗

k

∣∣gTk+1dk
∣∣ ≤ −σβMPRP∗

k gTk dk,

which, together with (15), gives

−1 + σ
βMPRP∗

k

βFR
k

gTk dk

∥gk∥2
≤

gTk+1dk+1

∥gk+1∥2
≤ −1− σ

βMPRP∗

k

βFR
k

gTk dk

∥gk∥2
.

From the left-hand side of the induction hypothesis (13), we obtain

−1− σ

1− σ

βMPRP∗

k

βFR
k

≤
gTk+1dk+1

∥gk+1∥2
≤ −1 +

σ

1− σ

βMPRP∗

k

βFR
k

.

Using the bound (14), we conclude that (13) holds for k + 1.

3 Convergence analysis

To establish the global convergence of the proposed methods, we need the
following basic assumptions on the objective function.

Assumption 1. Given an initial point x0, the level set S = {x ∈ Rn : f(x) ≤
f(x0)}, is bounded.

Assumption 2. In a neighborhood N of S, the objective function f is
continuously differentiable and its gradient is Lipschitz continuous, namely,
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there exists a constant L > 0 such that

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ , for all x, y ∈ N . (16)

Assumption 2 implies that there exists a positive constant Γ ≥ 0, such
that

∥ ▽f(x) ∥≤ Γ, for all x ∈ N . (17)

Under Assumptions 1–2, the following theorem, due to Zoutendijk [27], is
essential in proving the global convergence results of the unconstrained op-
timization algorithms.

Theorem 3. We assume that Assumptions 1 and 2 hold. Let the sequence
{xk}k≥0 be generated by (2), if the direction satisfies (9), and αk satisfies the
SWLS. Then the Zoutendijk condition

∞∑
k=0

(gTk dk)
2

∥dk∥2
< ∞, (18)

holds, by using (13), we conclude that the condition (18) can also be expressed
as

∞∑
k=0

∥gk∥4

∥dk∥2
< ∞. (19)

Proof. From (5) it follows that

(gk+1 − gk)
T
dk ≥ (σ − 1) gTk dk.

On the other hand, the Lipschitz continuity (16) results in

(gk+1 − gk)
T
dk ≤ Lαk ∥dk∥2 .

Therefore, the combination of these two relations gives

αk ≥ σ − 1

L

gTk dk

∥dk∥2
. (20)

Now, using (4), (13), and (20), it results that

f(xk+1) ≤ f(xk) + δ
(σ − 1)

L

(
gTk dk

)2
∥dk∥2

. (21)

Summing (21) for k ≥ 0, we have
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11 Global convergence of modified conjugate gradient methods ...

δ
(σ − 1)

L

∞∑
k=0

(gTk dk)
2

∥dk∥2
≤ (f(x0)− f(x1)) + (f(x1)− f(x2)) + . . . ≤ f(x0).

Having in view that f is bounded below, (18) is obtained.
Now, inequality (13) implies that

(gTk dk)
2 ≥ c21 ∥gk∥

4
, (22)

where c1 = 1−2σ
1−σ .

Dividing by ∥dk∥2 of (22), yields
∞∑
k=0

∥gk∥4

∥dk∥2
≤

∞∑
k=0

(gTk dk)
2

∥dk∥2
< ∞.

The theorem below demonstrates the global convergence of the MHS∗ method
if the SWLS is used.

Theorem 4. Assume that assumptions 1 and 2 hold. Let the iterative
sequence {dk}k≥0 and {gk}k≥0 be generated by the MHS∗ method. Then

lim
k→∞

inf ∥gk∥ = 0. (23)

Proof. If condition (23) is not satisfied, then there is a positive constant
γ1 > 0, such that

∥gk∥ ≥ γ1, for all k ≥ 0. (24)

From (10), it is clear that

βMHS∗

k ≤ ∥gk+1∥2

dTk (gk+1 − gk)
= βDY

k .

In addition, we have

gTk+1dk+1 = −∥gk+1∥2 + βDY
k gTk+1dk =

∥gk+1∥2

dTk (gk+1 − gk)
gTk dk

= βDY
k gTk dk,

which implies that

βDY
k =

∥gk+1∥2

dTk (gk+1 − gk)
=

gTk+1dk+1

gTk dk
. (25)
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By used (25), we have

βMHS∗

k ≤
gTk+1dk+1

gTk dk
. (26)

Hence, by using (3)�
dk+1 + gk+1 = βMHS∗

k dk.

So,
∥dk+1∥2 =

(
βMHS∗

k

)2
∥dk∥2 − ∥gk+1∥2 − 2gTk+1dk+1. (27)

Substituting (26) into (27), we obtain

∥dk+1∥2 ≤

(
gTk+1dk+1

gTk dk

)2

∥dk∥2 − ∥gk+1∥2 − 2gTk+1dk+1. (28)

Divided the both sides of (28) by
(
gTk+1dk+1

)2, we obtain

∥dk+1∥2(
gTk+1dk+1

)2 ≤ ∥dk∥2(
gTk dk

)2 − ∥gk+1∥2(
gTk+1dk+1

)2 − 2

gTk+1dk+1

=
∥dk∥2(
gTk dk

)2 −

(
1

∥gk+1∥
+

∥gk+1∥
gTk+1dk+1

)2

+
1

∥gk+1∥2
. (29)

Combining with ∥d0∥2

(gT
0 d0)

2 = 1
∥g0∥2 , by using (21) and a recurrence of relation

(29), we have

∥dk+1∥2(
gTk+1dk+1

)2 ≤ ∥dk∥2(
gTk dk

)2 +
1

∥gk+1∥2
≤

k+1∑
i=0

1

∥gi∥2
≤ k + 2

γ2
1

.

Then, ∑
k≥0

(
gTk dk

)2
∥dk∥2

≥ γ2
1

∑
k≥0

1

k + 1
= ∞.

This contradicts the Zoutendjik condition (18), concluding the proof.

Now, we can give the global convergence result of the MPRP∗ method.

Theorem 5. Consider that assumptions 1 and 2 hold. Let the sequences
{gk}k≥0 and {dk}k≥0 be generated by the MPRP∗ algorithm. Then

lim
k→∞

inf ∥gk∥ = 0. (30)
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13 Global convergence of modified conjugate gradient methods ...

Proof. Suppose that (30) does not hold. Then there exists a constant γ2 > 0,
such that

∥gk∥ ≥ γ2, for all k ⩾ 0. (31)

Using the definition of dk (k ≥ 1),

dk+1 = −gk+1 + βMPRP∗

k dk.

Then,

∥dk+1∥2 =
(
βMPRP∗

k

)2
∥dk∥2 − 2βMPRP∗

k gTk+1dk + ∥gk+1∥2 . (32)

Also, by (6), (13) and (14),

−2βMPRP∗

k gTk+1dk ≤ 2βMPRP∗

k

∣∣gTk+1dk
∣∣ ≤ −2 ∥gk+1∥2 σgTk dk

∥gk∥2
≤ 2σ ∥gk+1∥2

1− σ
.

(33)
Substituting (14) and (33) into (32), we obtain

∥dk+1∥2 ≤ ∥gk+1∥4

∥gk∥4
∥dk∥2 +

(
σ + 1

1− σ

)
∥gk+1∥2 . (34)

Divided (34) by ∥gk+1∥4, we obtain

∥dk+1∥2

∥gk+1∥4
≤ ∥dk∥2

∥gk∥4
+

(
σ + 1

1− σ

)
1

∥gk+1∥2
. (35)

Noting that ∥d0∥2

(gT
0 d0)

2 = 1
∥g0∥2 and using (35) recursively yields

∥dk+1∥2

∥gk+1∥4
≤
(
σ + 1

1− σ

) k+1∑
i=0

1

∥gi∥2
≤
(
σ + 1

1− σ

)
k + 2

γ2
2

.

This implies that

∑
k≥0

∥gk∥4

∥dk∥2
≥ γ2

2

(
1− σ

1 + σ

)∑
k≥0

1

k + 1
= ∞.

This contradicts the Zoutendjik condition (19), concluding the proof.
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4 Numerical experiments

To demonstrate more clearly the efficiency of the MHS∗ and MPRP∗ algo-
rithms to some other CG algorithms famous, we have run two groups of
preliminary numerical experiments for the MHS∗ and MPRP∗ CG methods,
respectively.

• In Group A, we compare the MHS∗ with the NHS [26], NVHS∗ [9],
MHS [25], and MDY [14] CG methods.

• In Group B, the MPRP∗ is compared with the NPRP [26], NVPRP*
[9], PRP [19, 20], and WYL [24] CG methods.

To evaluate the CG algorithm’s performance, we utilized a collection of well-
established benchmark functions commonly used to test optimization algo-
rithms, which have been taken from the CUTE library [1, 4] collections. All
the algorithms have been coded in MATLAB 2013 and compiler settings on
the PC machine (2.5 GHz, 3.8 GB RAM) with Windows XP operating sys-
tem. In this numerical results, all algorithms implement the strong WLS
condition with δ = 10−3, σ = 10−1. A different parameters are mentioned in
this work by η1 = 0.8, η2 = 0.7, ξ1 = 1.5, and ξ2 = 1.3.

The iteration is terminated if one of the following conditions is satisfied

(i) ∥gk∥∞ < 10−6,

(ii) reaching a maximum of 2000 iterations,

(iii) the computing time is more than 500 s. We also employ a performance
profiling tool suggested by Dolan and Morè [8]. To test effectiveness, we
measure the number of iterations and CPU time, applying the following
criteria. Let S represent the set of methods and let P represent the set
of test problems. Referring to np and ns, these represent the number
of test problems and methods, respectively. For every problem p in
the set P and every solver s in the set S, let τp,s represent the count
of iterations or the CPU time needed to solve problems p by solver s.
The assessment of various solvers in terms of performance ratio can be
expressed as follows:
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rp,s =
τp,s

min {τp,i, 1 ≤ i ≤ ns}
.

Assume a parameter rM such that rM ≥ rp,s for all selected problems
and solvers and rp,s = rM if and only if s is unable to solve p. The
comprehensive assessment of solver performance is determined by the
performance profile function as provided by

Fs (t) =
size {p : 1 ≤ p ≤ np, rp,s ≤ t}

np
,

where t ≥ 1 and size {p : 1 ≤ p ≤ np, rp,s ≤ t} is the number of ele-
ments in the set {p : 1 ≤ p ≤ np, rp,s ≤ t}. This function Fs : [1,∞[ →
[0, 1] is the distribution function for the performance ratio. The value of
Fs (1) is the probability that the solver will win the rest of the solvers.

Figure 1 displays the performance profile in relation to CPU time. In terms
of this metric, MHS∗ demonstrates the highest performance, followed by the
NHS method, the MDY method, the MHS method, and the NVHS∗ method
sequentially.

As observed in Figure 2, the MHS∗ curve consistently positions itself
above the NHS, NVHS∗, MHS, and MDY CG curves. This suggests that the
MHS∗ algorithm surpasses the NHS, NVHS∗, MHS, and MDY methods in
terms of the number of iterations.

From previous numerical experiments, the MHS∗ algorithm can success-
fully solve 95.03% of the test problems 85.32%, 85.18%, 83.19%, and 83.09%
of the tested problems successfully solved by MHS, NHS, NVHS ∗, and MDY
algorithms, respectively. So, the MHS∗ algorithm proposed in this paper can
solve more tested problems than other algorithms.

From Table 1, we can see that the average performance of the MHS∗, NHS,
NVHS∗, MHS, and MDY methods are very similar to the results obtained
from Figures 1 and 2.

In Figure 3, a performance evaluation of the MPRP∗ method is presented
in comparison to NPRP, NVPRP∗, PRP, and WYL methods. The results
demonstrate the superiority of the new algorithm over all other methods in
terms of CPU time, underscoring the effectiveness of the MPRP∗ method.
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Notably, the NPRP method exhibits a behavior closely resembling that of
the PRP method.

On the flip side, Figure 4 illustrates the performance profile of all meth-
ods. The conclusion drawn from this Figure is that the MPRP∗ method
outperforms the NPRP, NVPRP∗, PRP, and WYL methods in terms of the
number of iterations.

From previous numerical experiments, the MPRP∗ algorithm can success-
fully solve 95.28% of the test problems 92.43%, 92.27%, 81.36%, and 78.84%
of the tested problems successfully solved by PRP, NVPRP∗, NPRP, and
WYL algorithms, respectively. Therefore, the MPRP∗ algorithm is more
effective in solving the tested problems than other algorithms.

From Table 2, we can see that the average performance of the MPRP∗,
NPRP, NVPRP∗, PRP, and WYL methods are very similar to the results
obtained from Figures 3 and 4.

The final conclusion is that the proposed methods are more efficient than
some existing methods.

Figure 1: Performance profile on the CPU time.

Figure 2: Performance profile on the number of iterations.
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Figure 3: Performance profile the CPU time.

Figure 4: Performance profile on the number of iterations.

5 Application in conditional mode regression

The CG method has played an important role in solving large scale uncon-
strained optimization problems that may arise in statistics nonparametric
[18], portfolio selection [2], and image restoration problems [17].

The regression function estimation is the most important tool for ad-
dressing nonparametric prediction problems. The study of the relationship
between a variable of interest Y and a covariate X is one of the most impor-
tant problems in statistics. Recent years have witnessed a renewal of interest
in regression modal estimation, we refer the reader to Boente and Fraiman
[3]. For any x denote by f (·|x) = f(x,·)

l(x) the conditional probability density
function (p.d.f) of Y given X = x, where f (·, ·) is the joint p.d.f. of (X,Y )

and l (·) is the marginal density of X. Assuming that f (·|x) has a unique
mode θ (x), the latter is given by

f (θ (x) |x) = max
y∈R

f (y|x) . (36)
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Table 1: The simulation results of MHS∗, NVHS∗, NHS, MHS and MDY methods.

Method MHS∗ NVHS∗ NHS MHS MDY
Function Dim TIME ITR TIME ITR TIME ITR TIME ITR TIME ITR

Schwefel 223
1800 5.8930 154 12.5850 287 6.6420 6.6420 5.9890 155 6.5780 157
1900 6.2970 156 15.8020 351 16.4540 16.4540 7.1470 169 6.3280 156
2700 13.1950 190 29.0620 376 13.5800 13.5800 14.2060 192 13.5800 195

ZAKHAROV
800 0.2030 5 16.0780 554 23.1090 23.1090 8.6250 302 8.8050 304
2000 0.5050 5 169.6590 1887 74.1530 74.1530 46.1030 542 33.1080 484
3000 0.8520 5 266.6500 1634 146.812 146.812 294.4740 1658 87.2810 613

Extended
Rosenbrock

200 0.0620 10 0.0780 14 0.1870 0.1870 0.1100 15 0.1090 16
800 0.3750 20 0.5620 26 0.6090 0.6090 0.8600 36 1.9220 84
2600 0.6090 18 0.7660 20 2.4690 2.4690 3.2660 65 1.6250 36

Quartic
1000 0.0780 4 0.1400 5 0.1400 0.1400 0.1250 5 0.1250 5
3000 0.2010 4 0.3280 5 0.3280 0.3280 0.3280 5 0.3430 5
3500 0.2500 4 0.3910 5 0.3910 0.3910 0.3750 5 0.3750 5

Raydan 2
2800 0.8090 17 0.8280 17 0.8750 0.8750 Inf Inf 1.0620 22
3000 0.9840 17 0.9530 18 1.1250 1.1250 Inf Inf 1.2180 20
4000 1.1090 17 1.2200 18 1.5060 1.5060 Inf Inf 1.3900 20

Raydan 1
80 0.0780 56 0.1350 102 0.0940 0.0940 0.1400 104 0.0780 57
120 0.1410 59 0.1800 80 0.5780 0.5780 0.1720 71 0.1560 60
140 0.2030 81 0.2750 123 Inf Inf Inf Inf Inf Inf

Styblinski
600 0.9690 243 Inf Inf 5.4840 5.4840 Inf Inf Inf Inf
1000 2.5870 338 Inf Inf 5.7970 5.7970 Inf Inf Inf Inf
2000 2.9710 244 Inf Inf 16.0440 16.0440 Inf Inf Inf Inf

Sphere
5000 0.7030 11 0.6250 11 0.4220 0.4220 0.5620 11 0.5620 11
6000 0.5560 10 0.6560 11 0.5630 0.5630 0.7180 11 0.6720 11
12000 1.1870 10 1.2970 11 1.0620 1.0620 1.2970 11 1.3360 11

Rastrigin
200 0.1560 32 0.1880 33 0.2190 0.2190 0.5000 66 0.2350 36
700 0.9690 62 23.1660 738 3.0000 3.0000 23.6610 711 1.2970 69
1600 13.8900 259 Inf Inf 10.7030 10.7030 Inf Inf 28.9070 483

Quadratic
1400 0.5000 8 2.7190 70 2.4380 2.4380 2.3750 66 2.8980 66
1500 0.5320 8 4.2650 103 2.7030 2.7030 3.0630 73 2.9380 72
1700 4.0220 8 3.4380 79 3.4840 3.4840 3.6720 78 3.5000 73

Qing

1000 0.1090 3 0.1250 3 0.1560 0.1560 0.1090 3 0.1250 4
2800 0.2500 3 0.2660 3 0.4220 0.4220 0.2970 3 0.3750 4
6000 0.6130 3 0.7340 3 0.7810 0.7810 0.8060 3 0.7340 4
10000 1.0000 3 1.0310 3 1.4220 1.4220 0.9220 3 1.3910 4

Power

2400 7.1840 99 16.0780 226 1.4370 1.4370 46.0710 548 7.9230 101
2600 0.7650 9 2.6090 33 26.5080 26.5080 19.5310 119 1.6560 30
3000 1.4480 16 8.2970 92 3.3120 3.3120 8.1720 92 21.5130 207
3200 3.5780 35 0.7660 12 10.7340 10.7340 3.2660 38 14.7180 145

Perquadritic
2000 0.3590 8 3.2030 46 3.1560 3.1560 3.1410 46 3.1880 46
3200 0.8280 6 6.3120 45 6.3280 6.3280 6.3440 45 6.2810 45
5000 0.4690 3 4.9850 21 5.0000 5.0000 4.9690 21 4.9690 21

Penalty

2000 0.8280 29 1.7650 61 1.7770 1.7770 1.2340 43 1.3060 45
2400 1.0630 28 1.5620 52 1.9530 1.9530 1.4530 36 1.1010 32
2800 1.5000 29 2.9540 65 2.4690 2.4690 2.4380 37 2.1880 45
4600 2.1410 30 4.5000 65 3.0000 3.0000 2.3900 39 3.4530 48

Extended Himmelblau

1000 0.0470 3 0.0470 3 0.0470 0.0470 0.0470 3 0.0780 4
1600 0.2030 5 0.0620 4 0.0780 0.0780 0.0780 4 0.1090 4
3400 0.02810 3 1.7650 17 0.4620 0.4620 0.4060 5 12.2190 104
5000 0.7820 4 3.3000 20 Int Int 2.0940 421 16.0630 90

Hager

2000 0.6570 15 2.7970 50 6.5940 6.5940 2.7970 50 Inf Inf
2300 0.5790 12 1.9840 34 4.9220 4.9220 5.4060 84 2.7340 43
2500 1.1100 19 16.5290 226 1.4690 1.4690 46.2500 548 7.6400 101
2600 1.0820 15 11.4530 119 7.6210 7.6210 11.6270 119 2.4580 30

Griewank
3000 1.2340 22 1.6090 30 1.3750 1.3750 1.1560 23 1.7500 34
4600 2.6870 34 3.7650 39 2.8280 2.8280 2.8900 38 2.6090 37
5000 2.9530 35 4.1490 45 5.0790 5.0790 4.6880 50 4.7650 53

Dixon
1000 0.8400 18 0.8280 19 0.8590 0.8590 0.8590 19 0.9080 20
1400 1.3910 14 14370 15 1.4060 1.4060 1.4380 15 1.4540 16
5000 8.7980 21 9.6190 21 9.0540 9.0540 8.9110 21 9.3650 21

Ridge

3000 0.1690 4 0.3280 13 0.3190 0.3190 0.2410 12 0.4220 23
1000 0.3040 13 Inf Inf Inf Inf Inf Inf Inf Inf
1100 0.2080 4 Int Int Int Int Int Int Int Int
1200 0.2500 4 Int Int Int Int Int Int Int Int

Sumsquares
1800 4.8280 159 9.5150 287 10.7050 10.7050 18.3190 272 5.6280 166
3000 2.2880 36 3.0370 48 2.5720 2.5720 3.2830 47 2.4060 44
4000 3.3400 39 4.0010 48 3.5660 3.5660 4.2710 48 3.4580 42
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Table 2: The simulation results of MPRP∗, NVPRP∗, WYL, PRP and NPRP methods.

Method MPRP∗ NVPRP∗ WYL PRP NPRP
Function Dim TIME ITR TIME ITR TIME ITR TIME ITR TIME ITR

Schwefel 223
1000 0.0470 4 0.0630 4 0.0470 4 0.0780 4 0.0630 4
3400 7.7040 67 10.9100 90 10.9250 89 7.9820 68 9.2580 78
8000 6.0270 25 Inf Inf 334.1070 965 12.3040 48 45.2360 159

Sumsquares 1000 5.6600 205 8.0410 1073 5.2070 205 5.0290 194 5.5110 211

Extended
Rosenbrock

900 1.6560 106 4.0000 243 1.6590 107 1.6570 107 1.6880 107
2000 0.7190 22 0.8130 24 0.7730 23 0.7500 23 0.7350 23
3900 18.7120 226 38.7920 430 75.8970 711 21.1710 250 19.0480 227
5000 30.4250 260 104.9940 782 Inf Inf 30.4920 282 10.5610 286

Ridge
800 Inf Inf Inf Inf Inf Inf 1.3370 234 Inf Inf
1700 Inf Inf Inf Inf Inf Inf 2.6310 256 Inf Inf
1900 Inf Inf Inf Inf Inf Inf 3.0630 277 Inf Inf

Raydan 2
3000 0.1720 3 0.1720 3 0.2500 5 0.1870 4 0.1880 4
4000 0.2040 3 0.2340 3 0.3440 3 0.3360 4 0.2190 3

Raydan 1
3200 0.3590 4 5.8910 45 6.0190 45 7.8030 45 6.8320 45
3400 0.2190 4 8.0800 64 7.7660 64 9.6520 64 8.6580 64
5000 0.4690 5 4.7100 21 4.6250 21 4.6530 21 5.4530 21

Styblinski
1800 0.3430 7 0.3440 7 0.3440 7 0.3490 7 0.3590 7
7000 1.1250 6 1.4060 7 1.3440 7 1.4220 7 1.3520 7
8000 1.4220 6 1.7810 7 1.7970 7 1.8590 7 1.8590 7

Sphere

2600 22.7710 197 52.1760 466 232.257 1508 Inf Inf 75.5450 610
2700 60.0100 455 249.939 1653 75.8830 603 Inf Inf 178.269 1163
3000 19.6130 168 273.112 1645 263.094 1560 167.216 1026 50.3130 327
4000 85.5000 456 388.803 1758 247.534 1215 374.112 1599 262.803 1256

Rastrigin
750 0.3440 16 0.9190 39 0.9220 39 2.8910 108 3.0390 108
1300 1.1570 31 1.0470 31 10470 31 7.3120 179 12.9600 299
1800 0.2650 9 1.4220 31 0.5470 14 0.6560 15 0.9060 20

Quadratic
800 1.7930 126 2.2940 214 2.3100 216 2.3120 215 2.3610 214
1400 3.9150 151 5.1660 246 5.0470 238 5.1720 246 4.9740 238
1600 3.0780 133 4.4530 222 4.6650 229 4.4960 223 4.5360 225

Qing
1200 0.3430 7 0.5320 11 0.5150 11 0.5150 11 0.3750 8
1600 0.4970 7 0.5150 9 0.5160 9 0.5310 9 0.3880 7
2800 0.5620 6 0.8600 8 0.9060 8 0.8900 8 0.6390 6

Power
1200 0.6870 21 1.4610 38 2.7230 66 1.8960 49 8.3080 189
2000 1.5220 28 2.3210 41 2.0740 38 5.5060 78 7.0570 109
3400 0.7340 7 0.8590 8 5.5470 53 0.7190 7 63.4470 497

Perquadratic
3000 1.9020 34 2.2140 43 2.0650 39 2.3250 38 2.2270 39
4300 2.8610 29 2.0230 28 1.9550 26 1.9740 26 2.8720 33
5000 4.2000 44 4.3980 46 5.6870 52 5.6520 61 4.5270 49

Penalty
900 7.4370 271 20.7990 674 7.8850 274 8.8600 314 7.7280 278
1400 13.9670 337 38.8820 827 15.0460 358 16.6210 394 14.6970 361
1800 21.3640 393 40.7450 705 21.6250 395 25.9340 362 21.8620 400

Extended
Himmelblau

1600 0.4310 15 0.6240 20 0.5790 16 0.6070 20 0.5080 17
2400 0.5270 12 0.7640 19 1.1160 29 0.8540 19 1.3820 33
2600 0.7040 12 1.0480 16 1.0600 21 1.0280 16 1.0000 20

Hager
4000 0.4150 10 0.5640 12 1.0400 12 0.5370 12 0.5530 12
6000 0.6570 11 1.3760 13 0.9450 13 0.9380 13 0.7660 13
20000 2.0940 12 2.2650 13 2.2070 13 2.3130 13 2.3670 13

Griewank

1000 0.0160 4 0.0780 44 0.0780 40 0.0310 5 0.0150 4
1200 0.1570 4 0.0780 38 0.0940 39 0.0160 5 0.0310 5
1500 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
2000 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

Dixon
800 0.7190 17 1.3880 30 1.3440 30 0.9280 18 1.3750 31
1960 1.0150 21 2.7960 56 1.3130 30 1.4200 25 3.3210 66

Quadratic

2000 1.0310 35 1.8130 69 1.7650 61 1.1720 43 1.3440 45
2200 1.0780 32 2.6100 76 2.6250 68 2.0160 57 1.5940 49
2700 1.9840 39 3.0000 61 3.3910 69 1.5940 32 2.1410 43
3500 2.3910 38 3.3280 60 3.5940 52 3.0620 45 2.8120 42

ZAKHAROV
600 5.6480 243 14.7470 608 15.0020 619 16.9050 608 5.6750 259
1000 12.1720 335 37.2960 940 25.2410 655 37.7970 940 12.2500 338
2000 38.8590 494 118.938 1395 117.014 1378 118.009 1395 35.1350 498
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The estimation of the conditional mode has a long history and has been
studied by many authors in the statistics literature. The nonparametric
estimator of conditional mode has first been considered in the case of complete
data. For independent and identically distributed (i.i.d) random variables,
see Samanta and Thavaneswaran [23], while Collomb, Hardle, and Hassani
[5] in dependent case.

For the complete data presented, it is well known that the kernel estimator
of the conditional mode θ (x) is defined as the random variable θ̂n (x), which
maximizer the kernel estimator f̂n (y|x) of f (y|x), that is,

f̂n

(
θ̂n (x) |x

)
= max

y∈R
f̂n (y|x) , (37)

where
f̂n (y|x) =

f̂n (x, y)

ln (x)
,

with
f̂n (x, y) =

1

nh2n
n

n∑
i=1

K

(
x−Xi

hn

)
H

(
y − Yi

hn

)
,

and
ln (x) =

1

nhn
n

n∑
i=1

K

(
x−Xi

hn

)
.

Here, the convention 0
0 = 0. The function K and H are a p.d.f. (so-called

kernel) defined on Rn, and (hn) is a sequence of positive real numbers (so-
called bandwidth) which goes to zero as n goes to infinity.

Simulation study

Let (X1, Y1) , . . . , (Xn, Yn) be n independent pairs, identically distributed as
(X,Y ), which is a random pair valued in Rn × Rn.

We first consider the classical linear model with normal errors

Yi = Xi + υϵi.

Second, we consider nonlinear model (parabolic case) such that

Yi = X2
i + υϵi,
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where (Xi)1≤i≤n and (ϵi)1≤i≤n are two i.i.d. sequences distributed asN (0, 1),
and υ is an appropriately chosen constant (here we take υ = 0.2).

In practice, some tuning parameters have to fixed: The kernel K is chosen
by

K (x) =
1

(2π)
n
2
exp

−1

2

n∑
j=1

x2
j

 ,

and the kernel H is defined by

H (y) =

(
3

4

)n n∏
j=1

(
1− y2j

)
.

The selection of the bandwidth h is an important and basic problem in kernel
smoothing techniques. In this simulation, we choose the optimal bandwidth
by the cross-validation method.

In this numerical study, “Dim” denotes the dimension of the problem,
“ITR” denotes the number of iterations, “TIME” denotes the “CPU” time,
and “Inf” denotes the algorithm failed to yield a solution for the problem.

In this context, we employ the MHS∗ and MPRP∗ algorithms to solve the
problem (37) under the SWLS technique. According to Tables 3–4, it is clear
that the MHS∗ and MPRP∗ are efficient for solving the problem (37) based
on the number of iterations and CPU time.

6 Conclusion

This paper presented two modified CG methods for unconstrained optimiza-
tion models, that is, MHS∗ and MPRP∗ methods. Under basic assumptions,
we proved that the two improved CG methods satisfy the descent condition
with the SWLS and produce good convergence properties for unconstrained
optimization problems.

Preliminary numerical results show that these improved methods are very
robust and effective for given test problems. The practical applicability of our
methods are also explored in the nonparametric estimation of the conditional
mode function.
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Table 3: The simulation result of MHS∗, MDY, and NHS methods for solving problem
(37).

Model
Initial
Points

Dim
MHS∗ MDY NHS

ITR TIME ITR ITR TIME ITR

Linear

(0.2, . . . , 0.2)

8 10 0.0620 85 10 0.0620 85
10 12 0.1830 62 12 0.1830 62
12 19 0.0930 41 19 0.0930 41
14 7 0.0630 22 7 0.0630 22
16 20 0.2820 8 20 0.2820 8
18 9 0.1560 8 9 0.1560 8
80 4 1.1410 5 4 1.1410 5
100 3 4.3600 3 3 4.3600 3

(−0.5, . . . ,−0.5)

50 74 12.6221 462 74 12.6221 462
54 41 8.8380 380 41 8.8380 380
56 64 19.485 290 64 19.485 290
62 82 31.320 50 82 31.320 50
66 120 51.312 468 120 51.312 468
68 10 4.9220 27 10 4.9220 27
70 42 20.089 170 42 20.089 170
76 11 5.4790 11 11 5.4790 11

Nonlinear (1, . . . , 1)

20 189 7.5940 315 189 7.5940 315
52 25 6.8020 44 25 6.8020 44
56 67 20.3370 175 67 20.3370 175
58 195 64.7330 28 195 64.7330 28
68 77 27.4450 158 77 27.4450 158
68 13 5.6560 28 13 5.6560 28
70 12 5.0780 30 12 5.0780 30
72 6 3.0190 33 6 3.0190 33
80 10 5.2500 81 10 5.2500 81
110 15 15.8280 Inf 15 15.8280 Inf
120 5 4.6410 71 5 4.6410 71
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Table 4: The simulation result of MPRP∗, NVPRP∗, and PRP methods for solving
problem (37).

Model
Initial
Points

Dim
MPRP∗ NVPRP∗ PRP

ITR TIME ITR ITR TIME ITR

Linear (0.2, . . . , 0.2)

8 18 0.1100 130 18 0.1100 130
10 84 0.4690 105 84 0.4690 105
12 7 0.0500 9 7 0.0500 9
14 33 0.8310 20 33 0.8310 20
16 8 0.1800 14 8 0.1800 14
18 9 0.1560 8 9 0.1560 8
80 3 2.7360 3 3 2.7360 3
100 3 5.6220 3 3 5.6220 3

Nonlinear

(−0.5, . . . ,−0.5)

50 790 75.0800 Inf 790 75.0800 Inf
54 268 34.2490 598 268 34.2490 598
56 340 47.7880 Inf 340 47.7880 Inf
62 291 59.0760 1343 291 59.0760 1343
66 78 27.2570 54 78 27.2570 54
68 67 26.2340 43 67 26.2340 43
70 208 121.769 Inf 208 121.769 Inf
76 172 94.8020 Inf 172 94.8020 Inf
80 394 182.109 520 394 182.109 520
84 41 31.0860 Inf 41 31.0860 Inf
86 89 112.903 Inf 89 112.903 Inf

(1, . . . , 1)

20 48 8.49400 167 48 8.49400 167
52 236 114.427 509 236 114.427 509
56 69 81.4080 58 69 81.4080 58
58 23 18.0570 43 23 18.0570 43
68 45 88.5130 134 45 88.5130 134
68 19 42.2830 148 19 42.2830 148
70 24 55.9300 16 24 55.9300 16
72 79 220.753 inf 79 220.753 Inf
80 31 93.9150 35 31 93.9150 35
110 27 91.1610 9 27 91.1610 9
120 28 60.1150 31 28 60.1150 31
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