بررسی مشخصات مکانیکی و دوام کامپوزیت های سیمانی حاوی فلدسپات، دوده سیلیس و الیاف فلزی کوتاه
مهندسی عمران فردوسی
مقاله 9 ، دوره 37، شماره 2 - شماره پیاپی 46 ، مرداد 1403، صفحه 51-82 اصل مقاله (2.05 M )
نوع مقاله: مقاله پژوهشی
شناسه دیجیتال (DOI): 10.22067/jfcei.2024.80702.1211
نویسندگان
عبدالرضا جهری شیجانی 1 ؛ علی صدر ممتازی 2 ؛ آرین درویشعلی نژاد* 3 ؛ رضا کهنی خشکبیجاری 2
1 گروه مهندسی عمران، دانشکده فنی، دانشگاه گیلان، رشت، ایران.
2 گروه مهندسی عمران، دانشکدۀ فنی، دانشگاه گیلان، رشت، ایران
3 دانشکده فنی، دانشگاه گیلان، رشت، ایران.
چکیده
در این مقاله اثر استفاده از درصدهای مختلف وزنی مواد با خاصیت پوزولانی همچون فلدسپات و میکروسیلیس (به عنوان جایگزین بخشی از سیمان) بر مشخصات مکانیکی و دوامی آزمونه ها بررسی شده است. مطالعۀ اثر کاربرد الیاف فولادی با درصد حجمی 1%، بر خواص مکانیکی کامپوزیت سیمانی از دیگر اهداف این تحقیق است. در پژوهش حاضر 19 طرح اختلاط از کامپوزیت های سیمانی، حاوی میکروسیلیس، فلدسپات و الیاف فولادی ساخته شده اند. فلدسپات و میکروسیلیس با درصدهای وزنی 5%، 10% و 15% به صورت انفرادی و ترکیبی با سیمان جایگزین شدند. خصوصیات مورد بررسی شامل: مقاومت فشاری، خمشی، کششی به روش مستقیم، الکتریکی، جذب آب و بررسی ریزساختار میکروسکوپ الکترونی روبشی بوده است. نتایج نشان داد در نمونه های حاوی الیاف فلزی کوتاه، بهبود مقاومت فشاری مشاهده شد؛ به طوری که همۀ نمونه های الیافی نسبت به نمونۀ شاهد افزایش مقاومت داشتند. در میان نمونه های فاقد الیاف، کمترین میزان افت مقاومت فشاری بر اثر حرارت به نمونه طرح با جایگزینی 15% فلدسپات اختصاص داشت. همۀ نمونه های حاوی 1% الیاف فولادی بدون توجه به درصد جایگزینی فلدسپات و میکروسیلیس، مقاومت خمشی بالاتری را نتیجه دادند. بررسی نتایج حاصل از آزمایش کشش مستقیم، نشان دهندۀ اثر چشمگیر الیاف فولادی بر افزایش مقاومت کششی کامپوزیت های سیمانی حاوی میکروسیلیس و فلدسپات است؛ به گونه ای که استفاده از 1% الیاف فولادی کوتاه موجب شده مقاومت کششی به طور متوسط 39% افزایش یابد.
کلیدواژهها
کامپوزیت سیمانی ؛ فلدسپات ؛ میکرو سیلیس ؛ الیاف فولادی ؛ دوام
مراجع
[1 [A. M. Neville, J. J. Brooks, “Concrete Technology,” England Longman Scientific & Technical , (1987).
[2] C., Shi, & J., Qian, High performance cementing materials from industrial slags—a review. Resources, conservation and recycling , Vol. 29, No. 3, pp. 195-207, (2000). doi.org/10.1016/S0921-3449(99)00060-9.
[3] R. L., Day, & C., Shi, Influence of the fineness of pozzolan on the strength of lime natural-pozzolan cement pastes. Cement and Concrete Research , 24 (8), 1485-1491, (1994). doi.org/10.1016/0008-8846(94)90162-7.
[4] R. Detwiler, P. Mehta, “Chemical and Physical Effects of Silica Fume on the Mechanical Behavior of Concrete,” Materials, vol. 86, no. 6, pp. 609-614, (1989).
[5] G. A. Rao, “Investigations on the Performance of Silica Fume-Incorporated Cement Pastes and Mortars,” Cement and Concrete Research , vol. 33, no. 11, pp. 1765-1770, (2003).
[6] M. Mazloom, A. A. Ramezanianpour, J. J. Brooks, “Effect of Silica Fume on Mechanical Properties of High-Strength Concrete,” Cement and Concrete Composites , vol. 26, no. 4, pp. 347-357, (2004).
[7] C. S. Poon, S. C. Kou, L. Lam, “Compressive Strength, Chloride Diffusivity and Pore Structure of High Performance Metakaolin and Silica Fume Concrete,” Construction and Building Materials , vol. 20, no. 10, pp. 858-865, (2006).
[8] K. Sirijaroonchai, S. El-Tawil, G. Parra-Montesinos, “Behavior of High Performance Fiber Reinforced Cement Composites Under Multi-Axial Compressive Loading,” Cement and Concrete Composites , vol. 32, no. 1, pp. 62-72, (2010).
[9] S. H. Kang, T. H. Ahn, D. J. Kim, “Effect of Grain Size on the Mechanical Properties and Crack Formation of HPFRCC Containing Deformed Steel Fibers,” Cement and Concrete Research , vol. 42, no. 5, pp. 710-720, (2012).
[10] A. Dehghani, F. Nateghi Elahi, “Experimental and Analytical Estimation of Mechanical Properties of Engineered Cementitious Composites (ECC) With Polyvinyl Alcohol Fibers,” Sharif Journal of Civil Engineering , vol. 30-2, no. 1.1, pp. 45-57, (2014).
[11] J. I. Choi, K. I. Song, J. K. Song, B. Y. Lee, “Composite Properties of High-Strength Polyethylene Fiber-Reinforced Cement and Cementless Composites,” Composite Structures , vol. 138, pp. 116-121, (2016).
]12] M. TavakliZadeh, A. Ramezani, E. Zafarkhah, S.D. Ghafarian, S.F. Kazemi, “The Effect of Microsilica on Compressive Strength and Its Growth Process in Cement Mortars,” 5th National Congress of Civil Engineering, Iran, Ferdowsi University of Mashhad, (2010).
[13] M. H. Saghafi, H. Shariatmadar, A. Kheyroddin, “Experimental Evaluation of Mechanical Properties of High Performance Fiber Reinforced Cementitious Composites,” Concrete Research , vol. 9, no. 2, pp. 29-42, (2017).
[14] V., Kumar, A. Imam, V. Srivastava, Y, Kushwaha, “Effect of Micro Silica on the Properties of Hardened Concrete,” International Journal of Engineering Research and Development , vol. 13, no. 11, pp. 8-12, (2017).
[15] R. Mu, Z. Wang, X. Wang, L. Qing, H. Li, “Experimental Study on Shear Properties of Aligned Steel Fiber Reinforced Cement-Based Composites,” Construction and Building Materials , vol. 184, pp. 27-33, (2018).
[16] F. Moodi, A. A. Ramezanianpour, C. Q, Bagheri, D. E, Riahi, E. Riahi dehkordi, “Evaluation of Pozzolanic Mortars Containing Micro Silica Against Acid and Chloride Attack,” Concrete Research, vol. 12, no. 3, pp. 5-15, (2019). doi: 10.22124/jcr.2019.6693.1170.
[17]M. H. Saghafi, H. Shariatmadar, A. Kheyroddin, “Experimental Evaluation of High-Performance Fiber Reinforced Cement Composites Behavior,” Sharif Journal Civil Engineering, vol. 34.2, no. 4.1, pp. 37-46, (2019). doi: 10.24200/J30.2019.1425
[18] K. Mermerdaş, S. Ipek, Z. Algin, S. Ekmen, I. Gunes, “Combined Effects of Microsilica, Steel Fibre and Artificial Lightweight Aggregate on the Shrinkage and Mechanical Performance of High Strength Cementitious Composite,” Construction and Building Materials , vol. 262, p. 120048, (2020).
[19] R. K. Khoshkbijari, M. F. Samimi, F. Mohammadi, P. Talebitaher, “Effects of Mica and Feldspar as Partial Cement Replacement on the Rheological, Mechanical and Thermal Durability of Self-Compacting Mortars,” Construction and Building Materials , vol. 263, p. 120149, (2020).
[20] A. Ganesh, M. Muthukannan, “Development of High Performance Sustainable Optimized Fiber Reinforced Geopolymer Concrete and Prediction of Compressive Strength,”Journal of Cleaner Production , vol. 282, p. 124543, (2021).
[21] A. Dalvand, M. Ahmadi, “Impact Failure Mechanism and Mechanical Characteristics of Steel Fiber Reinforced Self-Compacting Cementitious Composites Containing Silica Fume,” Engineering Science and Technology, an International Journal , vol. 24, no. 3, pp. 736-748, (2021).
[22] M. Nanditha, S. Saikumar, “Examine on Mechanical Properties of Steel Fiber Strengthened Concrete with Silica Fume,” Materials Today: Proceedings , vol. 45, pp.3564-3567, (2021).
[23] G. Singh, “Study on Collective Effect of Silica Fume and Steel Fiber on Strength and Durability Properties of Concrete,” Materials Today: Proceedings , vol. 37, pp. 2256-2265, (2021).
[24] A. Bastami, F. Omidi Nasab, A. Dalvand, “Experimental Investigation of the Effects of Pozzolan and Slag Addition on Mechanical Properties of Self-Compacting Cementitious Composites,” AmirKabir Journal of Civil Engineering , vol. 54no. 10, pp. 16-16, (2022).
[25] ASTM C33/C33M-18, “Standard Specification for Concrete Aggregates,” ASTM International, West Conshohocken , PA, vol. 04.02, p. 8, (2023).
[26] ASTM C1602/C1602M-22, “Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete,” West Conshohocken, PA , vol. 04.02, p.5, (2022).
[27] ASTM C109/C109M-20, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars,” West Conshohocken, PA , vol. 04.02, p. 11, (2020).
[28] ASTM C293-16, “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading),” West Conshohocken, PA , vol. 04.02, p. 4, (2016).
[29] AASHTO T 132, “Standard Method of Test for Tensile Strength of Hydraulic Cement Mortars,” American Association of State Highway and Transportation Officials , p.10, (1987).
[30] ASTM C642-21, “Standard Test Method for Density, Absorption, and Voids in Hardened Concrete,” West Conshohocken, PA , vol. 04.02, p. 3, (2022).
[31] ASTM C1202-19, “Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration,” West Conshohocken, PA , vol. 04.02, p. 8, (2022).
[32] F. Moodi, A. Ramezanianpor, F. Farhadian, P. Dashti, “Durability of Cementitious and Geopolymer Coating Mortars Against Sulfuric Acid Attack,” Amirkabir Journal of Civil Engineering , vol. 53, no, 9, pp. 3693-3708, (2021).
[33] ASTM C1609/C1609M-12, “Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading),” West Conshohocken, PA , vol. 04.02, p.8, (2019).
[34] M. Khorrami, A. Vafai, A. A. Khalilitabas, “Feasibility of Reinforcing of Cement Composite With of Natural Fibers Obtained From Waste,” Sharif Journal of Civil Engineering , vol. 2-26, no. 3, pp. 3-12, (2011).
[35] A. Bentur, S. Midness, Fiber reinforced cementitious composites, second ed., Taylor & Francis, (2007).
[36] S. H. Ghasemzadeh Mosavinejad, A. Saradar, B. Tahmouresi, “Mechanical Behavior of Fiber Reinforced Cementitious Composite Thin- Wall Cylindrical Shells Under Internal Loading Uniform,” Journal of Structural and Construction Engineering , vol. 5, no. 3, pp. 172-187, (2018).
[37] O. Kayali, M. N. Haque, B. Zhu, “Drying shrinkage of fibre - reinforced lightweight aggregate concrete containing fly ash,” Cement and Concrete Research, vol. 29, no. 11, pp. 1835– 1840, (1999).
[38] M. Mazloom, S. Norouzi, M. Akbari Jamkarani, “The Effect of Nanosilica on the Mechanical Properties of Cementitious Composites Containing Polypropylene Fibers,” Journal of Structural and Construction Engineering , vol. 8, no. 1, pp. 25-41, (2021).
[39] J. Esfandiari, O. Heidari, “Investigation on the Behavior of Concrete with Optimum Percentage of Steel Fiber, Microsilica, Fly Ash and Hybrid Fiber Under Different Loading Pattern,” Journal of Structural and Construction Engineering , vol. 8, no. 6, pp. 130-150, (2021).
[40] M. Mazloom, M. Akbari Jamkarani, “Effect of copper slag on the mechanical properties and fracture energy of fiber reinforced cementitious composite,” Amirkabir Journal of Civil Engineering, vol. 53, no. 6, 2625-2638, (2021).
[41] M. Mazloom, H. Karimpour, “Determination of Fracture Parameters of Fiber-Reinforced Cementitious Composites Containing Nano-Silica Using Image Processing,” AmirKabir Journal of Civil Engineering, vol. 54, no. 12, pp. 4729-4750, (2023). dio: 10.22060/ceej.2022.21354.7689.
[42] S. H. Ghasemzadeh Mosavinejad, Y. Ghorban, “Effect of silica fume and nano silica on mechanical properties of fiber-reinforced lightweight concrete,” Ferdowsi Civil Engineering, vol. 31, no. 2, pp. 129-139, (2018)
[43] P. Safa, “The investigation of the combined effect of nano-silica, steel, and polypropylene microfibers on the mechanical characteristics, permeability, and chloride attack resistance of cement composite,” Sharif Journal of Civil Engineering, Articles in Press (2024).
آمار
تعداد مشاهده مقاله: 277
تعداد دریافت فایل اصل مقاله: 180