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Abstract. Regression is a generic tool used to make inferences so as to draw logical conclusions
and judgments about a particular problem. It has been widely used in engineering, sciences,
education, technology, and social sciences for a long time. Breaking down of the underlying
estimation mar the judgment and decision of the study. Chiefly among the error structure that
can lead to the drawback of the inferences of regression is the autocorrelation of error term of
both AR and MA processes. Restricted Stein-rule regression analysis was used with data injected
with autocorrelated error; H1 was modeled with autocorrelated error whereas H0 was modeled
without, alternative approach in Bayes factor of AR(1) and MA(1) processes were introduced
and compared with Bayesian information criterion approach in both negative and positive ρ
(symmetrical). The choice of the Bayes factor (Bf) is due to the probabilistic nature of Bayesian
inference, which over the years has been performed better than the classical approach. The
datasets with five covariates was set at 25 to capture the error structure and project the property
of a small sample. The study, therefore, concluded that Bayesian inference being probabilistic
about the uncertainty of the parameters should be adopted to verify the presence or absence of
autocorrelated error in the data before estimation.
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1 Introduction
Han and Carlin (2001) attempted to compare several methods of estimations under the categories
of simple regression, hierarchical longitudinal model, and binary data latent. They thought that
the joint model parameters search space technique performs well but is only complicated in terms
of computing algorithm whereas marginal likelihood approach is of less difficult. They therefore
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suggested from their study that the marginal likelihood approach is appropriate for researchers
with model choice setting while the joint space method can be used for comparing models of
varying dimensions. It was learned from the literature that the origin of the Bayesian hypothesis
testing was credited to Jeffreys (1961), and ordinarily it was referred to as a significant test.

Kass and Raftery (1995) reviewed the work of Jeffreys (1961) and added that the Bayesian
technique to hypothesis testing meets the test of time with moderate computation technique.
They found out that the Bayes factor is sensitive to the assumption of the parametric model
and choice of prior. Giampaoli et al. (2015) examined the Bayes factor in a restricted simple
linear regression and pointed out that their approach considered restricted parameter space to be
more informative than unrestricted parameter space, which permits evidence for null hypothesis.
Bayes factor provided a means through which two competing hypothesis may be compared; see
Johnson et al. (2023). The Bayes factor B10 is used to compute the probability of the observed
data under the alternative hypothesis H1 versus the null hypothesis H0, which is expressed as

B10 =
H1

H0
=

∫
P(Y |β )π (β |H1)dβ∫
P(Y |β )π (β |H0)dβ

. (1)

Jarosz and Wileyr (2014) in their presentation, showcased the similarities between the Bayes
factor and p-value. They believe that bf should have similar information as p-value. The
only difference is that bf allowed the researcher to give evidence in both the alternative and
null hypothesis unlike p-value that will solely give evidence about null hypothesis. Roozbeh
and Hamzah (2020) pointed out that the restriction of parameter in partial linear regression can
overcome the problem of multicollinearity. They believed that restricted estimator outperformed
traditional estimator. They added that restriction can be hypothesis that may have to be tested.

Over the years, many studies have been carried out in Bayesian inference for linear and
nonlinear models on the premise of model averaging, parameter estimation, and hypothesis test-
ing, but most importantly restricted stem-rule are not well studied in the Bayesian framework.
Against this backdrop, this paper seems to examine nonspherical disturbance (autocorrelated
error) in the Bayesian restricted stem-rule paradigm.

2 Materials and methods

Let y = Xβ + u be the linear regression model, where y is an n× 1 set of observations on the
regressand, X is a set of n× p full column rank of regressors, and β is p×1 vectors of unknown
parameters while u is an n× 1 vectors of disturbance error not necessarily well behave, which
is characterized by autocorrelated errors. Let there be m linearly independent restriction that
constrains the regression coefficients such that

r = Rβ , (2)
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where r is an m×1 vector and R is an m× p matrix of rank m < p Chaturvedi et al. (2001). The
AR(1) and MA(1) processes are expressed as

Ω̂AR =
σ2

u

1−ρ2


1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

...
...

... . . . ...
ρn−1 ρn−2 ρn−3 · · · 1


The MA(1) with autocorrelated error is expressed as

Ω̂MA = σ2
u



(
1+ϕ 2

)
ϕ · · · · ·

ϕ
(
1+ϕ 2

)
ϕ · · · ·

· ϕ
(
1+ϕ 2

)
ϕ · · ·

. . . . . . . . . . . . . . .
· · · · · ·

(
1+ϕ 2

)

 ,

where ϕ ranges between −1 and 1. The generalized restricted least squares estimates are obtained
as follows: Adopting the criterion of minimizing the sum of squares (y−Xβ )′Ω̂(y−Xβ ) subject
to the condition that Rβ = r. This leads to the Lagrangian function

β̂R = β̂ +
(

XΩ̂X
)−1

[
R
(

XΩ̂X
)−1

R
]−1

R′
(

r− Rβ̂
)
, (3)

β̂R = β̂ +
(

X ′Ω̂X
)−1

R′
[

R
(

X ′Ω̂X
)−1

R′
]−1(

r−Rβ̂
)
. (4)

Thus βR is a constrained estimates, following Chaturvedi et al. (2001), the restricted stein-
rule version of intertwined disturbance errors can be expressed as

β̂S =

1− a
n

(
y−X β̂

)′
Ω̂
(

y−X β̂
)

β̂XΩ̂X β̂

 β̂ . (5)

We have

β̂RS = β̂S +
(

X ′Ω̂X
)−1

R′
[

R
(

X ′Ω̂X
)−1

R′
]−1(

r−Rβ̂S

)
, (6)

where Ω̂=Ω(b), in which b is a consistent and efficient estimator of β ; thus b=
(

X ′Ω̂X
)−1(

X ′Ω̂y
)

.
Following Chaturvedi and Shukla (1990), we have modified the Stein rule estimator of beta.
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3 Bayesian restricted least squares estimator
The restricted posterior density of restricted β and σ is obtained by marginalizing the conju-
gate of normal-inverse gamma and restricted likelihood since both are of the same family of
distribution Oloyede (2023). The linear model is expressed as

y = XβR +u. (7)

The likelihood function of β , X , and y, where θ = (β ,λ ) given sample vectors X1, X2 =
(1,2, . . . ,n)′ and y = (y1, y2, . . . ,yn)

′ and incorporating restricted βR, is expressed as

L
(
βR,σ2|X ,y

)
=
(
2πσ 2)− n

2 exp
[
− 1

2σ2 (y−XβR)
′ Ω̂−1 (y−XβR)

]
→ H1, (8)

L
(
βR,σ2|X ,y

)
=
(
2πσ 2)− n

2 exp
[
− 1

2σ2 (y−XβR)
′
(y−XβR)

]
→ H0. (9)

Note that normal-inverse gamma priors are conjugate priors and selected because the prior
and posterior densities are of the same family of distributions; see Oloyede (2023). Moreover,

p
(
βR|σ2) p

(
σ2)= (2π)−

k
2

∣∣∣Ω̂∣∣∣− 1
2

exp
[
−1

2
(βR−B)′ Ω̂−1 (β −B)

]
×σ−(a−k) exp

[
− b

σ2

]
, (10)

p
(
βR|σ2) p

(
σ2)= σ−(a−k) exp

[
− 1

2σ2 (βR−B)′ Ω̂−1 (βR−B)+2b
]
, (11)

where X is an n× k matrix,
βR is unknown parameter,
B is a prior mean vector of β (true value),
σ2 is a prior variance for β ,
σ̂2 = (y−XβR)Ω̂(y−XβR)

n−k ,
a− k is first hyper-parameter,
b is second hyper-parameter.

Since σ2 is known, normal-inverse gamma conjugate prior is adopted. For details of the
posterior, the reader is advised to see Oloyede (2023).

Posterior density function is

β̂R ∼ MV N

(
β̂R , σ̂2

(
X

′
Ω̂X
)−1

[
1−
(

X
′
Ω̂X
)−1

R
′
[

R
(

X
′
Ω̂X
)−1

R
′
]−1

R

] )
, (12)

β̆RS ∼ MV N

(
β̂RS , σ̂2

(
X

′
Ω̂X
)−1

[
1−
(

X
′
Ω̂X
)−1

R
′
[

R
(

X
′
Ω̂X
)−1

R
′
]−1

R

] )
, (13)

for restricted the Stein-rule estimator.
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4 Bayesian hypothesis testing
Let Mi = Xβ + u∗ be the regression model with autocorrelated error, setting up dual distinct
model M1 and M0, where 1 and 0 represent the model with autocorrelated error and without
autocorrelated error, respectively. The prior belief of parameter estimates of both models is the
same. Let D be the set of observed datasets corrupted with autocorrelated error of AR(1) and
MA(1) independently. Thus, the posterior of M1 and M0 can be expressed as follows:

P(β |D , M0 ) ∝ P(β | M0)∗P(D|β ,M0 )→ H0, (14)

P(β |D , M1 ) ∝ P(β | M1)∗P(D|β ,M1 )→ H1. (15)

Bayes factor is therefore expressed as

BF10 =
Posterior model odds

prior model odds
, (16)

P(D|β ,M1 )

P(D|β ,M0 )
=

P(M1|D )

P(M0|D )
÷ P(M1)

P(M0)
, (17)

P(M1|D )

P(M0|D )
=

P(M1)

P(M0)
× P(D|β ,M1 )

P(D|β ,M0 )
. (18)

5 Data generation processes and simulation experiment
The Markov Chain Monte Carlo simulation algorithm was adopted to examine the small sam-
ple properties of the family of restricted least squares estimators with autocorrelated error in
Bayesian frameworks. Data were generated based on the following parameters of the model:
P = 6,n = 25, yt = Xtβ + ut , t = 1, . . . ,25, where εt assumed to be generated by the AR(1) pro-
cess ut = ρut−1 + εt or the MA(1) process ut = εt − ρεt−1, t N(0,1). Moreover, β̂ was set as
(1.2,2,0.8,0.3,2.1,1.1) while seed was set at 1234. Also, 10000 iterations were set for Bayesian
Monte Carlo simulation, and ρ was set at −0.8,−0.5,−0.3,0,0.3,0.5,0.8 for both AR(1) process
and MA(1) process. The restriction of parameters was set as

R =

0 1 0 −1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

 , (19)

r =
(
0 1 0

)
, (20)

where β1 − β3 = 0, β2 + β4 = 1 and β5 = 0. All computations were carried out using Statisti-
cal software R-Core (2022). The datasets class contained the posterior sample for the model
parameters.
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6 Hypothesis metrics
Bayesian Information Criterion (BIC) and Quadratic weight loss and risk function approaches
that incorporated autocorrelated error structures were used to evaluate the Bayes factor of both
the Bayes estimate and posterior mean. Let

(
β̂R −β

)
=
(

β̂R −β
)

Q
(

β̂R −β
)

be a quadratic or

square error loss function, where β̂R is an estimator of β and Q is the ∑βR
i=1 β̂R weight of loss

function. For obtaining the Bayes factor for β̂R and hatβ RS, ratio of quadratic loss function of
both H1 and H0 was computed as well as ratio of BIC for both H1 and H0.

7 Data analysis and discussion
Both null and alternative hypotheses were subjected to the same datasets having autocorrelation
error. Two types of autocorrelation error AR(1) and MA(1) processes were examined. The null
hypothesis was modeled in a natural setting without being generalized, but the alternative hy-
pothesis was modeled in a generalized pattern by incorporating autocorrelation error structure
into the model. Bayesian restricted least squares and Bayesian restricted stem-rule were the
predominant estimators adopted in the study. The study looked into the evidence that alter-
native hypothesis have over null hypothesis due to the presence of autocorrelated error in the
datasets in Bayesian paradigm. The threshold of 1 is the decision value.

Table 1: Bayes factor with loss and risk function approach with AR(1) process

n = 25 Bayesian Restricted Least Squares Bayesian Restricted Stein-Rule
ρ Bayes Estimates Posterior Mean Bayes Estimates Posterior Mean

-0.8 1.001761 1.001954 1.000197 0.999665
-0.6 0.947783 0.947851 0.94699 0.946795
-0.3 0.964658 0.964679 0.964214 0.964158
0 1.000008 1.000014 0.999745 0.999731

0.3 1.039884 1.039891 1.03971 1.039685
0.6 1.073562 1.07359 1.073367 1.073277
0.8 1.094908 1.094954 1.094644 1.094493

Table 2: Bayes factor with BIC approach with AR(1) process

n = 25 Bayesian Restricted Least Squares Bayesian Restricted Stein-Rule
ρ Bayes Estimates Posterior Mean Bayes Estimates Posterior Mean

-0.8 1.172955243 1.188872 1.010712 1.010932
-0.6 2.273047888 2.286148 1.021469 1.021607
-0.3 2.005146615 2.008686 1.013486 1.01364
0 0.998911484 0.999406 1.000062 1.000056

0.3 0.380557759 0.380816 1.035379 1.035065
0.6 0.18084545 0.181293 1.253861 1.253553
0.8 0.33050558 0.332143 2.335213 2.336675
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Tables 1 and 2 provide information about the outcome of study about the Bayes factor with
autocorrelated error of autoregressive process of order 1. Table 1 shows that the autocorrelated
error of magnitude −0.8, 0 to 0.8 provided evidence in favour of the alternative hypothesis H1
for both the Bayes estimates and posterior mean considering Bayesian restricted least squares
whereas the magnitude of −0.6 and −0.3 provided evidence in support of accepting null hypothe-
sis H0. In the same vein, the Bayes factor for Bayesian restricted Stein-rule provided information
in favor of alternative hypothesis considering the magnitude of 0.3 to 0.8 autocorrelated errors.
In Table 2 where BIC approach was adopted to compute the Bayes factor, the magnitudes of
−0.8 through −0.3 portend evidences in favour of alternative hypothesis whereas other mag-
nitudes were otherwise. This is in Bayesian restricted least squares for both Bayes estimates
and posterior mean. Interestingly, Bayesian restricted stein rule has Bayes factor that portends
evidence in favour of alternative hypothesis for both Bayes estimates and posterior mean for all
the magnitudes.

Table 3: Bayes factor with Loss and risk function with MA(1) Process

n = 25 Bayesian Restricted Least Squares Bayesian Restricted Stein-Rule
ρ Bayes Estimates Posterior Mean Bayes Estimates Posterior Mean

-0.8 1.052104 1.052086 1.047152 1.047216
-0.6 1.002316 1.002319 1.000276 1.000283
-0.3 0.98147 0.981478 0.980911 0.980893
0 1.000008 1.000014 0.999745 0.999731

0.3 1.058752 1.05874 1.058577 1.058607
0.6 1.069787 1.069688 1.069916 1.07014
0.8 0.799912 0.799774 0.799965 0.800259

Table 4: Bayes factor with Bayesian Information Criteria with MA(1) Process

n = 25 Bayesian Restricted Least Squares Bayesian Restricted Stein-Rule
ρ Bayes Estimates Posterior Mean Bayes Estimates Posterior Mean

-0.8 0.428503544 0.428626 1.294917 1.294175
-0.6 1.728149432 1.729083 1.137145 1.137505
-0.3 1.770699531 1.771931 1.022389 1.022589
0 0.998911484 0.999406 1.000062 1.000056

0.3 0.373687701 0.373339 1.023952 1.023549
0.6 0.792633093 0.786735 1.050708 1.051685
0.8 41.83140879 41.63028 1.511668 1.523933

Tables 3 and 4 show Bayes factor Loss and risk function with MA(1) Process . Tables 3 and 4
provide information about the outcome of the study about the Bayes factor with autocorrelated
error of moving average process of order 1. Table 3 shows that autocorrelated error of magnitude
−0.8,−0.6, 0, 0.3, and 0.6 provided evidence in favour of alternative hypothesis H1 for both
Bayes estimates and posterior mean considering Bayesian restricted least squares whereas other
magnitudes provided evidence in support of accepting null hypothesis H0. In the same vein, the
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Bayes factor for Bayesian restricted the Stein-rule provided information in favour of alternative
hypothesis considering the magnitude of −0.8, −0.6, 0.3, and 0.6 autocorrelated errors. In
Table 4 where the BIC approach was adopted to compute the Bayes factor, the magnitudes
of −0.6, −0.3, and 0.8 portend evidences in favour of alternative hypothesis whereas other
magnitudes were otherwise. This is in Bayesian restricted least squares for both Bayes estimates
and posterior mean. Interestingly, the Bayesian restricted Stein rule has Bayes factors that
portend evidence in favour of alternative hypothesis for both Bayes estimates and posterior
mean for all the magnitudes.

8 Conclusion
This study introduced Bayes factor as an alternative to probability value, which has an age
long drawback in science, technology, education, and so on, with the view of having probability,
not only in the value of data, but also in the uncertainty of unknown parameters. The study
established and compared the BIC approach and loss/risk function approach in determining the
Bayes factor. The small sample behaviour of regression parameter with uncertainty was studied
via the violation of non-serial correlation of error terms in a restricted least squares and restricted
stein-rule least squares. The study allays fears in the minds of researchers in engineering, science,
technology, education, and so on, who have over the years unsatisfied with p-value or using it
wrongly. The Bayesian test hypothesis now provides alternative means through which they can
verify the presence/absence of autocorrelated errors in their data.
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