- Abdollahi Fuzi, M., Bakhtiari, B., & Qaderi, K. (2023). A systematic review of research on late spring frost and its estimation methods. Nivar, 47(120-121), 105-126. (In Persian with English abstract). https://doi.org/10.30467/ 2023.379316.1235
- Abdollahi Fuzi, M., Bakhtiari, B., & Qaderi, K. (2023). A review of research on frost and chilling from 1954 to 2020 (Bibliometric Analysis). Water Management in Agriculture, 10(1), 131-146. (In Persian with English abstract). https://doi.org/1001.1.24764531.1402.10.1.9.7
- Allen, R.G., Pereira, L.S., & Raes, D. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and Drainage Paper 56. FAO, Rome, 300(9),
- Anandhi, A., Zion, M.S., Gowda, P.H., Pierson, D.C., Lounsbury, D., & Frei, A. (2013). Past and future changes in frost day indices in Catskill Mountain region of New York. Hydrological Processes, 27(21), 3094-3104. https://doi.org/10.1002/hyp.9937
- Augspurger, C.K. (2009). Spring 2007 warmth and frost: Phenology, damage and refoliation in a temperate deciduous forest. Functional Ecology, 23, 1031–1039. https://doi.org/10.1111/j.1365-2435.2009.01587.x
- Bascietto, M., Bajocco, S., Mazzenga, F., & Matteucci, G. (2018). Assessing spring frost effects on beech forests in Central Apennines from remotely-sensed data. Agricultural and Forest Meteorology, 250, 240-248. https://doi.org/10.1016/j.agrformet.2017.10.007
- Buishand, T.A. (1982). Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, 58, 11–27. https://doi.org/10.1016/0022-1694(82)90066-X
- Chen, W., Liu, W., Huang, W., & Liu, H. (2017). Prediction of salinity variations in a Tidal Estuary using artificial neural network and three-dimensional hydrodynamic models. Computational Water, Energy, and Environmental Engineering, 6, 107-128. https://doi.org/10.4236/cweee.2017.61009
- Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4), 303–314. https://doi.org/10.1007/BF02551274
- Drepper, B., Bamps, B., & Gobin, A. (2022). Strategies for managing spring frost risks in orchards: effectiveness and conditionality-a systematic review. Environmental Evidence, 11(1), 29. org/10.1186/s13750-022-00281-z.
- Entezari, A., Haddad Niya, J., Jafar Zade, M., & Korvandi, E. (2011). A MLP neural network which predict frosts in kermanshah province. Journal of Arid Regions Geographic Studies, 2(3), 59-71.
- Fuentes, M., Campos, C., & García-Loyola, S. (2018). Application of artificial neural networks to frost detection in central Chile using the next day minimum air temperature forecast. Chilean Journal of Agricultural Research, 77, 327-338. https://doi.org/10.4067/S0718-58392018000300327
- Gholipour, Y. (2007). Low temperature threshold and grow th degree day (GDD) for tw o pistachio cultivars. Journal of Applied Horticulture, 9(2), 150-152. https://doi.org/10.37855/jah.2007.v09i02.33
- Gu, L., Hanson, P.J., Post, W.M., Kaiser, D.P., Yang, B., Nemani, R., Pallardy, S.G., & Meyers, T. (2008). The 2007 Eastern US spring freeze: Increased cold damage in a warming world? BioScience, 58, 253–262. https://doi.org/ 10.1641/b580311
- Graczyk, D., & Szwed, M., (2020). Changes in the occurrence of late spring frost in Poland. Agronomy, 10(11), 1835. https://doi.org/10.3390/agronomy10111835
- Gunhan, T., Demir, V., Hancioglu, E., & Hepbasli, A. (2005). Mathematical modeling of drying of bay leaves. Energy Conversion and Management, 46, 1667–1679.
- Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554–2558. https://doi.org/10.1073/pnas.79.8.2554
- Hernandez, G., Müller, G.,Villacampa, Y., Navarro-Gonzalez, F., & Luis, A. (2019). Predictive models of minimum temperatures for the south of Buenos Aires province. Science of The Total Environment, 699, 134280. https://doi.org/ 10.1016/j.scitotenv.2019.134280
- Khalili, A. (2014). Quantitative evaluation of spring frost risk to agriculturial crops in Iran and modeling. Jornal of Agricultural Meteorology, 2(1), 17-31.
- Khalili, A., Bazrafshan, J., & Cheraghalizadeh, M. (2022). A Comparative study on climate maps of Iran in extended de Martonne classification and application of the method for world climate zoning. Journal of Agricultural Meteorology, 10(1), 3-16. (In Persian with English abstract). https://doi.org/10.22125/agmj. 156309
- Khatami Firouzabadi, S.M.A., Dehdashti Shahrokh, Z., Roshani, A., & Akhgari, A. (2016). A hybrid fuzzy approach using AHP and Topsis methods to prioritize the export target markets of pistachio in Iran, Yazd. Iranian Journal of Trade Studies, 20(79), 121-154.
- Hufkens, K., Friedl, M.A., Keenan, T.F., Sonnentag, O., Bailey, A., O’Keefe, J., & Richardson, A.D. (2012). Ecological impacts of a widespread frost event following early spring leaf-out. Global Change Biology, 18, 2365–2377. https://doi.org/10.1111/j.1365-2486.2012.02712.x
- Kreyling, J., Thiel, D., Nagy, L., Jentsch, A., Huber, G., Konnert, M., Beierkuhnlein, C. (2012). Late frost sensitivity of juvenile Fagus sylvatica differs between Southern Germany and Bulgaria and depends on preceding air temperature. European Journal of Forest Research, 131, 717–725. https://doi.org/10.1007/s10342-011-0544-y
- Krause, P., Boyle, D.P., & Bäsel, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. https://doi.org/10.5194/adgeo-5-89-2005
- Larcher, W., & Bauer, H. (1981). Ecological significance of resistance to low temperature. In Physiological Plant Ecology I: Responses to the Physical Environment; Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., Eds.; Springer: Berlin/Heidelberg, Germany, pp. 403–437.
- Larcher, (1981). Effects of low temperature stress and frost injury on plant productivity. In Physiological Processes Limiting Plant Productivity; Johnson, C.B., Ed.; Butterworth: London, UK, pp. 253–269.
- Littlewood, L.G., Clarke, R.T., Collischonn, W., Croke, B.F.W. (2007). Predicting daily streamflow using rainfall forecasts, a simple loss module and unit hydrographs: Two Brazilian catchments. Environmental Modelling and Software, 22, 1229-1239. https://doi.org/10.1016/j.envsoft.2006.07.004
- Mesgari, E., Tavousi, T., Mahmoudi, P., & Jahanshahi, S.M.A. (2020). Evaluation of selected transfer functions of artificial neural network model for prediction of minimum temperature (Case Study: Sanandaj Station). Journal of Agricultural Meteorology, 8(1), 40-50.) In Persian with English abstract.( https://doi.org/10.22125/agmj.2020. 191817.1066
- Moustris, K.P., Ziomas, I.C., & Paliatsos, A.G. (2010). 3-day-ahead forecasting of regional pollution index for the pollutants NO2, CO, SO2 and O3 using artificial neural networks in Athens, Greece. Water Air Soil Pollut, 209, 29–43. https://doi.org/10.1007/s11270-009-0179-5
- Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel R.D., & Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885-900. https://doi.org/10.13031/2013.23153
- Motovilov, Y.G., Gottschalk, L., England, K., & Rodhe, A. (1999). Validation of distributed hydrological model against observations. Agricultural and Forest Meteorology, 99, 257-277. https://doi.org/10.1016/S0168-1923%2899%2900102-1
- Nash, J.E., & Sutcliffe, J.V. (1970). River flow forecasting through conceptual models; Part I – a discussion of principles. Journal of Hydrology, 10, 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
- Ningre, F., & Colin, F. (2007). Frost damage on the terminal shoot as a risk factor of fork incidence on common beech (Fagus sylvatica ). Annals of Forest Science, 64, 79–86. https://doi.org/10.1051/forest:2006091
- Noh, I., Doh, H.W., Kim, S.O.S.H., Kim, S., & Shin, Lee, S.J. (2021). Machine learning-based hourly frost-prediction system optimized for orchards using automatic weather station and digital camera image data. Atmosphere, 12(7), 846. https://doi.org/10.3390/atmos12070846
- Sadorsky, P. (2006). Modeling and forecasting petroleum futures volatility. Energy Economics, 28, 467-488. https://doi.org/10.1016/j.eneco.2006.04.005
- Shcherbakov, M.V., Brebels, A., Shcherbakov, N.L., Tuukov, A.P., Janovsky, T.A., & Kamaev, V.A. (2013). A survey of forecast error measures. World Applied Sciences Journal, 24, 171-176. https://doi.org/10.5829/idosi. wasj.2013.24.itmies.80032
- Shonwiese, C.D. (1997). Statistical analysis of observed climate trends and statistical signal detection analysis, WMO Publ., No. 834, Geneva.
- Snyder, R.L., & de Melo-Abreu, J.P. (2005). Frost Protection: Fundamentals, Practice and Economics.
- Taghavi, S., & Omidzade, H. (2015). Spring frost prediction using neural network multilayer prediction (MLP) and it,s impact on the public transporation in Khorramabad City. Environmental Based Territorial Planning (Amayesh), 8(28), 111-124. (In Persian)
- Tajabadipour, A., Fattahi Moghadam, M.R., Zamani, Z., Nasibi, F., & Hokmabadi, H. (2018). Evaluation of physiological and biochemical changes of pistachio (Pistacia vera cv. Ahmad-Aghaii) on cold tolerant and sensitive rootstocks under freezing stress conditions. Journal of Horticultural Science, 32(3), 471-484. (In Persian)
- Tran, T., Bateni, M., Jin Ki, S., & Vosoughifar, H. (2021). A review of neural networks for air temperature forecasting. Water, 13(9), 1294. https://doi.org/10.3390/w13091294
- Vitasse, , Schneider, L., Rixen, C., Christen, D., & Rebetez, M. (2018). Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agricultural and Forest Meteorology, 248, 60–69. https://doi.org/10.1016/j.agrformet.2017.09.005
- Woodward, F.I., & Williams, B.G. (1987). Climate and plant distribution at global and local scales. Vegetatio, 69, 189–197. https://doi.org/10.1007/BF00038700
- Zohner, C.M., Mo, L., Renner, S.S., Svenning, J.C., Vitasse, Y., Benito, B.M., Ordonez, A., Baumgarten, F., Bastin, J.F., Sebald, V., Reich, P.B., Liang, J., Nabuurs, G.J., De-Migueln, S., Alberti, G., Antón-Fernández, C., Balazy, R., Brändli, U.B., Chen, H.Y.H., & Crowther, T.W. (2020). Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proceedings of the National Academy of Sciences of the United States of America, 117(22). https://doi.org/10.1111/geb.13088
- Zolfaghari, H., Zahedi, GH., & Sajjadifar, T. (2012). Predicting last spring freezing day in West Northwest of Iran. Geography and Enviromental Sustainability, 2(4), 59-74. (In Persian with English abstract)
|